Structure Approximation-Based Preconditioning for Solving Tempered Fractional Diffusion Equations
Abstract
:1. Introduction
2. Discretization of Tempered FDEs
3. Structure Approximation-Based Preconditioning
Algorithm 1 Solving system (5) by the PGMRES method with preconditioner . |
Input: Matrix defined in (6) and the interpolation point l. Output: The solution .
|
4. Spectral Analysis
5. Numerical Experiments
5.1. Test Problem 1
5.2. Test Problem 2
6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baeumer, B.; Meerschaert, M.M. Tempered stable Lévy motion and transient super-diffusion. J. Comput. Appl. Math. 2010, 233, 2438–2448. [Google Scholar] [CrossRef]
- Magin, R.L. Fractional calculus in bioengineering. Crit. Rev. Biomed. Eng. 2004, 32, 1–104. [Google Scholar] [CrossRef]
- Meerschaert, M.M.; Zhang, Y.; Baeumer, B. Tempered anomalous diffusion in heterogeneous systems. Geophys. Res. Lett. 2008, 35, L17403. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, F.; Turner, I.; Chen, S. The numerical simulation of the tempered fractional Black-Scholes equation for European double barrier option. Appl. Math. Model. 2016, 40, 5819–5834. [Google Scholar] [CrossRef]
- Huang, X.; Sun, H.-W. A preconditioner based on sine transform for two-dimensional semi-linear Riesz space fractional diffusion equations in convex domains. Appl. Numer. Math. 2021, 169, 289–302. [Google Scholar] [CrossRef]
- Qin, H.; Pang, H.; Sun, H. Sine transform based preconditioning techniques for space fractional diffusion equations. Numer. Linear Algebra Appl. 2023, 30, e2474. [Google Scholar] [CrossRef]
- Sun, L.-Y.; Lei, S.-L.; Sun, H.-W.; Zhang, J.-L. An α-robust fast algorithm for distributed-order time–space fractional diffusion equation with weakly singular solution. Math. Comput. Simul. 2023, 207, 437–452. [Google Scholar] [CrossRef]
- Zhang, C.-H.; Yu, J.-W.; Wang, X. A fast second-order scheme for nonlinear Riesz space-fractional diffusion equations. Numer. Algorithms 2023, 92, 1813–1836. [Google Scholar] [CrossRef]
- Liu, J.; Fu, H.; Wang, H.; Chai, X. A preconditioned fast quadratic spline collocation method for two-sided space-fractional partial differential equations. J. Comput. Appl. Math. 2019, 360, 138–156. [Google Scholar] [CrossRef]
- Lu, X.; Fang, Z.-W.; Sun, H.-W. Splitting preconditioning based on sine transform for time-dependent Riesz space fractional diffusion equations. J. Appl. Math. Comput. 2021, 66, 673–700. [Google Scholar] [CrossRef]
- Shao, X.-H.; Kang, C.-B. A preconditioner based on sine transform for space fractional diffusion equations. Appl. Numer. Math. 2022, 178, 248–261. [Google Scholar] [CrossRef]
- Qu, W.; Liang, Y. Stability and convergence of the Crank-Nicolson scheme for a class of variable-coefficient tempered fractional diffusion equations. Adv. Differ. Equ. 2017, 2017, 108. [Google Scholar] [CrossRef]
- Wang, W.; Chen, X.; Ding, D.; Lei, S.-L. Circulant preconditioning technique for barrier options pricing under fractional diffusion models. Int. J. Comput. Math. 2015, 92, 2596–2614. [Google Scholar] [CrossRef]
- Li, C.; Deng, W. High order schemes for the tempered fractional diffusion equations. Adv. Comput. Math. 2016, 42, 543–572. [Google Scholar] [CrossRef]
- Serra, S. Superlinear PCG methods for symmetric Toeplitz systems. Math. Comput. 1999, 68, 793–803. [Google Scholar] [CrossRef]
- Wang, C.; Li, H.; Zhao, D. Preconditioning Toeplitz-plus-diagonal linear systems using the Sherman-Morrison-Woodbury formula. J. Comput. Appl. Math. 2017, 309, 312–319. [Google Scholar] [CrossRef]
- Bai, Z.-Z.; Lu, K.-Y.; Pan, J.-Y. Diagonal and Toeplitz splitting iteration methods for diagonal-plus-Toeplitz linear systems from spatial fractional diffusion equations. Numer. Linear Algebra Appl. 2017, 24, e2093. [Google Scholar] [CrossRef]
- Wang, C.; Li, H.; Zhao, D. Improved block preconditioners for linear systems arising from half-quadratic image restoration. Appl. Math. Comput. 2019, 363, e124614. [Google Scholar] [CrossRef]
- Lei, S.; Fan, D.; Chen, X. Fast solution algorithms for exponentially tempered fractional diffusion equations. Numer. Methods Partial Differ. Equ. 2018, 34, 1301–1323. [Google Scholar] [CrossRef]
- Zhao, Y.-L.; Zhu, P.-Y.; Gu, X.-M.; Zhao, X.-L.; Jian, H.-Y. A preconditioning technique for all-at-once system from the nonlinear tempered fractional diffusion equation. J. Sci. Comput. 2020, 83, 10. [Google Scholar] [CrossRef]
- Qu, W.; Lei, S.-L. On CSCS-based iteration method for tempered fractional diffusion equations. Jpn. J. Ind. Appl. Math. 2016, 33, 583–597. [Google Scholar] [CrossRef]
- Tang, S.-P.; Huang, Y.-M. A matrix splitting preconditioning method for solving the discretized tempered fractional diffusion equations. Numer. Algorithms 2023, 92, 1311–1333. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, X.; Chen, Y.; Wei, L. A compact finite difference scheme for solving fractional Black-Scholes option pricing model. J. Inequal. Appl. 2025, 2025, 36. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, L.; Liu, J. Application of the LDG method using generalized alternating numerical flux to the fourth-order time-fractional sub-diffusion model. Appl. Math. Lett. 2025, 168, 109580. [Google Scholar] [CrossRef]
- Pan, J.; Ke, R.; Ng, M.K.; Sun, H.-W. Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations. SIAM J. Sci. Comput. 2014, 36, A2698–A2719. [Google Scholar] [CrossRef]
- Chou, L.-K.; Lei, S.-L. Fast ADI method for high dimensional fractional diffusion equations in conservative form with preconditioned strategy. Comput. Math. Appl. 2017, 73, 385–403. [Google Scholar] [CrossRef]
- Du, N.; Sun, H.-W.; Wang, H. A preconditioned fast finite difference scheme for space-fractional diffusion equations in convex domains. Comput. Appl. Math. 2019, 38, 14. [Google Scholar] [CrossRef]
- Gan, D.; Zhang, G.-F. Efficient ADI schemes and preconditioning for a class of high-dimensional spatial fractional diffusion equations with variable diffusion coefficients. J. Comput. Appl. Math. 2023, 423, 114938. [Google Scholar] [CrossRef]
Method | Index | N | ||||
---|---|---|---|---|---|---|
I | IT | 87.34 | 108.21 | 123.12 | 134.07 | 140.03 |
CPU | 0.82 | 3.66 | 14.33 | 70.64 | 555.72 | |
[17] | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | |
IT | 16.06 | 16.03 | 16.02 | 16.01 | 17.00 | |
CPU | 0.38 | 1.31 | 4.53 | 17.33 | 65.74 | |
[22] | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | |
IT | 11.04 | 12.02 | 14.01 | 15.01 | 16.00 | |
CPU | 0.20 | 0.52 | 1.91 | 7.32 | 36.86 | |
[25] | l | 8 | 8 | 8 | 8 | 8 |
IT | 8.03 | 7.01 | 6.01 | 6.00 | 6.00 | |
CPU | 0.25 | 0.79 | 2.49 | 9.99 | 37.84 | |
l | 8 | 8 | 8 | 8 | 8 | |
IT | 6.02 | 5.01 | 5.00 | 5.00 | 4.00 | |
CPU | 0.19 | 0.46 | 1.49 | 5.87 | 24.03 |
N | Index | Number of Interpolation Points l | |||||
---|---|---|---|---|---|---|---|
4 | 6 | 8 | 10 | 12 | 14 | ||
IT | 8.03 | 6.02 | 6.02 | 6.02 | 6.02 | 6.02 | |
CPU | 0.17 | 0.16 | 0.18 | 0.22 | 0.25 | 0.24 | |
IT | 8.33 | 5.01 | 5.01 | 5.01 | 5.01 | 5.01 | |
CPU | 0.49 | 0.39 | 0.46 | 0.47 | 0.49 | 0.54 | |
IT | 8.90 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | |
CPU | 1.74 | 1.45 | 1.62 | 1.82 | 1.80 | 1.95 | |
IT | 9.12 | 6.00 | 5.00 | 5.00 | 5.00 | 5.00 | |
CPU | 8.89 | 6.20 | 5.70 | 6.30 | 6.51 | 6.79 | |
IT | 10.60 | 5.99 | 4.00 | 4.00 | 4.00 | 4.00 | |
CPU | 60.43 | 41.71 | 42.19 | 44.64 | 40.37 | 50.46 |
Method | Index | N | ||||
---|---|---|---|---|---|---|
I | IT | 125.49 | 174.34 | 233.23 | 300.15 | ∼ |
CPU | 1.46 | 7.41 | 46.45 | 225.74 | ∼ | |
[17] | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | |
IT | 16.06 | 18.04 | 21.02 | 25.01 | 29.01 | |
CPU | 0.48 | 1.52 | 6.14 | 32.83 | 139.03 | |
[22] | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | |
IT | 15.06 | 18.04 | 21.02 | 24.01 | 28.01 | |
CPU | 0.24 | 0.65 | 2.84 | 22.00 | 81.56 | |
[25] | l | 12 | 12 | 12 | 12 | 12 |
IT | 15.06 | 15.03 | 16.02 | 17.01 | 17.00 | |
CPU | 0.49 | 1.60 | 5.42 | 21.00 | 78.15 | |
l | 12 | 12 | 12 | 12 | 12 | |
IT | 12.05 | 12.02 | 11.01 | 11.01 | 12.00 | |
CPU | 0.35 | 0.90 | 3.11 | 10.89 | 60.30 |
N | Index | Number of Interpolation Points l | |||||
---|---|---|---|---|---|---|---|
4 | 6 | 8 | 10 | 12 | 14 | ||
IT | 22.09 | 18.07 | 13.05 | 11.04 | 11.04 | 12.05 | |
CPU | 0.41 | 0.40 | 0.35 | 0.32 | 0.36 | 0.48 | |
IT | 25.05 | 21.04 | 12.02 | 11.02 | 12.02 | 12.02 | |
CPU | 1.27 | 1.29 | 0.92 | 0.92 | 1.00 | 1.00 | |
IT | 27.03 | 15.01 | 13.01 | 11.01 | 11.01 | 12.01 | |
CPU | 10.22 | 3.16 | 3.10 | 3.04 | 3.26 | 3.53 | |
IT | 31.02 | 16.01 | 14.01 | 11.01 | 12.01 | 11.01 | |
CPU | 20.98 | 15.90 | 12.04 | 11.23 | 12.51 | 11.79 | |
IT | 60.93 | 34.98 | 14.00 | 13.99 | 12.00 | 13.00 | |
CPU | 626.27 | 259.42 | 121.80 | 112.15 | 76.09 | 109.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Wang, C. Structure Approximation-Based Preconditioning for Solving Tempered Fractional Diffusion Equations. Algorithms 2025, 18, 307. https://doi.org/10.3390/a18060307
Zhang X, Wang C. Structure Approximation-Based Preconditioning for Solving Tempered Fractional Diffusion Equations. Algorithms. 2025; 18(6):307. https://doi.org/10.3390/a18060307
Chicago/Turabian StyleZhang, Xuan, and Chaojie Wang. 2025. "Structure Approximation-Based Preconditioning for Solving Tempered Fractional Diffusion Equations" Algorithms 18, no. 6: 307. https://doi.org/10.3390/a18060307
APA StyleZhang, X., & Wang, C. (2025). Structure Approximation-Based Preconditioning for Solving Tempered Fractional Diffusion Equations. Algorithms, 18(6), 307. https://doi.org/10.3390/a18060307