A Review of Key Signal Processing Techniques for Structural Health Monitoring: Highlighting Non-Parametric Time-Frequency Analysis, Adaptive Decomposition, and Deconvolution
Abstract
:1. Introduction
2. Non-Parameterized Time–Frequency Analysis
2.1. Short-Time Fourier Transform
2.1.1. Definition
- 1.
- Continuous-Time Signal: For a continuous signal , the STFT is defined as
- 2.
- Discrete-Time Signal: For a discrete signal , the discrete form of the STFT is
- Time–Frequency Analysis: The STFT divides the signal into short segments, and each segment is transformed into the frequency domain via Fourier transform to reveal how frequency components vary over time.
- Role of the Window Function: It restricts the signal to a local time segment, balancing time resolution and frequency resolution (the narrower the window, the higher the time resolution and the lower the frequency resolution).
2.1.2. Application
2.1.3. Strength and Weakness
- High-resolution and efficient computation
- Window effect and time–frequency trade-off
2.2. Wavelet Transform
2.2.1. Definition
2.2.2. Application
2.2.3. Strength and Weakness
- Time–frequency localization and flexible multi-scale analysis
- Challenges in selecting wavelet basis and parameters
2.3. Wigner–Ville Distribution
2.3.1. Definition
2.3.2. Application
2.3.3. Strength and Weakness
- High time–frequency resolution and energy concentration
- Precision in instantaneous frequency analysis
- Mathematical completeness and cross-term interference
3. Adaptive Time–Frequency Analysis
3.1. Empirical Mode Decomposition and Optimization Models
3.1.1. Empirical Mode Decomposition
Definition
- -
- is the original signal,
- -
- is the i-th IMF,
- -
- is the residual term, representing the part of the signal not decomposed into IMFs,
- -
- N is the number of IMFs.
Application
Strength and Weakness
- No need to preset the number of modes or frequency ranges
- Capable of capturing complex patterns and transient features
3.1.2. Ensemble Empirical Mode Decomposition
Definition
Application
Strength and Weakness
- Alleviates the mode mixing issue by adding Gaussian white noise
- Residual noise contamination and energy non-conservation
3.1.3. Multivariate Ensemble Empirical Mode Decomposition
Definition
Application
Strength and Weakness
- Suppression of modal aliasing and fusion of multi-physical field signals
- Parameter sensitivity, residual noise, and endpoint effect
- Algorithm generalization and poor adaptability to extreme working conditions
3.2. Variational Mode Decomposition and Optimization Models
3.2.1. Variational Mode Decomposition
Definition
Application
Strength and Weakness
- Susceptible to the influences of noise and spurious components
- Stability and noise resistance
- Adaptability and parameter controllability
- Effective mitigation of mode mixing
3.2.2. Successive Variational Mode Decomposition
Definition
Application
Strength and Weakness
- Insensitive to initial values and successive extraction
- Prone to getting trapped in local optimal solutions
- Limited parallelism resulting in low real-time efficiency
3.2.3. Variational Mode Extraction
Definition
Application
Strength and Weakness
- Extracts specific frequency components by setting the modal center frequencies.
3.2.4. Adaptive Variational Mode Decomposition
Definition
Application
Strength and Weakness
- Adapts mode count
- Has strong noise resistance
3.3. Empirical Wavelet Transform and Optimization Models
3.3.1. Empirical Wavelet Transform
Definition
- 1.
- Fourier Transform: Perform Fourier transform on the signal to obtain the spectrum :
- 2.
- Frequency Band Division: Detect the local maxima of to determine the frequency band boundaries , where and (normalized frequency).
- 3.
- Construction of Empirical Wavelet Functions: For each frequency band , construct the empirical wavelet function and scaling function , satisfying the tight frame condition:Scaling Function (Low-Pass Filter):Wavelet Function (Band-Pass Filter):Here, is a smoothing function, for example
- 4.
- Mode Decomposition: Extract the mode components via inverse Fourier transform:Residual (Low-Frequency Part):n-th Mode Component:
- 5.
- Signal Reconstruction: The signal can be reconstructed exactly as follows:
- Adaptivity: The frequency band division is based on the local maxima of the signal spectrum, without the need for predefined basis functions.
- Compact Support: The wavelet functions have compact support and smooth transitions in the frequency domain, reducing ringing effects in the time domain.
- Perfect Reconstruction: The filter bank satisfies the condition that the sum of squares is 1, ensuring lossless signal recovery.
Application
Strength and Weakness
- Adaptive frequency band partitioning and captures local features
- Sensitive to noise and may have endpoint effect
- May cause modal aliasing or modal loss issues
3.3.2. Ensemble Empirical Wavelet Transform
Definition
- 1.
- Signal and Noise Superposition: The signal and noise superposition is given by
- 2.
- EMD Decomposition: Perform EMD decomposition on to obtain a series of intrinsic mode functions (IMFs):
- 3.
- Repetition and Averaging: Repeat the above process M times, adding different white noise each time, and average all the obtained IMFs:
Strength and Weakness
- Strong noise resistance and high resolution time frequency analysis
- High computational complexity and endpoint effect
3.3.3. Empirical Fourier Decomposition
Definition
Application
Strength and Weakness
- Components with clear physical meanings
- Excellent modal separation for multi-modal vibration identification
- Sensitive to noise and possible modal aliasing
4. Deconvolution
4.1. Minimum Entropy Deconvolution
4.1.1. Definition
- 1.
- Signal Model
- 2.
- Deconvolution Objective
- 3.
- Definition of Entropy
- (a)
- Kurtosis Maximization Kurtosis measures the impulsiveness of the signal and is defined as
- (b)
- Shannon Entropy Minimization Normalize the signal energy to a probability distribution and minimize its Shannon entropy:
- 4.
- Optimization
- 5.
- Summary of Formulas
- Adaptivity: No prior system model is required; the method is entirely data-driven.
- Sparse Enhancement: Impulsive components are highlighted by minimizing entropy (or maximizing kurtosis).
4.1.2. Application
4.1.3. Strength and Weakness
- Enhances signal sparsity
- Sensitive to random pulses
- Sensitive to parameters
4.2. Maximum Correlated Kurtosis Deconvolution
4.2.1. Definition
4.2.2. Application
4.2.3. Strength and Weakness
- Good at extracting periodic fault pulses in rotating machinery
- Improves fault diagnosis accuracy for early -stage faults
- Preserves and enhances fault-related periodic components
- Sensitive to high noise levels and poor signal quality
- Heavily depends on accurate fault cycle estimation
4.3. Feature Model Decomposition
4.3.1. Definition
4.3.2. Method
4.3.3. Strength and Weakness
- Uses adaptive FIR filters
- Can resist interference and noise
- Highly dependent on signal characteristics
4.4. Other Models and Applications
- Wiener Deconvolution
- Blind Deconvolution
5. Comprehensive Discussion
6. Conclusions
7. Comparison
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SHM | Structural Health Monitoring |
STFT | Short-Time Fourier Transform |
WT | Wavelet Transform |
WVD | Wigner–Ville Distribution |
EMD | Empirical Mode Decomposition |
VMD | Variational Mode Decomposition |
MED | Minimum Entropy Deconvolution |
MCKD | Maximum Correlated Kurtosis Deconvolution |
MEEMD | Modified Ensemble Empirical Mode Decomposition |
EEMD | Ensemble Empirical Mode Decomposition |
SVMD | Successive Variational Mode Decomposition |
IMFs | Intrinsic Mode Functions |
SMVMD | Successive Multivariable Variational Mode Decomposition |
NCESVMD | Narrowband Constrained Enhanced Continuous Variational Mode Decomposition |
AVMD | Automatic Variational Mode Decomposition |
D-VMD | De-aliasing Variational Mode Decomposition |
D-MVMD | De-aliasing Multivariable Variational Mode Decomposition |
I-1DCNN | Improved One-Dimensional Convolutional Neural Network |
PSD-VME | Power Spectral Density-Variational Mode Extraction |
mRVM | Multiclass Relevance Vector Machines |
DAVMD | Differential Evolution-Based Adaptive Variational Mode Decomposition Technique |
WOA | Whale Optimization Algorithm |
GPR | Ground-Penetrating Radar |
SNR | Signal-to-Noise Ratio |
EWT | Empirical Wavelet Transform |
IEWT | Improved Empirical Wavelet Transform |
LSTM | Long Short-Term Memory Network |
EFV | Energy Feature Vector |
BOCNN | Bayesian Optimized Convolutional Neural Network |
CEWT | Cepstrum-Assisted Empirical Wavelet Transform |
SIAI | Sensitive IMFs Assessment Index |
IEEWT | Improved Extended Empirical Wavelet Transform |
DFA | Detrended Fluctuation Analysis |
FBSE | Fourier-Bessel Series Expansion |
HHT | Hilbert–Huang Transform |
VEWT | Variable Spectrum Segmentation Empirical Wavelet Transform |
QEWT | Quaternion Empirical Wavelet Transform |
IAPEWT | Improved Adaptive Parameter-Free Empirical Wavelet Transform |
ASCSD | Adaptive Sparse Coding Shrinkage Denoising |
ESN | Echo State Network |
IABSR | Improved Adaptive Bistable Stochastic Resonance |
AM-FM | Amplitude Modulation–Frequency Modulation |
MOMEDA | Minimum Entropy Deconvolution Adjustment |
CVS | Continuous Vibration Separation |
MEMD | Minimum Entropy Morphological Deconvolution |
DSS | Diagonal Slice Spectrum |
CFMED | Coarse-to-Fine Minimum Entropy Deconvolution |
KLOF | Kernel Local Outlier Factor |
PE | Phase Editing |
SCI | Spectral Centroid Indicator |
IMCKDA | Improved Maximum Correlated Kurtosis Deconvolution Adjustment |
IMCKD | Improved Maximum Correlated Kurtosis Deconvolution |
MCKD-DeNet | Maximum Correlated Kurtosis Deconvolution Method Based on Deep Networks |
FMD | Feature Mode Decomposition |
FIR | Finite Impulse Response |
PSF | Point Spread Function |
MACKD | Maximum Autocorrelation Kurtosis Deconvolution |
MLKD | Maximum L-Kurtosis Deconvolution |
FDF | Frequency Domain Filtering |
MAKD | Maximum Average Kurtosis Deconvolution |
UWFBG | Ultra-weak Fiber Bragg Grating |
DAS | Distributed Acoustic Sensing |
SEAEFD | Spectral Envelope-Based Adaptive Empirical Fourier Decomposition |
PSEEFD | Power Spectrum Envelope Adaptive Empirical Fourier Decomposition |
GWO | Grey Wolf Optimizer |
EMED-AFP | Enhanced Minimum Entropy Deconvolution with Adaptive Filter Parameters |
CYCBD β | Generalized Gaussian Cyclostationarity |
MOMEDA | Multipoint Optimal Minimum Entropy Deconvolution Adjusted |
PCPKD | Periodic Component Pursuit-Based Kurtosis Deconvolution |
TF | Time–Frequency |
NL | Non-linear Signal |
NS | Non-stationary Signal |
EFS | Early Fault Signal |
CFS | Composite Fault Signal |
Window Sel. | Window Selection |
Basis Sel. | Basis Function Selection |
Mode Mixing | Mode Mixing |
Noise Difficulty | Noise Difficulty |
Parameter Sel. | Parameter Selection |
Computational | Computational Complexity |
Parameter Sens. | Parameter Sensitivity |
References
- Amezquita-Sanchez, J.P.; Adeli, H. Signal Processing Techniques for Vibration-Based Health Monitoring of Smart Structures. Arch. Comput. Methods Eng. 2016, 23, 1–15. [Google Scholar] [CrossRef]
- Jung, W.; Kim, S.H.; Yun, S.H.; Bae, J.; Park, Y.H. Vibration, acoustic, temperature, and motor current dataset of rotating machine under varying operating conditions for fault diagnosis. Data Brief 2023, 48, 109049. [Google Scholar] [CrossRef] [PubMed]
- Lizhong, J.; Shaohui, L.; Wangbao, Z.; Jian, Y.; Kang, P.; Zhenbin, R. Evolutionary power spectral density study of the earthquake-induced dynamic irregularity based on short-time Fourier transform. Eng. Struct. 2023, 296, 116901. [Google Scholar] [CrossRef]
- Shen, M.; Yang, F.; Wen, P.; Song, B.; Li, Y. A real-time epilepsy seizure detection approach based on EEG using short-time Fourier transform and Google-Net convolutional neural network. Heliyon 2024, 10, e31827. [Google Scholar] [CrossRef]
- Qi, Y.; Yang, L.; Liu, B.; Liu, L.; Liu, Y.; Zheng, Q.; Liu, D.; Luo, J. Accurate diagnosis of lung tissues for 2D Raman spectrogram by deep learning based on short-time Fourier transform. Anal. Chim. Acta 2021, 1179, 338821. [Google Scholar] [CrossRef]
- Li, B.; Zhang, Z.; Zhu, X. Multitaper adaptive short-time Fourier transform with chirp-modulated Gaussian window and multitaper extracting transform. Digit. Signal Process. 2022, 126, 103472. [Google Scholar] [CrossRef]
- Hao, Y.; Zhang, C.; Lu, Y.; Zhang, L.; Lei, Z.; Li, Z. A novel autoencoder modeling method for intelligent assessment of bearing health based on Short-Time Fourier Transform and ensemble strategy. Precis. Eng. 2024, 85, 89–101. [Google Scholar] [CrossRef]
- Muhashi, A.; Feng, X.; Onishi, Y.; Ota, R.; Liu, H. Enhancing Coincidence Time Resolution of PET detectors using short-time Fourier transform and residual neural network. Nucl. Instru. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2024, 1065, 169540. [Google Scholar] [CrossRef]
- Amiri, M.; Aghaeinia, H.; Amindavar, H.R. Automatic epileptic seizure detection in EEG signals using sparse common spatial pattern and adaptive short-time Fourier transform-based synchrosqueezing transform. Biomed. Signal Process. Control 2023, 79, 104022. [Google Scholar] [CrossRef]
- Tang, B.; Ding, Y.; Peng, Y.; Cao, J. Target localization algorithm based on improved short-time Fourier transform. Digit. Signal Process. 2024, 155, 104734. [Google Scholar] [CrossRef]
- Tian, L. Seismic spectral decomposition using short-time fractional Fourier transform spectrograms. J. Appl. Geophys. 2021, 192, 104400. [Google Scholar] [CrossRef]
- Mustafa, D.; Yicheng, Z.; Minjie, G.; Jonas, H.; Jürgen, F. Motor Current Based Misalignment Diagnosis on Linear Axes with Short-Time Fourier Transform (STFT). Procedia CIRP 2022, 106, 239–243. [Google Scholar] [CrossRef]
- Wan, T.H.; Tsang, C.W.; Hui, K.; Chung, E. Anomaly detection of train wheels utilizing short-time Fourier transform and unsupervised learning algorithms. Eng. Appl. Artif. Intell. 2023, 122, 106037. [Google Scholar] [CrossRef]
- Zhang, L.; Luo, F.; Pan, G.; Zhang, W.; Ren, G.; Zheng, Z.; Yang, Y. Elucidating the Multi-Timescale Variability of a Canopy Urban Heat Island by Using the Short-Time Fourier Transform. Geophys. Res. Lett. 2024, 51, e2023GL106221. [Google Scholar] [CrossRef]
- Knutsen, H. A fractal uncertainty principle for the short-time Fourier transform and Gabor multipliers. Appl. Comput. Harmon. Anal. 2023, 62, 365–389. [Google Scholar] [CrossRef]
- Shah, F.A.; Lone, W.Z.; Tantary, A.Y. Short-time quadratic-phase Fourier transform. Optik 2021, 245, 167689. [Google Scholar] [CrossRef]
- Wang, J.; Huo, L.; Liu, C.; Song, G. Theoretical and Experimental Study on Homologous Acoustic Emission Signal Recognition Based on Synchrosqueezed Wavelet Transform Coherence. Struct. Control Health Monit. 2023, 2023, 6968338. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, X.; Li, H.; Zhou, B. An Unsupervised Tunnel Damage Identification Method Based on Convolutional Variational Auto-Encoder and Wavelet Packet Analysis. Sensors 2022, 22, 2412. [Google Scholar] [CrossRef]
- He, F.; Ye, Q. A Bearing Fault Diagnosis Method Based on Wavelet Packet Transform and Convolutional Neural Network Optimized by Simulated Annealing Algorithm. Sensors 2022, 22, 1410. [Google Scholar] [CrossRef]
- Liu, P.; Dong, A.; Wang, C.; Zhang, C.; Zhang, J. Consecutively Missing Seismic Data Reconstruction Via Wavelet-Based Swin Residual Network. IEEE Geosci. Remote Sens. Lett. 2023, 20, 7502405. [Google Scholar] [CrossRef]
- Saadatmorad, M.; Talookolaei, R.A.J.; Pashaei, M.H.; Khatir, S.; Wahab, M.A. Pearson Correlation and Discrete Wavelet Transform for Crack Identification in Steel Beams. Mathematics 2022, 10, 2689. [Google Scholar] [CrossRef]
- Çelebi, M.; Öztürk, S.; Kaplan, K. An enhanced deep learning model based on smoothed pseudo Wigner-Ville distribution technique for emotion recognition with channel selection. Ain Shams Eng. J. 2025, 16, 103264. [Google Scholar] [CrossRef]
- Reddy, A.S.S.; Pachori, R.B. Dynamic mode decomposition-based technique for cross-term suppression in the Wigner-Ville distribution. Digit. Signal Process. 2025, 156, 104833. [Google Scholar] [CrossRef]
- Bhat, M.Y.; Dar, A.H. Quadratic-phase scaled Wigner distribution: Convolution and correlation Quadratic-phase scaled Wigner distribution. Signal Image Video Process. 2023, 17, 2779–2788. [Google Scholar] [CrossRef]
- Yafei, J.; Yongli, Z.; Liuwang, W. Time-frequency Analysis of Partial Discharge Signal Based on VMD and Wigner-Ville Distribution. J. Syst. Simul. 2018, 30, 569–578. [Google Scholar]
- Marios, C.A.; van Eijndhoven, S.; Duin, P. “Seeing Sound”: Audio Classification Using the Wigner-Ville Distribution and Convolutional Neural Networks. In Intelligent Systems and Applications, Proceedings of the 2023 Intelligent Systems Conference (IntelliSys), Amsterdam, The Netherlands, 7–8 September 2023; Lecture Notes in Networks and Systems 822; Arai, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2024; Volume 1, pp. 145–155. [Google Scholar] [CrossRef]
- de Carvalho Monson, P.M.; de Oliveira Conceição, P., Jr.; Lofrano Dotto, F.R.; de Aguiar, P.R.; Rodrigues, A.R.; David, G.A. Structural damage classification in composite materials using the Wigner-Ville distribution and convolutional neural networks. Mater. Lett. 2024, 369, 136734. [Google Scholar] [CrossRef]
- Rajshekhar, G.; Gorthi, S.S.; Rastogi, P. Polynomial Wigner–Ville distribution-based method for direct phase derivative estimation from optical fringes. J. Opt. Pure Appl. Opt. 2009, 11, 125402. [Google Scholar] [CrossRef]
- Bhat, Y.A.; Sheikh, N. Special Affine Wigner–Ville Distribution in Octonion Domains: Theory and Applications. Optik 2023, 274, 170531. [Google Scholar] [CrossRef]
- Nur, A.T.A.; Bahri, M.; Bachtiar, N.; Rahim, A. Uncertainty principles for coupled fractional Wigner-Ville distribution. R. Soc. Open Sci. 2024, 11, 231579. [Google Scholar] [CrossRef]
- Bhat, M.Y.; Almanjahie, I.M.; Dar, A.H.; Dar, J.G. Wigner-Ville distribution and ambiguity function associated with the quaternion offset linear canonical transform. Demonstr. Math. 2022, 55, 786–797. [Google Scholar] [CrossRef]
- Bhat, M.Y.; Dar, A.H.; Nurhidayat, I.; Pinelas, S. An Interplay of Wigner-Ville Distribution and 2D Hyper-Complex Quadratic-Phase Fourier Transform. Fractal Fract. 2023, 7, 159. [Google Scholar] [CrossRef]
- Neild, S.; McFadden, P.; Williams, M. A review of time-frequency methods for structural vibration analysis. Eng. Struct. 2003, 25, 713–728. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Chang, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Lei, Y.; Lin, J.; He, Z.; Zuo, M.J. A review on empirical mode decomposition in fault diagnosis of rotating machinery. Mech. Syst. Signal Process. 2013, 35, 108–126. [Google Scholar] [CrossRef]
- Cheng, G.; Wang, X.; He, Y. Remaining useful life and state of health prediction for lithium batteries based on empirical mode decomposition and a long and short memory neural network. Energy 2021, 232, 121022. [Google Scholar] [CrossRef]
- Huang, G.; Li, X.; Zhang, B.; Ren, J. PM2.5 concentration forecasting at surface monitoring sites using GRU neural network based on empirical mode decomposition. Sci. Total. Environ. 2021, 768, 144516. [Google Scholar] [CrossRef]
- Zhu, B.; Han, D.; Wang, P.; Wu, Z.; Zhang, T.; Wei, Y.M. Forecasting carbon price using empirical mode decomposition and evolutionary least squares support vector regression. Appl. Energy 2017, 191, 521–530. [Google Scholar] [CrossRef]
- Liu, M.D.; Ding, L.; Bai, Y.L. Application of hybrid model based on empirical mode decomposition, novel recurrent neural networks and the ARIMA to wind speed prediction. Energy Convers. Manag. 2021, 233, 113917. [Google Scholar] [CrossRef]
- Li, G.; Bu, W.; Yang, H. Noise reduction method for ship radiated noise signal based on modified uniform phase empirical mode decomposition. Measurement 2024, 227, 114193. [Google Scholar] [CrossRef]
- Yin, C.; Wang, Y.; Ma, G.; Wang, Y.; Sun, Y.; He, Y. Weak fault feature extraction of rolling bearings based on improved ensemble noise-reconstructed EMD and adaptive threshold denoising. Mech. Syst. Signal Process. 2022, 171, 108834. [Google Scholar] [CrossRef]
- Guo, J.; Wang, Z.; Li, H.; Yang, Y.; Huang, C.G.; Yazdi, M.; Kang, H.S. A hybrid prognosis scheme for rolling bearings based on a novel health indicator and nonlinear Wiener process. Reliab. Eng. Syst. Saf. 2024, 245, 110014. [Google Scholar] [CrossRef]
- Zheng, Q.; Tian, X.; Yu, Z.; Jin, B.; Jiang, N.; Ding, Y.; Yang, M.; Elhanashi, A.; Saponara, S.; Kpalma, K. Application of complete ensemble empirical mode decomposition based multi-stream informer (CEEMD-MsI) in PM2.5 concentration long-term prediction. Expert Syst. Appl. 2024, 245, 123008. [Google Scholar] [CrossRef]
- Luo, L.; Yan, Y.; Xie, P.; Sun, J.; Xu, Y.; Yuan, J. Hilbert–Huang transform, Hurst and chaotic analysis based flow regime identification methods for an airlift reactor. Chem. Eng. J. 2012, 181–182, 570–580. [Google Scholar] [CrossRef]
- Xu, G.; Tian, W.; Qian, L. EMD- and SVM-based temperature drift modeling and compensation for a dynamically tuned gyroscope (DTG). Mech. Syst. Signal Process. 2007, 21, 3182–3188. [Google Scholar] [CrossRef]
- Tang, J.; Zhao, L.; Yue, H.; Yu, W.; Chai, T. Vibration Analysis Based on Empirical Mode Decomposition and Partial Least Square. Procedia Eng. 2011, 16, 646–652. [Google Scholar] [CrossRef]
- Suo, L.; Peng, T.; Song, S.; Zhang, C.; Wang, Y.; Fu, Y.; Nazir, M.S. Wind speed prediction by a swarm intelligence based deep learning model via signal decomposition and parameter optimization using improved chimp optimization algorithm. Energy 2023, 276, 127526. [Google Scholar] [CrossRef]
- Yang, Y.; Chang, K. Extraction of bridge frequencies from the dynamic response of a passing vehicle enhanced by the EMD technique. J. Sound Vib. 2009, 322, 718–739. [Google Scholar] [CrossRef]
- Randall, R.B.; Antoni, J. Why EMD and similar decompositions are of little benefit for bearing diagnostics. Mech. Syst. Signal Process. 2023, 192, 110207. [Google Scholar] [CrossRef]
- Sezen, C. Pan evaporation forecasting using empirical and ensemble empirical mode decomposition (EEMD) based data-driven models in the Euphrates sub-basin, Turkey. Earth Sci. Inform. 2023, 16, 3077–3095. [Google Scholar] [CrossRef]
- Rezaiy, R.; Shabri, A. Improving Drought Prediction Accuracy: A Hybrid EEMD and Support Vector Machine Approach with Standardized Precipitation Index. Water Resour. Manag. 2024, 38, 5255–5277. [Google Scholar] [CrossRef]
- Rezaiy, R.; Shabri, A. An innovative hybrid W-EEMD-ARIMA model for drought forecasting using the standardized precipitation index. Nat. Hazards 2024, 120, 13513–13542. [Google Scholar] [CrossRef]
- Liao, S.; Wang, H.; Liu, B.; Ma, X.; Zhou, B.; Su, H. Runoff Forecast Model Based on an EEMD-ANN and Meteorological Factors Using a Multicore Parallel Algorithm. Water Resour. Manag. 2023, 37, 1539–1555. [Google Scholar] [CrossRef]
- Li, J.; Tong, Y.; Guan, L.; Wu, S.; Li, D. A UV-visible absorption spectrum denoising method based on EEMD and an improved universal threshold filter. RSC Adv. 2018, 8, 8558–8568. [Google Scholar] [CrossRef]
- Xu, J.; Jiang, W.; Wang, W.; Chen, J.; Shen, Y.; Qi, J. Removal of EOG Artifact in Electroencephalography with EEMD-ICA: A Semi-Simulation Study on Identification of Artifactual Components; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Sarkar, P.P.; Sen, M.K.; Kabir, G.; Ibne Hossain, N.U. Exploring evolutionary patterns in the teleconnections between Indian summer monsoon rainfall and Indian Ocean dipole over decades. Clim. Dyn. 2024, 62, 4041–4061. [Google Scholar] [CrossRef]
- Zhong, X.Y.; Zeng, L.C.; Zhao, C.H.; Liu, X.M.; Chen, S.J. Fault Diagnosis for Wind Turbine Gearboxes Based on EMD and the Energy Operator. Appl. Mech. Mater. 2013, 281, 10–13. Available online: https://www.scientific.net/AMM.281.10 (accessed on 9 May 2025).
- Sun, J.; Wu, Z. Isolating spatiotemporally local mixed Rossby-gravity waves using multi-dimensional ensemble empirical mode decomposition. Clim. Dyn. 2020, 54, 1383–1405. [Google Scholar] [CrossRef]
- Yang, L.; Guan, Q.; Lin, J.; Tian, J.; Tan, Z.; Li, H. Evolution of NDVI secular trends and responses to climate change: A perspective from nonlinearity and nonstationarity characteristics. Remote Sens. Environ. 2021, 254, 112247. [Google Scholar] [CrossRef]
- Chang, Y.S.; Yan, Z.; Wang, K.H.; Yao, Y. Non-destructive testing of CFRP using pulsed thermography and multi-dimensional ensemble empirical mode decomposition. J. Taiwan Inst. Chem. Eng. 2016, 61, 54–63. [Google Scholar] [CrossRef]
- Ahmed, S.; Huang, Y.; Tayyab, Q.; Senjyu, T.; Elkholy, M. Identification of power grids low-frequency oscillations through a combined MEEMD-Prony method. Energy Rep. 2024, 11, 4245–4253. [Google Scholar] [CrossRef]
- Min, Y.; Shuzhen, Z.; Wuwei, L. Carbon price prediction based on multi-factor MEEMD-LSTM model. Heliyon 2022, 8, e12562. [Google Scholar] [CrossRef]
- Yang, Q.; Yu, Y.; Dai, D.; He, Q.; Lin, Y. Can hybrid model improve the forecasting performance of stock price index amid COVID-19? Contextual evidence from the MEEMD-LSTM-MLP approach. N. Am. J. Econ. Financ. 2024, 74, 102252. [Google Scholar] [CrossRef]
- Yang, Z.; Kong, C.; Wang, Y.; Rong, X.; Wei, L. Fault diagnosis of mine asynchronous motor based on MEEMD energy entropy and ANN. Comput. Electr. Eng. 2021, 92, 107070. [Google Scholar] [CrossRef]
- Dragomiretskiy, K.; Zosso, D. Variational Mode Decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [Google Scholar] [CrossRef]
- Duan, Q.; Xia, H.; Zhang, C. Noise reduction analysis of deformation data based on MEEMD-SVD modeling. In Proceedings of the International Conference on Remote Sensing Technology and Survey Mapping (RSTSM 2024), Changchun, China, 12–14 January 2024; SPIE: Bellingham, WA, USA, 2024; Volume 13166. [Google Scholar]
- de Oliveira, B.C.F.; FrÃ˝ uhlich, H.B.; Barrera, E.S.; Baldo, C.R.; G, A.A., Jr.; Schmitt, R. Impact Damage Characterization in CFRP Plates Using PCA and MEEMD Decomposition Methods in Optical Lock-in Thermography Phase Images. In Proceedings of the Optical Measurement Systems for Industrial Inspection XI, Munich, Germany, 24–27 June 2019; SPIE: Bellingham, WA, USA, 2019; Volume 11056, p. 110562N. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, R.; Gao, R.X.; Feng, Z. Performance enhancement of ensemble empirical mode decomposition. Mech. Syst. Signal Process. 2010, 24, 2104–2123. [Google Scholar] [CrossRef]
- Ravi; Taran, S. A nonlinear feature extraction approach for speech emotion recognition using VMD and TKEO. Appl. Acoust. 2023, 214, 109667. [Google Scholar] [CrossRef]
- Chen, A.; Kurfess, T.R. Signal processing techniques for rolling element bearing spall size estimation. Mech. Syst. Signal Process. 2019, 117, 16–32. [Google Scholar] [CrossRef]
- Li, K.; Chen, W.; Zou, Y.; Wang, Z.; Zhou, X.; Shi, J. Optimized PSOMV-VMD combined with ConvFormer model: A novel gas pipeline leakage detection method based on low sensitivity acoustic signals. Measurement 2025, 247, 116804. [Google Scholar] [CrossRef]
- Xue, G.; Zhang, Y.; Yu, S.A.; Song, J.; Bian, T.; Gao, Y.; Yan, W.; Guo, Y. Daily residential heat load prediction based on a hybrid model of signal processing, econometric model, and support vector regression. Therm. Sci. Eng. Prog. 2023, 43, 102005. [Google Scholar] [CrossRef]
- Gong, Z.; Wan, A.; Ji, Y.; AL-Bukhaiti, K.; Yao, Z. Improving short-term offshore wind speed forecast accuracy using a VMD-PE-FCGRU hybrid model. Energy 2024, 295, 131016. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, X.; He, Y.; Zhang, S.; Cai, Y. Edge–cloud collaborative estimation lithium-ion battery SOH based on MEWOA-VMD and Transformer. J. Energy Storage 2024, 99, 113388. [Google Scholar] [CrossRef]
- Yuan, D.; Gu, C.; Wei, B.; Qin, X.; Xu, W. A high-performance displacement prediction model of concrete dams integrating signal processing and multiple machine learning techniques. Appl. Math. Model. 2022, 112, 436–451. [Google Scholar] [CrossRef]
- Ma, K.; Nie, X.; Yang, J.; Zha, L.; Li, G.; Li, H. A power load forecasting method in port based on VMD-ICSS-hybrid neural network. Appl. Energy 2025, 377, 124246. [Google Scholar] [CrossRef]
- Ge, X.; Wang, G.; Liu, H.; Huang, T. Removal of AM-FM harmonics using VMD technology for operational modal analysis of milling robot. Mech. Syst. Signal Process. 2023, 200, 110475. [Google Scholar] [CrossRef]
- Ali, A.; Xinhua, W.; Razzaq, I. Optimizing acoustic signal processing for localization of precise pipeline leakage using acoustic signal decomposition and wavelet analysis. Digit. Signal Process. 2025, 157, 104890. [Google Scholar] [CrossRef]
- Lei, W.; Wang, G.; Wan, B.; Min, Y.; Wu, J.; Li, B. High voltage shunt reactor acoustic signal denoising based on the combination of VMD parameters optimized by coati optimization algorithm and wavelet threshold. Measurement 2024, 224, 113854. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, W.; Song, X.; Chen, Z. Improving density logging resolution by VMD-CEEMDAN-ICWT method and its application in thin layer identification. Geoenergy Sci. Eng. 2024, 239, 212993. [Google Scholar] [CrossRef]
- Qi, G.; Zhao, Z.; Zhang, R.; Wang, J.; Li, M.; Shi, X.; Wang, H. Optimized VMD algorithm for signal noise reduction based on TDLAS. J. Quant. Spectrosc. Radiat. Transf. 2024, 312, 108807. [Google Scholar] [CrossRef]
- Li, H.; Li, S.; Sun, J.; Huang, B.; Zhang, J.; Gao, M. Ultrasound signal processing based on joint GWO-VMD wavelet threshold functions. Measurement 2024, 226, 114143. [Google Scholar] [CrossRef]
- Cheng, W.; Zhou, Q.; Wu, S.; Xing, J.; Chen, X.; Du, S.; Xu, Z.; Zhang, R. EI-ISOA-VMD: Adaptive denoising and detrending method for nuclear circulating water pump impeller. Measurement 2025, 242, 115890. [Google Scholar] [CrossRef]
- Du, X.; Zhang, Q.; Wei, Y.; Zhang, T.; Zhang, Y.; Li, Y. Research on denoising of second harmonic signal in photoacoustic spectroscopy based on SSA-VMD-WTD method. Infrared Phys. Technol. 2024, 138, 105204. [Google Scholar] [CrossRef]
- Gao, J.R.; Liu, Y.K.; Duan, C.J.; Ding, P.; Song, J.Q. Research on fault diagnosis of electric gate valve in nuclear power plant based on the VMD-MDI-ISSA-RF model. Ann. Nucl. Energy 2024, 207, 110701. [Google Scholar] [CrossRef]
- Chen, H. A vibration signal processing method based on SE-PSO-VMD for ultrasonic machining. Syst. Soft Comput. 2024, 6, 200081. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, F.; Jiang, Z.; He, S.; Mo, Q. Complex variational mode decomposition for signal processing applications. Mech. Syst. Signal Process. 2017, 86, 75–85. [Google Scholar] [CrossRef]
- Li, H.; Li, M.; Ma, Y.; Zheng, Y.; Li, S. A variational mode decomposition projectile signal processing algorithm of infrared sky screen velocity measurement system and detection mathematical model of detection screen. Optik 2023, 287, 171077. [Google Scholar] [CrossRef]
- Fang, M.; Zhang, F.; Yang, Y.; Tao, R.; Xiao, R.; Zhu, D. The influence of optimization algorithm on the signal prediction accuracy of VMD-LSTM for the pumped storage hydropower unit. J. Energy Storage 2024, 78, 110187. [Google Scholar] [CrossRef]
- Nazari, M.; Sakhaei, S.M. Successive variational mode decomposition. Signal Process. 2020, 174, 107610. [Google Scholar] [CrossRef]
- Chen, Q.; Chen, J.; Lang, X.; Xie, L.; ur Rehman, N.; Su, H. Self-tuning variational mode decomposition. J. Frankl. Inst. 2021, 358, 7825–7862. [Google Scholar] [CrossRef]
- Sun, L.; Huang, X.; Zhao, J.; Wang, X.; Ma, M. An intelligent chatter detection method for high-speed milling under variable tool-workpiece systems and cutting parameters. Mech. Syst. Signal Process. 2025, 224, 111960. [Google Scholar] [CrossRef]
- Faisal, K.N.; Sharma, R.R. Successive variational mode decomposition-based enhanced Wigner-Ville distribution for seismo-volcanic events identification. J. Volcanol. Geotherm. Res. 2023, 440, 107847. [Google Scholar] [CrossRef]
- Gao, W.; Liu, D.; Wang, Q.; Zhao, Y.; Sun, J. Narrowband constraint-enhanced successive variational mode decomposition. Biomed. Signal Process. Control 2025, 104, 107396. [Google Scholar] [CrossRef]
- Wu, S.; Huang, J.; Liu, W.; Pang, Y.; Zhu, T. Anti-noise UWFBG hydrophone array enhanced DAS system using optimising SVMD based on matched interferometric. Opt. Fiber Technol. 2024, 88, 104051. [Google Scholar] [CrossRef]
- Yang, H.; Cheng, Y.; Li, G. A denoising method for ship radiated noise based on Spearman variational mode decomposition, spatial-dependence recurrence sample entropy, improved wavelet threshold denoising, and Savitzky-Golay filter. Alex. Eng. J. 2021, 60, 3379–3400. [Google Scholar] [CrossRef]
- Zeng, R.; Wu, Q.; Zhang, L. Two-terminal traveling wave fault location based on successive variational mode decomposition and frequency-dependent propagation velocity. Electr. Power Syst. Res. 2022, 213, 108768. [Google Scholar] [CrossRef]
- Fu, S.; Wu, J.; Zhang, Q.; Xie, B. Robust and efficient synchronization for structural health monitoring data with arbitrary time lags. Eng. Struct. 2025, 322, 119183. [Google Scholar] [CrossRef]
- Ye, M.; Yan, X.; Chen, N.; Jia, M. Intelligent fault diagnosis of rolling bearing using variational mode extraction and improved one-dimensional convolutional neural network. Appl. Acoust. 2023, 202, 109143. [Google Scholar] [CrossRef]
- Feng, Z.; Zhang, Z. A small sample rolling bearing fault diagnosis based on PSD-VME and DS evidence theory enhanced mRVM. Comput. Electr. Eng. 2024, 118, 109458. [Google Scholar] [CrossRef]
- Li, C.; Liu, Y.; Liao, Y.; Wang, J. A VME method based on the convergent tendency of VMD and its application in multi-fault diagnosis of rolling bearings. Measurement 2022, 198, 111360. [Google Scholar] [CrossRef]
- Zhong, X.; Xia, T.; Mei, Q. A Parameter-Adaptive VME Method Based on Particle Swarm Optimization for Bearing Fault Diagnosis. Exp. Tech. 2023, 47, 435–448. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, C.; Hu, T.; Zhou, Y.; Ni, H.; Wang, T. Online chatter detection in robotic machining based on adaptive variational mode decomposition. Int. J. Adv. Manuf. Technol. 2021, 117, 555–577. [Google Scholar] [CrossRef]
- Lu, J.; Li, J.; Zhao, X.; Chen, Y.; Meng, L.; Yang, D.; Hou, N. Adaptive denoising method for leakage detection of liquid pipelines using automatic variational mode decomposition. J. Frankl. Inst. 2025, 362, 107475. [Google Scholar] [CrossRef]
- Wang, Y. An Adaptive Variational Mode Decomposition Technique with Differential Evolution Algorithm and Its Application Analysis. Shock Vib. 2021, 2021, 2030128. [Google Scholar] [CrossRef]
- Yang, D.; Persico, R.; Guo, C.; Liu, Y.; Yang, J.; Liu, H.; Bai, C.; Zhao, Q. Adaptive variational mode decomposition denoising scheme for ground penetrating radar data. J. Phys. Conf. Ser. 2024, 2887, 012031. [Google Scholar] [CrossRef]
- Lian, J.; Liu, Z.; Wang, H.; Dong, X. Adaptive variational mode decomposition method for signal processing based on mode characteristic. Mech. Syst. Signal Process. 2018, 107, 53–77. [Google Scholar] [CrossRef]
- Mousavi, A.A.; Zhang, C.; Masri, S.F.; Gholipour, G. Damage detection and localization of a steel truss bridge model subjected to impact and white noise excitations using empirical wavelet transform neural network approach. Measurement 2021, 185, 110060. [Google Scholar] [CrossRef]
- Gao, R.; Du, L.; Duru, O.; Yuen, K.F. Time series forecasting based on echo state network and empirical wavelet transformation. Appl. Soft Comput. 2021, 102, 107111. [Google Scholar] [CrossRef]
- Li, J.; Wang, H.; Wang, X.; Zhang, Y. Rolling bearing fault diagnosis based on improved adaptive parameterless empirical wavelet transform and sparse denoising. Measurement 2020, 152, 107392. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Singh, L.; Pachori, R.B. Fourier–Bessel series expansion based empirical wavelet transform for analysis of non-stationary signals. Digit. Signal Process. 2018, 78, 185–196. [Google Scholar] [CrossRef]
- Zhang, K.; Deng, Y.; Chen, P.; Ma, C.; Xu, Y. Quaternion empirical wavelet transform and its applications in rolling bearing fault diagnosis. Measurement 2022, 195, 111179. [Google Scholar] [CrossRef]
- Anuragi, A.; Singh Sisodia, D.; Bilas Pachori, R. EEG-based cross-subject emotion recognition using Fourier-Bessel series expansion based empirical wavelet transform and NCA feature selection method. Inf. Sci. 2022, 610, 508–524. [Google Scholar] [CrossRef]
- Wang, J.; Bethel, B.J.; Xie, W.; Dong, C. A hybrid model for significant wave height prediction based on an improved empirical wavelet transform decomposition and long-short term memory network. Ocean Model. 2024, 189, 102367. [Google Scholar] [CrossRef]
- Zheng, X.; Li, H.; Zhang, S.; Zhang, Y.; Li, J.; Zhang, Y.; Zhao, W. Hydrodynamic feature extraction and intelligent identification of flow regimes in vaneless space of a pump turbine using improved empirical wavelet transform and Bayesian optimized convolutional neural network. Energy 2023, 282, 128705. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, J.; Zhang, K. An improved empirical wavelet transform and sensitive components selecting method for bearing fault. Measurement 2022, 187, 110348. [Google Scholar] [CrossRef]
- Bounoua, W.; Aftab, M.F. Improved extended empirical wavelet transform for accurate multivariate oscillation detection and characterisation in plant-wide industrial control loops. J. Process Control 2024, 138, 103226. [Google Scholar] [CrossRef]
- Kim, Y.; Ha, J.M.; Na, K.; Park, J.; Youn, B.D. Cepstrum-assisted empirical wavelet transform (CEWT)-based improved demodulation analysis for fault diagnostics of planetary gearboxes. Measurement 2021, 183, 109796. [Google Scholar] [CrossRef]
- Zhang, K.; Shi, L.; Hu, Y.; Chen, P.; Xu, Y. Variable spectral segmentation empirical wavelet transform for noisy signal processing. Digit. Signal Process. 2021, 117, 103151. [Google Scholar] [CrossRef]
- Xin, Y.; Hao, H.; Li, J. Time-varying system identification by enhanced Empirical Wavelet Transform based on Synchroextracting Transform. Eng. Struct. 2019, 196, 109313. [Google Scholar] [CrossRef]
- Teng, W.; Ding, X.; Cheng, H.; Han, C.; Liu, Y.; Mu, H. Compound faults diagnosis and analysis for a wind turbine gearbox via a novel vibration model and empirical wavelet transform. Renew. Energy 2019, 136, 393–402. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Liu, Z.; Wang, J. Weak feature enhancement in machinery fault diagnosis using empirical wavelet transform and an improved adaptive bistable stochastic resonance. ISA Trans. 2019, 84, 283–295. [Google Scholar] [CrossRef]
- Karimpour, A.; Rahmatalla, S. Extended Empirical Wavelet Transformation: Application to structural updating. J. Sound Vib. 2021, 500, 116026. [Google Scholar] [CrossRef]
- Zheng, J.; Cao, S.; Pan, H.; Ni, Q. Spectral envelope-based adaptive empirical Fourier decomposition method and its application to rolling bearing fault diagnosis. ISA Trans. 2022, 129, 476–492. [Google Scholar] [CrossRef]
- Wei, P.; Li, Q.; Sun, M.; Huang, J. Modal identification of high-rise buildings by combined scheme of improved empirical wavelet transform and Hilbert transform techniques. J. Build. Eng. 2023, 63, 105443. [Google Scholar] [CrossRef]
- Gong, W.B.; Li, A.; Wu, Z.H.; Qin, F.J. Nonlinear vibration feature extraction based on power spectrum envelope adaptive empirical Fourier decomposition. ISA Trans. 2023, 139, 660–674. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Feng, Z.; Xu, Y.; Wang, X.; Lv, H. Empirical Fourier decomposition: An accurate signal decomposition method for nonlinear and non-stationary time series analysis. Mech. Syst. Signal Process. 2022, 163, 108155. [Google Scholar] [CrossRef]
- Kumar, B.; Yadav, N.; Sunil. A novel hybrid algorithm based on Empirical Fourier decomposition and deep learning for wind speed forecasting. Energy Convers. Manag. 2024, 300, 117891. [Google Scholar] [CrossRef]
- Singh, P.; Bana, D.; Sadhu, A. Improved bridge modal identification from vibration measurements using a hybrid empirical Fourier decomposition. J. Sound Vib. 2024, 590, 118598. [Google Scholar] [CrossRef]
- Endo, H.; Randall, R. Enhancement of autoregressive model based gear tooth fault detection technique by the use of minimum entropy deconvolution filter. Mech. Syst. Signal Process. 2007, 21, 906–919. [Google Scholar] [CrossRef]
- Ma, H.; Feng, Z. Planet bearing fault diagnosis using multipoint Optimal Minimum Entropy Deconvolution Adjusted. J. Sound Vib. 2019, 449, 235–273. [Google Scholar] [CrossRef]
- Hou, Y.; Zhou, C.; Tian, C.; Wang, D.; He, W.; Huang, W.; Wu, P.; Wu, D. Acoustic feature enhancement in rolling bearing fault diagnosis using sparsity-oriented multipoint optimal minimum entropy deconvolution adjusted method. Appl. Acoust. 2022, 201, 109105. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, X.; Wang, J.; Liu, Z.; Gong, Z. An enhanced minimum entropy deconvolution with adaptive filter parameters for gear fault diagnosis. Measurement 2023, 206, 112343. [Google Scholar] [CrossRef]
- Zhou, X.; Li, Y.; Jiang, L.; Zhou, L. Fault feature extraction for rolling bearings based on parameter-adaptive variational mode decomposition and multi-point optimal minimum entropy deconvolution. Measurement 2021, 173, 108469. [Google Scholar] [CrossRef]
- Duan, R.; Liao, Y.; Yang, L.; Xue, J.; Tang, M. Minimum entropy morphological deconvolution and its application in bearing fault diagnosis. Measurement 2021, 182, 109649. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, N. Fault diagnosis of sun gear based on continuous vibration separation and minimum entropy deconvolution. Measurement 2019, 141, 332–344. [Google Scholar] [CrossRef]
- Miao, Y.; Li, C.; Zhang, B.; Lin, J. Application of a coarse-to-fine minimum entropy deconvolution method for rotating machines fault detection. Mech. Syst. Signal Process. 2023, 198, 110431. [Google Scholar] [CrossRef]
- Shao, H.; Li, B.; Xu, X.; Shi, P.; Qiao, Z.; Li, R. Minimum entropy deconvolution enhanced by KLOF and phase editing for fault diagnosis of rotating machinery. Appl. Acoust. 2023, 209, 109423. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhou, N.; Zhang, W.; Wang, Z. Application of an improved minimum entropy deconvolution method for railway rolling element bearing fault diagnosis. J. Sound Vib. 2018, 425, 53–69. [Google Scholar] [CrossRef]
- Xu, X.; Liao, X.; Zhou, T.; He, Z.; Hu, H. Vibration-based identification of lubrication starved bearing using spectral centroid indicator combined with minimum entropy deconvolution. Measurement 2024, 226, 114156. [Google Scholar] [CrossRef]
- Yun, X.; Mei, X.; Jiang, G. Time-delayed feedback stochastic resonance enhanced minimum entropy deconvolution for weak fault detection of rolling element bearings. Chin. J. Phys. 2022, 76, 1–13. [Google Scholar] [CrossRef]
- Miao, Y.; Zhao, M.; Liang, K.; Lin, J. Application of an improved MCKDA for fault detection of wind turbine gear based on encoder signal. Renew. Energy 2020, 151, 192–203. [Google Scholar] [CrossRef]
- Hong, L.; Liu, X.; Zuo, H. Compound faults diagnosis based on customized balanced multiwavelets and adaptive maximum correlated kurtosis deconvolution. Measurement 2019, 146, 87–100. [Google Scholar] [CrossRef]
- Miao, Y.; Zhao, M.; Lin, J.; Lei, Y. Application of an improved maximum correlated kurtosis deconvolution method for fault diagnosis of rolling element bearings. Mech. Syst. Signal Process. 2017, 92, 173–195. [Google Scholar] [CrossRef]
- Miao, Y.; Li, C.; Shi, H.; Han, T. Deep network-based maximum correlated kurtosis deconvolution: A novel deep deconvolution for bearing fault diagnosis. Mech. Syst. Signal Process. 2023, 189, 110110. [Google Scholar] [CrossRef]
- McDonald, G.L.; Zhao, Q.; Zuo, M.J. Maximum correlated Kurtosis deconvolution and application on gear tooth chip fault detection. Mech. Syst. Signal Process. 2012, 33, 237–255. [Google Scholar] [CrossRef]
- Peng, D.; Zhu, X.; Teng, W.; Liu, Y. Use of generalized Gaussian cyclostationarity for blind deconvolution and its application to bearing fault diagnosis under non-Gaussian conditions. Mech. Syst. Signal Process. 2023, 196, 110351. [Google Scholar] [CrossRef]
- Hashim, S.; Shakya, P. A spectral kurtosis based blind deconvolution approach for spur gear fault diagnosis. ISA Trans. 2023, 142, 492–500. [Google Scholar] [CrossRef]
- Ni, Z.; He, D.; Wang, X.; Zhang, Y. Research on the detection of axle abnormal noise based on maximum autocorrelation kurtosis deconvolution. Appl. Acoust. 2023, 203, 109228. [Google Scholar] [CrossRef]
- Wang, Z.; Du, W.; Wang, J.; Zhou, J.; Han, X.; Zhang, Z.; Huang, L. Research and application of improved adaptive MOMEDA fault diagnosis method. Measurement 2019, 140, 63–75. [Google Scholar] [CrossRef]
- Pan, H.; Yin, X.; Cheng, J.; Zheng, J.; Tong, J.; Liu, T. Periodic component pursuit-based kurtosis deconvolution and its application in roller bearing compound fault diagnosis. Mech. Mach. Theory 2023, 185, 105337. [Google Scholar] [CrossRef]
- Xu, H.; Zhou, S. Maximum L-Kurtosis deconvolution and frequency-domain filtering algorithm for bearing fault diagnosis. Mech. Syst. Signal Process. 2025, 223, 111916. [Google Scholar] [CrossRef]
- Liang, K.; Zhao, M.; Lin, J.; Jiao, J.; Ding, C. Maximum average kurtosis deconvolution and its application for the impulsive fault feature enhancement of rotating machinery. Mech. Syst. Signal Process. 2021, 149, 107323. [Google Scholar] [CrossRef]
Method | Applicable Scenarios | Optimization Methods |
---|---|---|
STFT | Preliminary analysis and signal feature extraction | Multi-window techniques, linear frequency modulation, Gaussian windows |
WT | Local signal feature analysis | Optimization of wavelet basis function selection |
WVD | Single-component linear frequency-modulated signals | Cross-term suppression methods (e.g., DMD-WVD) |
EMD | Complex signal analysis | Noise-assisted methods (e.g., EEMD), parameter optimization |
EEMD | Complex signal analysis | Parameter optimization (e.g., adaptive noise bandwidth), hardware acceleration |
MEEMD | Multi-physical field signal fusion | Parameter optimization, multi-signal synchronous processing |
VMD | Complex signal analysis | Parameter optimization (e.g., particle swarm optimization), multi-variable signal processing |
SVMD | Complex signal analysis | Parameter self-adaptive update, minimum bandwidth constraint |
AVMD | Complex signal analysis | Parameter self-adaptive update, optimization algorithms (e.g., differential evolution) |
EWT | Complex signal analysis | Optimization of filter design, multi-variable signal processing |
EEWT | Complex signal analysis | Parameter optimization, multi-signal synchronous processing |
EFD | Complex signal analysis | Optimization of spectral segmentation, noise suppression |
MED | Random pulse signals | Noise suppression methods (e.g., wavelet threshold), parameter optimization |
MCKD | Periodic fault signals | Fault cycle estimation optimization, noise suppression |
FMD | Complex signal analysis | Parameter optimization, multi-variable signal processing |
Method Abbr. | References | Key Feature | Advantage | Difficulty |
---|---|---|---|---|
STFT | [3,4,5,6,7,8,9,10,11,12,13,14,15,16] | TF Resolution | Good for Stationary | Window Sel. |
WT | [17,18,19,20,21] | TF Localization | High Resolution | Basis Sel. |
WVD | [1,22,23,24,25,26,27,28,29,30,32,33] | TF Analysis | High Resolution | Cross-term Issue |
EMD | [34,36,37,38,39,40,41,42] | Adaptive Decomp. | Self-adaptability | Mode Mixing |
EEMD | [44,45,46,47,48,49] | Noise Addition | Suppress Mixing | Noise Difficulty |
VMD | [69,70,71,73,74,75,76,77,78,79,80,81,82,83,85,86,87,88,89] | Bandwidth Opt. | Flexibility | Parameter Sel. |
MED | [131,132,133,134,135,136,137,138,139,140,141] | Signal Sparsity | Enhance Impact | Computational |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Ma, Z.; Fu, L. A Review of Key Signal Processing Techniques for Structural Health Monitoring: Highlighting Non-Parametric Time-Frequency Analysis, Adaptive Decomposition, and Deconvolution. Algorithms 2025, 18, 318. https://doi.org/10.3390/a18060318
Zhou Y, Ma Z, Fu L. A Review of Key Signal Processing Techniques for Structural Health Monitoring: Highlighting Non-Parametric Time-Frequency Analysis, Adaptive Decomposition, and Deconvolution. Algorithms. 2025; 18(6):318. https://doi.org/10.3390/a18060318
Chicago/Turabian StyleZhou, Yixin, Zepeng Ma, and Lei Fu. 2025. "A Review of Key Signal Processing Techniques for Structural Health Monitoring: Highlighting Non-Parametric Time-Frequency Analysis, Adaptive Decomposition, and Deconvolution" Algorithms 18, no. 6: 318. https://doi.org/10.3390/a18060318
APA StyleZhou, Y., Ma, Z., & Fu, L. (2025). A Review of Key Signal Processing Techniques for Structural Health Monitoring: Highlighting Non-Parametric Time-Frequency Analysis, Adaptive Decomposition, and Deconvolution. Algorithms, 18(6), 318. https://doi.org/10.3390/a18060318