Algorithms Facilitating the Observation of Urban Residential Vacancy Rates: Technologies, Challenges and Breakthroughs
Abstract
:1. Introduction
2. Algorithmic Basis for Urban Residential Vacancy Rate Observation
2.1. Definition and Measurement of Urban Residential Vacancy Rate
2.2. Algorithm Overview
2.3. Application of the Algorithm in Urban Residential Vacancy Rate Observation
3. Algorithmic Challenges in Complex Environments
3.1. Data Characteristics in Complex Environments
3.2. Algorithm Adaptability and Robustness
4. Algorithm Application for Diverse Data Sources
4.1. Multi-Source Data Fusion
4.2. Algorithm Optimization Under Different Data Sources
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lang, W.; Deng, J.; Li, X. Identification of “growth” and “shrinkage” pattern and planning strategies for shrinking cities based on a spatial perspective of the Pearl River Delta Region. J. Urban Plan. Dev. 2020, 146, 05020020. [Google Scholar] [CrossRef]
- Fan, Y.; Fang, C. Evolution process analysis of urban metabolic patterns and sustainability assessment in western China, a case study of Xining city. Ecol. Indic. 2020, 109, 105784. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.T.; Yang, Y. Strategic adjustment of land use policy under the economic transformation. Land Use Policy 2018, 74, 5–14. [Google Scholar] [CrossRef]
- Wei, G.; He, B.-J.; Liu, Y.; Li, R. How does rapid urban construction land expansion affect the spatial inequalities of ecosystem health in China? Evidence from the country, economic regions and urban agglomerations. Environ. Impact Assess. Rev. 2024, 106, 107533. [Google Scholar] [CrossRef]
- Bibri, S.E.; Krogstie, J. Data-driven smart sustainable cities of the future: An evidence synthesis approach to a comprehensive state-of-the-art literature review. Sustain. Futur. 2021, 3, 100047. [Google Scholar] [CrossRef]
- Li, S.; Liu, Y.; Wei, G.; Bi, M.; He, B.J. Carbon surplus or carbon deficit under land use transformation in China? Land Use Policy 2024, 143, 107218. [Google Scholar] [CrossRef]
- Gabriel, S.A.; Nothaft, F.E. Rental housing markets, the incidence and duration of vacancy, and the natural vacancy rate. J. Urban Econ. 2001, 49, 121–149. [Google Scholar] [CrossRef]
- Shi, L.; Wurm, M.; Huang, X.; Zhong, T.; Leichtle, T.; Taubenböck, H. Estimating housing vacancy rates at block level: The example of Guiyang, China. Landsc. Urban Plan. 2022, 224, 104431. [Google Scholar] [CrossRef]
- He, M.; Xu, Y.; Li, N. Population Spatialization in Beijing City Based on Machine Learning and Multisource Remote Sensing Data. Remote Sens. 2020, 12, 1910. [Google Scholar] [CrossRef]
- Williams, S.; Xu, W.; Tan, S.B.; Foster, M.J.; Chen, C. Ghost cities of China: Identifying urban vacancy through social media data. Cities 2019, 94, 275–285. [Google Scholar] [CrossRef]
- Qin, S.J.; Chiang, L.H. Advances and opportunities in machine learning for process data analytics. Comput. Chem. Eng. 2019, 126, 465–473. [Google Scholar] [CrossRef]
- Zaidi, A.; Ajibade, S.-S.M.; Musa, M.; Bekun, F.V. New Insights into the research landscape on the application of artificial intelligence in sustainable smart cities: A bibliometric mapping and network analysis approach. Int. J. Energy Econ. Policy 2023, 13, 287–299. [Google Scholar] [CrossRef]
- Bibri, S.E.; Bibri, S.E. The compact city paradigm and its centrality in sustainable urbanism in the era of big data revolution: A comprehensive state-of-the-art literature review. In Advances in the Leading Paradigms of Urbanism and Their Amalgamation: Compact Cities, Eco–Cities, and Data–Driven Smart Cities; Springer: Cham, Switzerland, 2020; pp. 9–39. [Google Scholar]
- Alamri, S. The Geospatial Crowd: Emerging Trends and Challenges in Crowdsourced Spatial Analytics. ISPRS Int. J. Geo-Inf. 2024, 13, 168. [Google Scholar] [CrossRef]
- Allam, Z.; Sharifi, A.; Bibri, S.E.; Jones, D.S.; Krogstie, J. The metaverse as a virtual form of smart cities: Opportunities and challenges for environmental, economic, and social sustainability in urban futures. Smart Cities 2022, 5, 771–801. [Google Scholar] [CrossRef]
- Talen, E.; Park, J. Understanding Urban Retail Vacancy. Urban Aff. Rev. 2021, 58, 1411–1437. [Google Scholar] [CrossRef]
- Couch, C.; Cocks, M. Housing Vacancy and the Shrinking City: Trends and Policies in the UK and the City of Liverpool. Hous. Stud. 2013, 28, 499–519. [Google Scholar] [CrossRef]
- Baba, H.; Shimizu, C. The impact of apartment vacancies on nearby housing rents over multiple time periods: Application of smart meter data. Int. J. Hous. Mark. Anal. 2022, 16, 27–41. [Google Scholar] [CrossRef]
- Wei, G.; Zhang, W.; Bi, M.; Sun, P.; Li, S.; Ouyang, X.; Liu, Y.; Tian, X. Trade-offs and synergies pattern evolution of ecosystem structure-resilience-activity-services (SRAS) in the Belt and Road Initiative region. Resour. Conserv. Recycl. 2024, 211, 107883. [Google Scholar] [CrossRef]
- Himeur, Y.; Elnour, M.; Fadli, F.; Meskin, N.; Petri, I.; Rezgui, Y.; Bensaali, F.; Amira, A. AI-big data analytics for building automation and management systems: A survey, actual challenges and future perspectives. Artif. Intell. Rev. 2023, 56, 4929–5021. [Google Scholar] [CrossRef]
- Vázquez-Canteli, J.R.; Nagy, Z. Reinforcement learning for demand response: A review of algorithms and modeling techniques. Appl. Energy 2019, 235, 1072–1089. [Google Scholar] [CrossRef]
- Gibbs, C.; Guttentag, D.; Gretzel, U.; Yao, L.; Morton, J. Use of dynamic pricing strategies by Airbnb hosts. Int. J. Contemp. Hosp. Manag. 2018, 30, 2–20. [Google Scholar] [CrossRef]
- Nocca, F. The Role of Cultural Heritage in Sustainable Development: Multidimensional Indicators as Decision-Making Tool. Sustainability 2017, 9, 1882. [Google Scholar] [CrossRef]
- Kim, G.; Newman, G.; Jiang, B. Urban regeneration: Community engagement process for vacant land in declining cities. Cities 2020, 102, 102730. [Google Scholar] [CrossRef]
- Castelnovo, W.; Misuraca, G.; Savoldelli, A. Smart cities governance: The need for a holistic approach to assessing urban participatory policy making. Soc. Sci. Comput. Rev. 2016, 34, 724–739. [Google Scholar] [CrossRef]
- Caramaschi, S.; Chiodelli, F. Reconceptualising housing emptiness beyond vacancy and abandonment. Int. J. Hous. Policy 2022, 23, 1–24. [Google Scholar] [CrossRef]
- Joo, H.; Lee, S.; Kang, S.-J.; Kim, S.-Y. Vacant house characteristics by use area and their application to sustainable community. Appl. Sci. 2022, 12, 10696. [Google Scholar] [CrossRef]
- Baba, H.; Hino, K. Factors and tendencies of housing abandonment: An analysis of a survey of vacant houses in Kawaguchi City, Saitama. Jpn. Arch. Rev. 2019, 2, 367–375. [Google Scholar] [CrossRef]
- Henderson, S.R. State intervention in vacant residential properties: An evaluation of empty dwelling management orders in England. Environ. Plan. C Gov. Policy 2015, 33, 61–82. [Google Scholar] [CrossRef]
- Ma, W.; Jiang, G.; Zhou, T.; Zhang, R. Mixed land uses and community decline: Opportunities and challenges for mitigating residential vacancy in peri-urban villages of China. Front. Environ. Sci. 2022, 10, 887988. [Google Scholar] [CrossRef]
- Chen, S. Multi-Domain Multi-Objective Optimisation of Urban District Environmental Performance. Doctoral Dissertation, University of Sheffield, Sheffield, UK, 2021. [Google Scholar]
- Chen, Q.; Sun, Z.; Li, W. Effects of COVID-19 on residential planning and design: A scientometric analysis. Sustainability 2023, 15, 2823. [Google Scholar] [CrossRef]
- Pan, J.; Dong, L. Spatial identification of housing vacancy in China. Chin. Geogr. Sci. 2021, 31, 359–375. [Google Scholar] [CrossRef]
- He, W.; Chen, M. Advancing urban life: A systematic review of emerging technologies and artificial intelligence in urban design and planning. Buildings 2024, 14, 835. [Google Scholar] [CrossRef]
- Khan, I.; Zedadra, O.; Guerrieri, A.; Spezzano, G. Occupancy prediction in iot-enabled smart buildings: Technologies, methods, and future directions. Sensors 2024, 24, 3276. [Google Scholar] [CrossRef] [PubMed]
- Yue, W.; Chen, Y.; Zhang, Q.; Liu, Y. Spatial explicit assessment of urban vitality using multi-source data: A case of Shanghai, China. Sustainability 2019, 11, 638. [Google Scholar] [CrossRef]
- Iqbal, R.; Doctor, F.; More, B.; Mahmud, S.; Yousuf, U. Big data analytics: Computational intelligence techniques and application areas. Technol. Forecast. Soc. Chang. 2020, 153, 119253. [Google Scholar] [CrossRef]
- Soltani, A.; Lee, C.L. The non-linear dynamics of South Australian regional housing markets: A machine learning approach. Appl. Geogr. 2024, 166, 103248. [Google Scholar] [CrossRef]
- Yu, D.; Fang, C. Urban remote sensing with spatial big data: A review and renewed perspective of urban studies in recent decades. Remote Sens. 2023, 15, 1307. [Google Scholar] [CrossRef]
- Al-Raeei, M. The smart future for sustainable development: Artificial intelligence solutions for sustainable urbanization. Sustain. Dev. 2024, 33, 508–517. [Google Scholar] [CrossRef]
- Ratner, B. Statistical and Machine-Learning Data Mining: Techniques for Better Predictive Modeling and Analysis of Big Data; Chapman and Hall/CRC: New York, NY, USA, 2017. [Google Scholar]
- Shu, X.; Ye, Y. Knowledge Discovery: Methods from data mining and machine learning. Soc. Sci. Res. 2022, 110, 102817. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Z.; Liu, Y.; Xu, Z.; Qu, X. A review of machine learning approaches for electric vehicle energy consumption modelling in urban transportation. Renew. Energy 2024, 234, 121243. [Google Scholar] [CrossRef]
- Wang, J.; Yao, L.; Sui, L.; Xiong, W. Novel Two-Stream Deep Slow and Nonstationary Fast Feature Extraction for Chemical Process Soft Sensing Application. IEEE Trans. Ind. Inform. 2024, 20, 8368–8378. [Google Scholar] [CrossRef]
- Breiman, L. Statistical Modeling: The Two Cultures. Stat. Sci. 2001, 16, 199–215. [Google Scholar] [CrossRef]
- Shmueli, G. To Explain or to Predict? Stat. Sci. 2010, 25, 289–310. [Google Scholar] [CrossRef]
- Wang, X.J.; Zeng, G.T.; Zhang, K.X.; Chu, H.B.; Chen, Z.S. Urban real estate market early warning based on support vector machine: A case study of Beijing. Int. J. Comput. Intell. Syst. 2020, 13, 153–166. [Google Scholar] [CrossRef]
- Xiao, G.; Chen, L.; Chen, X.; Jiang, C.; Ni, A.; Zhang, C.; Zong, F. A hybrid visualization model for knowledge mapping: Scientometrics, SAOM, and SAO. IEEE Trans. Intell. Transp. Syst. 2023, 25, 2208–2221. [Google Scholar] [CrossRef]
- Morckel, V.; Durst, N. Using emerging hot spot analysis to explore spatiotemporal patterns of housing vacancy in ohio metropolitan statistical areas. Urban Aff. Rev. 2021, 59, 309–328. [Google Scholar] [CrossRef]
- Ma, J.; Cheng, J.C.; Jiang, F.; Chen, W.; Zhang, J. Analyzing driving factors of land values in urban scale based on big data and non-linear machine learning techniques. Land Use Policy 2020, 94, 104537. [Google Scholar] [CrossRef]
- Baldominos, A.; Blanco, I.; Moreno, A.J.; Iturrarte, R.; Bernárdez, Ó.; Afonso, C. Identifying real estate opportunities using machine learning. Appl. Sci. 2018, 8, 2321. [Google Scholar] [CrossRef]
- Pouyanfar, S.; Sadiq, S.; Yan, Y.; Tian, H.; Tao, Y.; Reyes, M.P.; Shyu, M.L.; Chen, S.C.; Iyengar, S.S. A survey on deep learning: Algorithms, techniques, and applications. ACM Comput. Surv. (CSUR) 2018, 51, 1–36. [Google Scholar] [CrossRef]
- Shrestha, A.; Mahmood, A. Review of deep learning algorithms and architectures. IEEE Access 2019, 7, 53040–53065. [Google Scholar] [CrossRef]
- Latif, J.; Xiao, C.; Imran, A.; Tu, S. Medical imaging using machine learning and deep learning algorithms: A review. In Proceedings of the IEEE 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, 30–31 January 2019; pp. 1–5. [Google Scholar]
- Deb, C.; Zhang, F.; Yang, J.; Lee, S.E.; Shah, K.W. A review on time series forecasting techniques for building energy consumption. Renew. Sustain. Energy Rev. 2017, 74, 902–924. [Google Scholar] [CrossRef]
- Sagi, O.; Rokach, L. Ensemble learning: A survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1249. [Google Scholar] [CrossRef]
- Dong, X.; Yu, Z.; Cao, W.; Shi, Y.; Ma, Q. A survey on ensemble learning. Front. Comput. Sci. 2019, 14, 241–258. [Google Scholar] [CrossRef]
- Liu, Y.; Batty, M.; Wang, S.; Corcoran, J. Modelling urban change with cellular automata: Contemporary issues and future research directions. Prog. Hum. Geogr. 2019, 45, 3–24. [Google Scholar] [CrossRef]
- Thakuriah, P.; Tilahun, N.Y.; Zeller, M. Big data and urban informatics: Innovations and challenges to urban planning and knowledge discovery. In Seeing Cities Through Big Data: Research, Methods and Applications in Urban Informatics; Thakuriah, P., Tilahun, N., Zellner, M., Eds.; Springer: Cham, Switzerland, 2017; pp. 11–45. [Google Scholar]
- Kontokosta, C.E.; Hong, B.; Johnson, N.E.; Starobin, D. Using machine learning and small area estimation to predict building-level municipal solid waste generation in cities. Comput. Environ. Urban Syst. 2018, 70, 151–162. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J. The impact of housing vacancy rates on house prices. Resour. Sci. 2020, 42, 1135–1147. [Google Scholar]
- Van, H.T.K.; Ha, T.V.; Asada, T.; Arimura, M. Vacancy Dwellings Spatial Distribution—The Determinants and Policy Implications in the City of Sapporo, Japan. Sustainability 2022, 14, 12427. [Google Scholar] [CrossRef]
- Bernt, M.; Haase, A.; Großmann, K.; Cocks, M.; Couch, C.; Cortese, C.; Krzysztofik, R. How does (n’t) Urban Shrinkage get onto the Agenda? Experiences from L eipzig, L iverpool, G enoa and B ytom. Int. J. Urban Reg. Res. 2014, 38, 1749–1766. [Google Scholar] [CrossRef]
- Yang, P.; Pan, J. Estimating housing vacancy rate using nightlight and POI: A case study of main urban area of Xi’an City, China. Appl. Sci. 2022, 12, 12328. [Google Scholar] [CrossRef]
- Hwang, M.; Quigley, J.M. Economic fundamentals in local housing markets: Evidence from U.S. metropolitan regions. J. Reg. Sci. 2006, 46, 425–453. [Google Scholar] [CrossRef]
- Zhao, S.; Li, W.; Zhao, K.; Zhang, P. Change characteristics and multilevel influencing factors of real estate inventory—Case studies from 35 Key Cities in China. Land 2021, 10, 928. [Google Scholar] [CrossRef]
- Hou, J. The Evaluation of the Health of Chinese Real Estate Market: Empirical Research based on index clustering and AHP. In Proceedings of the 2021 1st International Conference on Control and Intelligent Robotics, Guangzhou, China, 18–20 June 2021; pp. 752–773. [Google Scholar]
- Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 2019, 1, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Himeur, Y.; Ghanem, K.; Alsalemi, A.; Bensaali, F.; Amira, A. Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives. Appl. Energy 2021, 287, 116601. [Google Scholar] [CrossRef]
- Camero, A.; Toutouh, J.; Stolfi, D.H.; Alba, E. Evolutionary deep learning for car park occupancy prediction in smart cities. In Proceedings of the Learning and Intelligent Optimization: 12th International Conference, LION 12, Kalamata, Greece, 10–15 June 2018; Revised Selected Papers 12. Springer International Publishing: Cham, Switzerland, 2019; pp. 386–401. [Google Scholar]
- Li, M.; Wang, F.; Jia, X.; Li, W.; Li, T.; Rui, G. Multi-source data fusion for economic data analysis. Neural Comput. Appl. 2021, 33, 4729–4739. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Wang, Z. Multi-source data fusion for urban vacancy rate prediction in Shenzhen. J. Urban Plan. Dev. 2022, 148, 04022003. [Google Scholar]
- Zhou, Y.; Xue, L.; Shi, Z.; Wu, L.; Fan, J. Measuring Housing Vitality from Multi-source Big Data and Machine Learning. J. Am. Stat. Assoc. 2022, 117, 1045–1059. [Google Scholar] [CrossRef]
- Liu, B.; Chen, Y.; Li, X. Adaptive algorithms for dynamic vacancy rate prediction in new urban districts: A case study of Xiong’an. Smart Cities 2023, 6, 1234–1250. [Google Scholar]
- Canziani, A.; Paszke, A.; Culurciello, E. An analysis of deep neural network models for practical applications. arXiv 2016, arXiv:1605.07678. [Google Scholar]
- Miikkulainen, R.; Liang, J.; Meyerson, E.; Rawal, A.; Fink, D.; Francon, O.; Raju, B.; Shahrzad, H.; Navruzyan, A.; Duffy, N.; et al. Evolving deep neural networks. In Artificial Intelligence in the Age of Neural Networks and Brain Computing; Academic Press: Cambridge, MA, USA, 2024; pp. 269–287. [Google Scholar]
- Jin, L.; Tan, F.; Jiang, S. Generative adversarial network technologies and applications in computer vision. Comput. Intell. Neurosci. 2020, 2020, 1459107. [Google Scholar] [CrossRef]
- Zhong, X.; Fricker, P.; Yu, F.; Tan, C.; Pan, Y. A Discussion on an Urban Layout Workflow Utilizing Generative Adversarial Network (GAN)—With a focus on automatized labeling and dataset acquisition. In Proceedings of the eCAADe 2022: International Conference on Education and Research in Computer Aided Architectural Design in Europe, Leuven, Belgium, 13–16 September 2022; pp. 583–592. [Google Scholar]
- Han, W.; Li, J.; Wang, S.; Zhang, X.; Dong, Y.; Fan, R.; Zhang, X.; Wang, L. Geological remote sensing interpretation using deep learning feature and an adaptive multisource data fusion network. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Tien, P.W.; Wei, S.; Darkwa, J.; Wood, C.; Calautit, J.K. Machine learning and deep learning methods for enhancing building energy efficiency and indoor environmental quality—A review. Energy AI 2022, 10, 100198. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, X.; Sun, Y.; Zhou, Y. Advanced controls on energy reliability, flexibility and occupant-centric control for smart and energy-efficient buildings. Energy Build. 2023, 297, 113436. [Google Scholar] [CrossRef]
- Sadayuki, T.; Kanayama, Y.; Arimura, T.H. Evaluating the Externality of Vacant Houses in Japan: The Case of Toshima Municipality, Tokyo; Research Institute for Environmental Economics and Management Discussion Paper Series; Waseda University: Tokyo, Japan, 2019. [Google Scholar]
- Piadeh, F.; Behzadian, K.; Alani, A.M. A critical review of real-time modelling of flood forecasting in urban drainage systems. J. Hydrol. 2022, 607, 127476. [Google Scholar] [CrossRef]
- Baba, H.; Asami, Y. Regional differences in the socio-economic and built-environment factors of vacant house ratio as a key indicator for spatial urban shrinkage. Urban Reg. Plan. Rev. 2017, 4, 251–267. [Google Scholar] [CrossRef]
- Yue, X.; Wang, Y.; Zhao, Y.; Zhang, H. Estimation of urban housing vacancy based on daytime housing exterior images—a case study of Guangzhou in China. ISPRS Int. J. Geo-Inf. 2022, 11, 349. [Google Scholar] [CrossRef]
- Flas, M.; Halleux, J.-M.; Cools, M.; Teller, J. Identifying housing vacancy using data on registered addresses and domestic consumption. Hous. Stud. 2022, 39, 1317–1339. [Google Scholar] [CrossRef]
- Liu, X.; Li, Z.; Fu, X.; Yin, Z.; Liu, M.; Yin, L.; Zheng, W. Monitoring house vacancy dynamics in the pearl river delta region: A method based on NPP-VIIRS night-time light remote sensing images. Land 2023, 12, 831. [Google Scholar] [CrossRef]
- Hillier, A.E.; Culhane, D.P.; Smith, T.E.; Tomlin, C.D. Predicting housing abandonment with the philadelphia neighborhood information system. J. Urban Aff. 2003, 25, 91–106. [Google Scholar] [CrossRef]
- Ma, X.; Hou, G.; Li, L.; Yang, Y. DBSCAN algorithm based on homestay cluster identification, distribution pattern and influencing factors—Take Nanjing city as an example. Hum. Geogr. 2021, 36, 84–93. [Google Scholar]
- Li, L.; Liu, D. Exploring the bidirectional relationship between urbanization and rural sustainable development in China since 2000: Panel data analysis of Chinese cities. J. Urban Plan. Dev. 2021, 147, 05021024. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Wu, S.; Du, Z. House Price Valuation Model Based on Geographically Neural Network Weighted Regression: The Case Study of Shenzhen, China. ISPRS Int. J. Geo Inf. 2022, 11, 450. [Google Scholar] [CrossRef]
- Fenneman, J.; Frankenhuis, W.E. Is impulsive behavior adaptive in harsh and unpredictable environments? A formal model. 2020, 41, 261–273. [Google Scholar] [CrossRef]
- Tekouabou, S.C.K.; Diop, E.B.; Azmi, R.; Jaligot, R.; Chenal, J. Reviewing the application of machine learning methods to model urban form indicators in planning decision support systems: Potential, issues and challenges. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 5943–5967. [Google Scholar] [CrossRef]
- Xiong, L.; Yao, Y. Study on an adaptive thermal comfort model with K-nearest-neighbors (KNN) algorithm. Build. Environ. 2021, 202, 108026. [Google Scholar] [CrossRef]
- Antonante, P.; Tzoumas, V.; Yang, H.; Carlone, L. Outlier-robust estimation: Hardness, minimally tuned algorithms, and applications. IEEE Trans. Robot. 2021, 38, 281–301. [Google Scholar] [CrossRef]
- Li, T.; Liu, X.; Li, G.; Wang, X.; Ma, J.; Xu, C.; Mao, Q. A systematic review and comprehensive analysis of building occupancy prediction. Renew. Sustain. Energy Rev. 2024, 193, 114284. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, W.; Wu, F.; De, S.; Wang, R.; Zhang, B.; Huang, X. A Survey on an Emerging Area: Deep Learning for Smart City Data. IEEE Trans. Emerg. Top. Comput. Intell. 2019, 3, 392–410. [Google Scholar] [CrossRef]
- Yuan, X.; Dai, X.; Zou, Z.; He, X.; Sun, Y.; Zhou, C. Multi-Source Data-Driven Extraction of Urban Residential Space: A Case Study of the Guangdong–Hong Kong–Macao Greater Bay Area Urban Agglomeration. Remote Sens. 2024, 16, 3631. [Google Scholar] [CrossRef]
- Censor, Y.; Zaknoon, M.; Zaslavski, A.J. Data-compatibility of algorithms. arXiv 2019, arXiv:1911.11389. [Google Scholar]
- Qin, C.; Guo, B.; Zhang, Y.; Shen, Y. The Dynamic Fusion Representation of Multi—Source Fuzzy Data. Appl. Intell. 2023, 53, 27226–27248. [Google Scholar] [CrossRef]
- Vlahogianni, E.I.; Kepaptsoglou, K.; Tsetsos, V.; Karlaftis, M.G. A real-time parking prediction system for smart cities. J. Intell. Transp. Syst. 2015, 20, 192–204. [Google Scholar] [CrossRef]
- Shun, Z.; Li, D.; Jiang, H.; Li, J.; Peng, R.; Lin, B.; Liu, T. Research on Remote Sensing Image Extraction Based on Deep Learning. PeerJ Comput. Sci. 2022, 8, e847. [Google Scholar] [CrossRef]
- Saull, A.; Baum, A.; Braesemann, F. Can digital technologies speed up real estate transactions? J. Prop. Invest. Financ. 2020, 38, 349–361. [Google Scholar] [CrossRef]
- Singh, N.; Vardhan, M. Digital ledger technology-based real estate transaction mechanism and its block size assessment. Int. J. Blockchains Cryptocurrencies 2019, 1, 67. [Google Scholar] [CrossRef]
- Padulano, R.; Del Giudice, G. A mixed strategy based on self-organizing map for water demand pattern profiling of large-size smart water grid data. Water Resour. Manag. 2018, 32, 3671–3685. [Google Scholar] [CrossRef]
- Lee, S.W.; Sarp, S.; Jeon, D.J.; Kim, J.H. Smart water grid: The future water management platform. Desalination Water Treat. 2015, 55, 339–346. [Google Scholar] [CrossRef]
- Public Utilities Board Singapore Pan_Ju_Khuan@ pub. gov. sg. Managing the water distribution network with a Smart Water Grid. Smart Water 2016, 1, 4. [Google Scholar] [CrossRef]
- Moubayed, A.; Sharif, M.; Luccini, M.; Primak, S.; Shami, A. Water leak detection survey: Challenges & research opportunities using data fusion & federated learning. IEEE Access 2021, 9, 40595–40611. [Google Scholar] [CrossRef]
- Xue, P.; Hong, T.; Dong, B.; Mak, C. A preliminary investigation of water usage behavior in single-family homes. Build. Simul. 2017, 10, 949–962. [Google Scholar] [CrossRef]
- Searcy, J.A.; Cioffi, C.C.; Tavalire, H.F.; Budd, E.L.; Cresko, W.A.; DeGarmo, D.S.; Leve, L.D. Reaching Latinx communities with algorithmic optimization for SARS-CoV-2 testing locations. Prev. Sci. 2023, 24, 1249–1260. [Google Scholar] [CrossRef]
- Du, M.; Wang, L.; Zou, S.; Shi, C. Modeling the census tract level housing vacancy rate with the Jilin1-03 satellite and other geospatial data. Remote Sens. 2018, 10, 1920. [Google Scholar] [CrossRef]
- Park, J.-I. A Multilevel model approach for assessing the effects of house and neighborhood characteristics on housing vacancy: A case of daegu, South Korea. Sustainability 2019, 11, 2515. [Google Scholar] [CrossRef]
- Lee, J.; Newman, G.; Lee, C. Predicting detached housing vacancy: A multilevel analysis. Sustainability 2022, 14, 922. [Google Scholar] [CrossRef]
- Yang, N.; Yang, L.; Du, X.; Guo, X.; Meng, F.; Zhang, Y. Blockchain Based Trusted Execution Environment Architecture Analysis for Multi—Source Data Fusion Scenario. J. Cloud Comput. 2023, 12, 122. [Google Scholar] [CrossRef]
- Yao, Z.; Lum, Y.; Johnston, A.; Mejia-Mendoza, L.M.; Zhou, X.; Wen, Y.; Seh, Z.W. Machine Learning for a Sustainable Energy Future. Nat. Rev. Mater. 2023, 8, 202–215. [Google Scholar] [CrossRef]
Algorithm Type | Description | Applicable Scenarios | Advantages | Disadvantages | Typical Algorithms |
---|---|---|---|---|---|
Traditional statistical learning | Linear models assuming linear relationships between variables. | Variables: Short-term vacancy rate prediction with structured data (e.g., economic indicators). | High computational efficiency; strong interpretability. | Limited capacity to model nonlinear relationships; inflexibility. | Linear regression, ARIMA |
Machine learning | Nonlinear models (e.g., trees, SVM) capturing complex patterns via feature engineering. | Mid-term trend prediction; feature importance analysis (e.g., demographic impacts). | Effective for medium-dimensional data; interpretable with simpler models. | Struggles with high-dimensional data; prone to overfitting. | Random forests, SVM |
Deep learning | Hierarchical feature extraction via neural networks for high-dimensional, unstructured data. | Long-term trend forecasting; remote sensing analysis (e.g., nighttime light imagery). | Exceptional performance on complex data; automatic feature learning. | Requires massive data and computational resources; limited interpretability. | CNN, LSTM, transformer |
Reinforcement learning | Trial-and-error optimization of dynamic strategies in response to vacancy rates. | Policy optimization (e.g., vacancy tax adjustments); resource allocation (e.g., new housing placement). | Adaptable to dynamic urban environments; optimizes long-term outcomes. | Slow convergence; sensitive to reward function design. | Q-Learning, policy gradient |
Data mining | Discovery of hidden patterns via clustering, association rules, etc. | Exploratory analysis (e.g., social media data for vacancy clues). | Uncovers latent relationships; supports unsupervised learning. | Results highly dependent on data quality; domain expertise required. | Apriori, K-Means |
Time series analysis | Decomposition of temporal patterns (trends, seasonality) in sequential data. | Short-to-medium-term forecasting (e.g., quarterly vacancy fluctuations). | Effective for capturing temporal dependencies; reliable for stationary data. | Sensitive to non-stationarity; assumes regularity. | SARIMA, Prophet |
Feature Type | Description | Data Source | Dealing with Challenges |
---|---|---|---|
Geographical distribution | Geographical location information of urban residences | Geographic information system (GIS) | Irregularity and multi-scale nature of spatial data |
Demographics | Residents’ age, income, occupation and other statistical information | Census, statistics | The diversity and dynamic nature of data |
Economic activities | Real estate market transactions, rental prices, etc. | Real estate database, market prices | Fusion analysis of price fluctuations and economic cycles |
Building characteristics | The building structure, age, area, etc. of the house | Building records, property management | Unstructured and heterogeneous data |
Infrastructure | Transportation, public services and other infrastructure information | Government open data, on-site investigation | Data incompleteness and real-time update requirements |
Policy impact | The impact of government policies on the housing market | Government announcements, laws and regulations | Policy diversity and time sensitivity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Zeng, W.; Liu, W.; Peng, Y.; Yao, N. Algorithms Facilitating the Observation of Urban Residential Vacancy Rates: Technologies, Challenges and Breakthroughs. Algorithms 2025, 18, 174. https://doi.org/10.3390/a18030174
Liu B, Zeng W, Liu W, Peng Y, Yao N. Algorithms Facilitating the Observation of Urban Residential Vacancy Rates: Technologies, Challenges and Breakthroughs. Algorithms. 2025; 18(3):174. https://doi.org/10.3390/a18030174
Chicago/Turabian StyleLiu, Binglin, Weijia Zeng, Weijiang Liu, Yi Peng, and Nini Yao. 2025. "Algorithms Facilitating the Observation of Urban Residential Vacancy Rates: Technologies, Challenges and Breakthroughs" Algorithms 18, no. 3: 174. https://doi.org/10.3390/a18030174
APA StyleLiu, B., Zeng, W., Liu, W., Peng, Y., & Yao, N. (2025). Algorithms Facilitating the Observation of Urban Residential Vacancy Rates: Technologies, Challenges and Breakthroughs. Algorithms, 18(3), 174. https://doi.org/10.3390/a18030174