A Review of Methods and Applications for a Heart Rate Variability Analysis
Abstract
:1. Introduction
2. Generation of RR Interval Time Series
- Signal quality can be compromised in ultra-short ECG recordings as a result of a shorter length, leading to the presence of noise, artifacts, and a reduction in signal quality [17,18]. The potential consequences of this phenomenon include potential inconsistencies in an HRV analysis when compared to standard recordings, which may compromise the accuracy of the results.
- An HRV analysis can be conducted through two distinct approaches, namely a time-domain analysis and frequency-domain analysis [19]. The selection of the analytical approach can have an impact on the outcomes and the capacity to compare ultra-short recordings with regular recordings.
- The examination of HRV in research often operates under the assumption that the fundamental physiological mechanisms remain constant during the duration of the recording [2]. The validity of this premise may be compromised when dealing with long-term recordings, as the longer duration could potentially impact the outcomes due to motion artifacts, electrode movements, signal drift, and patient movements, etc. [2].
- The statistical power of ultra-short recordings may be diminished due to a restricted number of data points, resulting in a decrease in comparison to lengthier conventional recordings. The data points are representative of the voltage measurements acquired from the electrodes positioned on the body. The frequency spectrum of the ECG data depicts the allocation of various frequencies that are present within the signal [20]. Increased recording duration leads to enhanced frequency resolution, enabling the detection and capture of lower-frequency elements of the cardiac signal, including the T-wave and QRS complex.
- The identification and rectification of artifacts in recordings can vary depending on whether the recordings are ultra-short or standard in duration, resulting in discrepancies in the resulting heart rate variability (HRV) measures [16].
- Standardization refers to the establishment of rules and protocols that dictate the proper procedures for conducting a heart rate variability (HRV) analysis on ultra-short recordings [21]. The purpose of standardization is to ensure uniformity in the methods employed across different studies and platforms.
- Validation Studies: This research aims to compare the measures of heart rate variability (HRV) derived from ultra-short recordings with standard recordings in the same individuals. The purpose is to assess the level of agreement and identify any potential inconsistencies between the two methods [22].
- The application of data augmentation techniques enables the generation of lengthier recordings from ultra-short segments, hence expanding the available dataset for analysis purposes [23].
3. Pressure Support Ventilation (PSV)
3.1. Time-Domain Methods
3.2. Frequency-Domain Methods
3.3. Non-Linear Methods
3.4. Signal Decomposition Methods
3.4.1. Empirical Mode Decomposition (EMD)
3.4.2. Discrete Wavelet Transform (DWT)
3.4.3. Wavelet Packet Decomposition (WPD)
3.5. Parametric Modeling Techniques
4. Weight-Based Feature Selection Methods
4.1. Information Gain (IG)
4.1.1. Inequality
4.1.2. Symmetry
4.1.3. Distance Function
4.2. Information Gain Ratio (IGR)
4.3. Uncertainty
4.4. Gini Index (GI)
4.5. Chi-Squared Statistics (CSS)
4.6. Correlation
4.7. Deviation
4.8. Relief
4.9. Rule
4.10. Support Vector Machine (SVM)
5. Dimensionality Reduction Techniques
5.1. Principal Component Analysis (PCA)
5.2. Kernel PCA (K-PCA)
5.3. Independent Component Analysis (ICA)
5.3.1. Centering
5.3.2. Whitening
5.3.3. Filtering
5.3.4. Fast ICA Algorithm
5.4. Singular Value Decomposition (SVD)
5.5. Self-Organizing Map (SOM)
6. Classification Techniques
6.1. Generalized Linear Model
6.2. Naive Bayes
6.3. Support Vector Machine
6.4. Logistic Regression
6.5. Deep Learning
6.6. Decision Tree
6.7. Random Forest (RF)
6.8. Gradient Boosted Tree (GBT)
6.9. Fast Large Margin (FLM)
7. Applications of HRV Analysis
7.1. Diabetes Detection
7.2. Sleep Apnea Detection
7.3. Myocardial Infarction Detection
7.4. Cardiac Arrhythmia Detection
- Time-Domain Analysis:
- Frequency-Domain Analysis:
- Non-linear Analysis:
- Geometric Analysis:
7.5. Blood Pressure/Hypertension Detection
7.6. Detection of Renal Failure
7.7. Psychiatric Disorder Detection
7.8. Monitoring of Fetal Distress and Neonatal Critical Care
7.9. Grasping the Idea of the Impact of Alcohol on ANS Activity
7.10. ANS Activity of Patients Undergoing Weaning from Mechanical Ventilation
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Rajendra Acharya, U.; Paul Joseph, K.; Kannathal, N.; Lim, C.M.; Suri, J.S. Heart Rate Variability: A review. Med. Biol. Eng. Comput. 2006, 44, 1031–1051. [Google Scholar] [CrossRef]
- Kim, H.G.; Cheon, E.J.; Bai, D.S.; Lee, Y.H.; Koo, B.H. Stress and heart rate variability: A meta-analysis and review of the literature. Psychiatry Investig. 2018, 15, 235. [Google Scholar] [CrossRef] [PubMed]
- Saul, J.P. Beat-to-beat variations of heart rate reflect modulation of cardiac autonomic outflow. Physiology 1990, 5, 32–37. [Google Scholar] [CrossRef]
- Levy, M.N.; Schwartz, P.J. Vagal Control of the Heart: Experimental Basis and Clinical Implications; Futura Pub. Co.: Austin, TX, USA, 1994. [Google Scholar]
- Schwartz, P.J. Sympathetic nervous system and cardiac arrhythmias. Card. Electrophysiol. 1990, 330–343. [Google Scholar]
- Camm, A.J.; Malik, M.; Bigger, J.T.; Breithardt, G.; Cerutti, S.; Cohen, R.J.; Coumel, P.; Fallen, E.L.; Kennedy, H.L.; Kleiger, R.E. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996, 93, 1043–1065. [Google Scholar]
- Ge, D.; Srinivasan, N.; Krishnan, S.M. Cardiac arrhythmia classification using autoregressive modeling. Biomed. Eng. Online 2002, 1, 5. [Google Scholar] [CrossRef]
- Rosenstein, M.T.; Collins, J.J.; De Luca, C.J. A practical method for calculating largest Lyapunov exponents from small data sets. Phys. D Nonlinear Phenom. 1993, 65, 117–134. [Google Scholar] [CrossRef]
- Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Nat. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.-K.; Havlin, S.; Hausdorff, J.; Mietus, J.; Stanley, H.; Goldberger, A. Fractal mechanisms and heart rate dynamics: Long-range correlations and their breakdown with disease. J. Electrocardiol. 1995, 28, 59–65. [Google Scholar] [CrossRef]
- Burlacu, A.; Brinza, C.; Brezulianu, A.; Covic, A. Accurate and early detection of sleepiness, fatigue and stress levels in drivers through Heart Rate Variability parameters: A systematic review. Rev. Cardiovasc. Med. 2021, 22, 845–852. [Google Scholar] [CrossRef] [PubMed]
- Ishaque, S.; Khan, N.; Krishnan, S. Trends in heart-rate variability signal analysis. Front. Digit. Health 2021, 3, 639444. [Google Scholar] [CrossRef] [PubMed]
- Jaderberg, M.; Vedaldi, A.; Zisserman, A. Deep features for text spotting. In Proceedings of the Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Proceedings, Part IV 13. Springer International Publishing: Berlin/Heidelberg, Germany, 2014; pp. 512–528. [Google Scholar]
- Lascu, M.; Lascu, D. LabVIEW event detection using Pan-Tompkins algorithm. In Proceedings of the 7th WSEAS International Conference on Signal, Speech and Image Processing, Beijing, China, 15–17 September 2007. [Google Scholar]
- Sharma, A.; Patidar, S.; Upadhyay, A.; Acharya, U.R. Accurate tunable-Q wavelet transform based method for QRS complex detection. Comput. Electr. Eng. 2019, 75, 101–111. [Google Scholar] [CrossRef]
- Wehler, D.; Jelinek, H.F.; Gronau, A.; Wessel, N.; Kraemer, J.F.; Krones, R.; Penzel, T. Reliability of heart-rate-variability features derived from ultra-short ECG recordings and their validity in the assessment of cardiac autonomic neuropathy. Biomed. Signal Process. Control 2021, 68, 102651. [Google Scholar] [CrossRef]
- Liu, F.; Wei, S.; Lin, F.; Jiang, X.; Liu, C. An overview of signal quality indices on dynamic ECG signal quality assessment. In Feature Engineering and Computational Intelligence in ECG Monitoring; Liu, C., Li, J., Eds.; Springer: Singapore, 2020; pp. 33–54. [Google Scholar]
- Clifford, G.D.; Moody, G.B. Signal quality in cardiorespiratory monitoring. Physiol. Meas. 2012, 33, E01. [Google Scholar] [CrossRef]
- Swai, J.; Hu, Z.; Zhao, X.; Rugambwa, T.; Ming, G. Heart rate and heart rate variability comparison between postural orthostatic tachycardia syndrome versus healthy participants; a systematic review and meta-analysis. BMC Cardiovasc. Disord. 2019, 19, 320. [Google Scholar] [CrossRef] [PubMed]
- Chou, E.-F.; Khine, M.; Lockhart, T.; Soangra, R. Effects of ecg data length on heart rate variability among young healthy adults. Sensors 2021, 21, 6286. [Google Scholar] [CrossRef]
- Chen, Y.-S.; Lu, W.-A.; Pagaduan, J.C.; Kuo, C.-D. A novel smartphone app for the measurement of ultra–short-term and short-term heart rate variability: Validity and reliability study. JMIR Mhealth Uhealth 2020, 8, e18761. [Google Scholar] [CrossRef]
- Taoum, A.; Bisiaux, A.; Tilquin, F.; Le Guillou, Y.; Carrault, G. Validity of Ultra-Short-Term HRV Analysis Using PPG—A Preliminary Study. Sensors 2022, 22, 7995. [Google Scholar] [CrossRef] [PubMed]
- Burma, J.S.; Graver, S.; Miutz, L.N.; Macaulay, A.; Copeland, P.V.; Smirl, J.D. The validity and reliability of ultra-short-term heart rate variability parameters and the influence of physiological covariates. J. Appl. Physiol. 2021, 130, 1848–1867. [Google Scholar] [CrossRef]
- Shaffer, F.; Ginsberg, J. An overview of heart rate variability metrics and norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef]
- Nardelli, M.; Greco, A.; Bianchi, M.; Scilingo, E.P.; Valenza, G. Classifying affective haptic stimuli through gender-specific heart rate variability nonlinear analysis. IEEE Trans. Affect. Comput. 2018, 11, 459–469. [Google Scholar] [CrossRef]
- Cepeda, F.X.; Lapointe, M.; Tan, C.O.; Taylor, J.A. Inconsistent relation of nonlinear heart rate variability indices to increasing vagal tone in healthy humans. Auton. Neurosci. 2018, 213, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hoshi, R.A.; Andreão, R.V.; Santos, I.S.; Dantas, E.M.; Mill, J.G.; Lotufo, P.A.; Bensenor, I.M. Linear and nonlinear analyses of heart rate variability following sorthostatism in subclinical hypothyroidism. Medicine 2019, 98, e14140. [Google Scholar] [CrossRef]
- Cartas-Rosado, R.; Becerra-Luna, B.; Martinez-Memije, R.; Infante-Vazquez, O.; Lerma, C.; Perez-Grovas, H.; Rodríguez-Chagolla, J.M. Continuous wavelet transform based processing for estimating the power spectrum content of heart rate variability during hemodiafiltration. Biomed. Signal Process. Control 2020, 62, 102031. [Google Scholar] [CrossRef]
- Kleiger, R.E.; Stein, P.K.; Bigger, J.T., Jr. Heart rate variability: Measurement and clinical utility. Ann. Noninvasive Electrocardiol. 2005, 10, 88–101. [Google Scholar] [CrossRef]
- Tarvainen, M.P.; Lipponen, J.A.; Kuoppa, P. Analysis and Preprocessing of HRV—Kubios HRV Software. In ECG Time Series Variability Analysis: Engineering and Medicine; CRC Press: Boca Raton, FL, USA, 2017; pp. 159–186. [Google Scholar]
- Nagendra, H.; Kumar, V.; Mukherjee, S. Cognitive Behavior Evaluation Based on Physiological Parameters among Young Healthy Subjects with Yoga as Intervention. Comput. Math. Methods Med. 2015, 2015, 821061. [Google Scholar] [CrossRef]
- Marina Medina, C.; Blanca de la Cruz, T.; Alberto Garrido, E.; Marco Antonio Garrido, S.; José, N.O. Normal values of heart rate variability at rest in a young, healthy and active Mexican population. Health 2012, 4, 720–726. [Google Scholar]
- Tarvainen, M.P.; Niskanen, J.P.; Lipponen, J.A.; Ranta-Aho, P.O.; Karjalainen, P.A. Kubios HRV–heart rate variability analysis software. Comput. Methods Programs Biomed. 2014, 113, 210–220. [Google Scholar] [CrossRef]
- Peng, C.K.; Havlin, S.; Stanley, H.E.; Goldberger, A.L. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos Interdiscip. J. Nonlinear Sci. 1995, 5, 82–87. [Google Scholar] [CrossRef]
- Wessel, N.; Marwan, N.; Meyerfeldt, U.; Schirdewan, A.; Kurths, J. Recurrence quantification analysis to characterise the heart rate variability before the onset of ventricular tachycardia. In Medical Data Analysis, Proceedings of the Second International Symposium, ISMDA 2001 Madrid, Spain, 8–9 October 2001; Proceedings 2; Springer: Berlin/Heidelberg, Germany, 2001; pp. 295–301. [Google Scholar]
- Marwan, N.; Romano, M.C.; Thiel, M.; Kurths, J. Recurrence plots for the analysis of complex systems. Phys. Rep. 2007, 438, 237–329. [Google Scholar] [CrossRef]
- Nayak, S.K.; Bit, A.; Dey, A.; Mohapatra, B.; Pal, K. A review on the nonlinear dynamical system analysis of electrocardiogram signal. J. Healthc. Eng. 2018, 2018, 6920420. [Google Scholar] [CrossRef]
- Eckmann, J.-P.; Kamphorst, S.O.; Ruelle, D. Recurrence plots of dynamical systems. World Sci. Ser. Nonlinear Sci. Ser. A 1995, 16, 441–446. [Google Scholar]
- Martín-González, S.; Navarro-Mesa, J.L.; Juliá-Serdá, G.; Ramírez-Ávila, G.M.; Ravelo-García, A.G. Improving the understanding of sleep apnea characterization using Recurrence Quantification Analysis by defining overall acceptable values for the dimensionality of the system, the delay, and the distance threshold. PLoS ONE 2018, 13, e0194462. [Google Scholar] [CrossRef]
- Webber, C.L., Jr.; Marwan, N. Recurrence quantification analysis. In Theory and Best Practices; Springer: Berlin/Heidelberg, Germany, 2015; p. 426. [Google Scholar]
- Yang, H. Multiscale Recurrence Quantification Analysis of Spatial Cardiac Vectorcardiogram Signals. IEEE Trans. Biomed. Eng. 2010, 58, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V. Deterministic Chaos and Fractal Complexity in the Dynamics of Cardiovascular Behavior: Perspectives on a New Frontier. Open Cardiovasc. Med. J. 2009, 3, 110–123. [Google Scholar] [CrossRef] [PubMed]
- Karavaev, A.S.; Ishbulatov, Y.M.; Ponomarenko, V.I.; Bezruchko, B.P.; Kiselev, A.R.; Prokhorov, M.D. Autonomic control is a source of dynamical chaos in the cardiovascular system. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 121101. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Bajaj, V.; Pachori, R.B. Classification of Seizure and Nonseizure EEG Signals Using Empirical Mode Decomposition. IEEE Trans. Inf. Technol. Biomed. 2011, 16, 1135–1142. [Google Scholar] [CrossRef]
- Acharya, U.R.; Fujita, H.; Sudarshan, V.K.; Oh, S.L.; Muhammad, A.; Koh, J.E.; Tan, J.H.; Chua, C.K.; Chua, K.P.; San Tan, R. Application of empirical mode decomposition (EMD) for automated identification of congestive heart failure using heart rate signals. Neural Comput. Appl. 2017, 28, 3073–3094. [Google Scholar] [CrossRef]
- Chen, M.; He, A.; Feng, K.; Liu, G.; Wang, Q.J.E. Empirical mode decomposition as a novel approach to study heart rate variability in congestive heart failure assessment. Entropy 2019, 21, 1169. [Google Scholar] [CrossRef]
- Acharya, U.R.; Vidya, K.S.; Ghista, D.N.; Lim WJ, E.; Molinari, F.; Sankaranarayanan, M. Computer-aided diagnosis of diabetic subjects by heart rate variability signals using discrete wavelet transform method. Knowl.-Based Syst. 2015, 81, 56–64. [Google Scholar] [CrossRef]
- Hei, Y.; Yuan, T.; Fan, Z.; Yang, B.; Hu, J. Sleep staging classification based on a new parallel fusion method of multiple sources signals. Physiol. Meas. 2022, 43, 045003. [Google Scholar] [CrossRef]
- Hu, Q.; Qin, A.; Zhang, Q.; He, J.; Sun, G. Fault diagnosis based on weighted extreme learning machine with wavelet packet decomposition and KPCA. IEEE Sens. J. 2018, 18, 8472–8483. [Google Scholar] [CrossRef]
- Addison, P.S. The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Geng, D.Y.; Zhao, J.; Wang, C.X.; Ning, Q. A decision support system for automatic sleep staging from HRV using wavelet packet decomposition and energy features. Biomed. Signal Process. Control 2020, 56, 101722. [Google Scholar] [CrossRef]
- Hossen, A.; Qasim, S. Identification of obstructive sleep apnea using artificial neural networks and wavelet packet decomposition of the HRV signal. J. Eng. Res. 2020, 17, 24–33. [Google Scholar] [CrossRef]
- Akar, S.A.; Kara, S.; Bilgic, V. Investigation of heart rate variability in major depression patients using wavelet packet transform. Psychiatry Res. 2016, 238, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, P.; Zhang, X.; Li, H.; Himed, B. An overview of parametric modeling and methods for radar target detection with limited data. IEEE Access 2021, 9, 60459–60469. [Google Scholar] [CrossRef]
- Faal, M.; Almasganj, F. ECG Signal Modeling Using Volatility Properties: Its Application in Sleep Apnea Syndrome. J. Healthc. Eng. 2021, 2021, 4894501. [Google Scholar] [CrossRef]
- Pande, K.; Subhadarshini, S.; Gaur, D.; Nayak, S.K.; Pal, K. Analysis of ECG Signals to Investigate the Effect of a Humorous Audio-Visual Stimulus on Autonomic Nervous System and Heart of Females. In Design and Development of Affordable Healthcare Technologies; IGI Global: Hershey, PA, USA, 2018; pp. 239–256. [Google Scholar]
- Nayak, S.K.; Pradhan, B.K.; Banerjee, I.; Pal, K. Analysis of heart rate variability to understand the effect of cannabis consumption on Indian male paddy-field workers. Biomed. Signal Process. Control 2020, 62, 102072. [Google Scholar] [CrossRef]
- Lei, S. A feature selection method based on information gain and genetic algorithm. In Proceedings of the 2012 International Conference on Computer Science and Electronics Engineering, Hangzhou, China, 23–25 March 2012; IEEE: New York, NY, USA, 2012; Volume 2, pp. 355–358. [Google Scholar]
- Dragomir, S.S.; Goh, C.J. A counterpart of Jensen’s discrete inequality for differentiable convex mappings and applications in information theory. Math. Comput. Model. 1996, 24, 1–11. [Google Scholar] [CrossRef]
- Priyadarsini, R.P.; Valarmathi, M.L.; Sivakumari, S. Gain ratio based feature selection method for privacy preservation. ICTACT J. Soft Comput. 2011, 1, 201–205. [Google Scholar]
- Kendall, A.; Gal, Y. What uncertainties do we need in bayesian deep learning for computer vision? Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar]
- Wu, L.; Wang, Y.; Zhang, S.; Zhang, Y. Fusing gini index and term frequency for text feature selection. In Proceedings of the 2017 IEEE Third International Conference on Multimedia Big Data (BigMM), Laguna Hills, CA, USA, 19–21 April 2017; IEEE: New York, NY, USA, 2017; pp. 280–283. [Google Scholar]
- Perveen, N.; Gupta, S.; Verma, K. Facial expression recognition using facial characteristic points and Gini index. In Proceedings of the 2012 Students Conference on Engineering and Systems, Allahabad, India, 16–18 March 2012; IEEE: New York, NY, USA, 2012; pp. 1–6. [Google Scholar]
- Wu, R. Improved K-Modes Clustering Method Based on Chi-square Statistics. In Proceedings of the 2010 IEEE International Conference on Granular Computing, San Jose, CA, USA, 14–16 August 2010; IEEE: New York, NY, USA, 2010; pp. 808–811. [Google Scholar]
- Wang, S.E.N.; Zhang, L.I. A supervised correlation coefficient method: Detection of different correlation. In Proceedings of the 2020 12th International Conference on Advanced Computational Intelligence (ICACI), Dali, China, 14–16 March 2020; IEEE: New York, NY, USA, 2020; pp. 408–411. [Google Scholar]
- Altman, D.G.; Bland, J.M. Standard deviations and standard errors. BMJ 2005, 331, 903. [Google Scholar] [CrossRef] [PubMed]
- Urbanowicz, R.J.; Meeker, M.; La Cava, W.; Olson, R.S.; Moore, J.H. Relief-based feature selection: Introduction and review. J. Biomed. Inform. 2018, 85, 189–203. [Google Scholar] [CrossRef]
- Zhang, Y. Support vector machine classification algorithm and its application. In Information Computing and Applications, Proceedings of the Third International Conference, ICICA 2012, Chengde, China, 14–16 September 2012; Proceedings, Part II 3; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2012; pp. 179–186. [Google Scholar]
- Mohammed, S.B.; Khalid, A.; Osman, S.E.F.; Helali, R.G.M. Usage of principal component analysis (PCA) in AI applications. Int. J. Eng. Res. Technol. 2016, 5, 372–375. [Google Scholar]
- Shlens, J. A tutorial on principal component analysis. arXiv 2014, arXiv:1404.1100. [Google Scholar]
- Thomas, M.; De Brabanter, K.; De Moor, B. New bandwidth selection criterion for Kernel PCA: Approach to dimensionality reduction and classification problems. BMC Bioinform. 2014, 15, 137. [Google Scholar] [CrossRef]
- Wang, Q. Kernel principal component analysis and its applications in face recognition and active shape models. arXiv 2012, arXiv:1207.3538. [Google Scholar]
- Hyvärinen, A.; Oja, E. Independent component analysis: Algorithms and applications. Neural Netw. 2000, 13, 411–430. [Google Scholar] [CrossRef]
- Tharwat, A. Independent component analysis: An introduction. Appl. Comput. Inform. 2020, 17, 222–249. [Google Scholar] [CrossRef]
- Sadek, R.A. SVD based image processing applications: State of the art, contributions and research challenges. arXiv 2012, arXiv:1211.7102. [Google Scholar]
- Wang, Y.; Zhu, L. Research and implementation of SVD in machine learning. In Proceedings of the 2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS), Wuhan, China, 24–26 May 2017; IEEE: New York, NY, USA, 2017; pp. 471–475. [Google Scholar]
- Qian, J.; Nguyen, N.P.; Oya, Y.; Kikugawa, G.; Okabe, T.; Huang, Y.; Ohuchi, F.S. Introducing self-organized maps (SOM) as a visualization tool for materials research and education. Results Mater. 2019, 4, 100020. [Google Scholar] [CrossRef]
- Natita, W.; Wiboonsak, W.; Dusadee, S. Appropriate learning rate and neighborhood function of self-organizing map (SOM) for specific humidity pattern classification over Southern Thailand. Int. J. Model. Optim. 2016, 6, 61. [Google Scholar] [CrossRef]
- Javeri, I.Y.; Toutiaee, M.; Arpinar, I.B.; Miller, J.A.; Miller, T.W. Improving Neural Networks for Time-Series Forecasting using Data Augmentation and AutoML. In Proceedings of the 2021 IEEE Seventh International Conference on Big Data Computing Service and Applications (BigDataService), Online, 23–26 August 2021; IEEE: New York, NY, USA, 2021; pp. 1–8. [Google Scholar]
- Blough, D.K.; Madden, C.W.; Hornbrook, M.C. Modeling risk using generalized linear models. J. Health Econ. 1999, 18, 153–171. [Google Scholar] [CrossRef]
- Novaković, J. Toward optimal feature selection using ranking methods and classification algorithms. Yugosl. J. Oper. Res. 2016, 21, 119–135. [Google Scholar] [CrossRef]
- Wooff, D. Logistic regression: A self-learning text. J. R. Stat. Society. Ser. A 2004, 167, 192–194. [Google Scholar] [CrossRef]
- Nick, T.G.; Campbell, K.M. Logistic regression. In Topics in Biostatistics; Springer: Berlin/Heidelberg, Germany, 2007; pp. 273–301. [Google Scholar]
- Kleinbaum, D.G. Logistic Regression; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Mathews, S.M.; Kambhamettu, C.; Barner, K.E. A novel application of deep learning for single-lead ECG classification. Comput. Biol. Med. 2018, 99, 53–62. [Google Scholar] [CrossRef]
- Ravì, D.; Wong, C.; Deligianni, F.; Berthelot, M.; Andreu-Perez, J.; Lo, B.; Yang, G.-Z. Deep learning for health informatics. IEEE J. Biomed. Health Inform. 2016, 21, 4–21. [Google Scholar] [CrossRef]
- Yang, T.; Yu, L.; Jin, Q.; Wu, L.; He, B. Localization of origins of premature ventricular contraction by means of convolutional neural network from 12-lead ECG. IEEE Trans. Biomed. Eng. 2017, 65, 1662–1671. [Google Scholar] [CrossRef]
- Kamkar, I.; Gupta, S.K.; Phung, D.; Venkatesh, S. Stable feature selection for clinical prediction: Exploiting ICD tree structure using Tree-Lasso. J. Biomed. Inform. 2015, 53, 277–290. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, H.; Lari, Z.; Liu, Z.; El-Sheimy, N. Design and implementation of foot-mounted inertial sensor based wearable electronic device for game play application. Sensors 2016, 16, 1752. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Luo, Y.; Ye, W.; Zhao, X.; Pan, X.; Cao, Y. Classification of data from electronic nose using gradient tree boosting algorithm. Sensors 2017, 17, 2376. [Google Scholar] [CrossRef]
- Liu, Y.; Gu, Y.; Nguyen, J.C.; Li, H.; Zhang, J.; Gao, Y.; Huang, Y. Symptom severity classification with gradient tree boosting. J. Biomed. Inform. 2017, 75, S105–S111. [Google Scholar] [CrossRef]
- Fan, R.-E.; Chang, K.-W.; Hsieh, C.-J.; Wang, X.-R.; Lin, C.-J. LIBLINEAR: A library for large linear classification. J. Mach. Learn. Res. 2008, 9, 1871–1874. [Google Scholar]
- Gadekallu, T.R.; Khare, N.; Bhattacharya, S.; Singh, S.; Maddikunta PK, R.; Srivastava, G. Deep neural networks to predict diabetic retinopathy. J. Ambient. Intell. Humaniz. Comput. 2020, 14, 5407–5420. [Google Scholar] [CrossRef]
- Alkhodari, M.; Rashid, M.; Mukit, M.A.; Ahmed, K.I.; Mostafa, R.; Parveen, S.; Khandoker, A.H.J.I.A. Screening cardiovascular autonomic neuropathy in diabetic patients with microvascular complications using machine learning: A 24-hour heart rate variability study. IEEE Access 2021, 9, 119171–119187. [Google Scholar] [CrossRef]
- Aggarwal, Y.; Das, J.; Mazumder, P.M.; Kumar, R.; Sinha, R.K.J.B.; Engineering, B. Heart rate variability features from nonlinear cardiac dynamics in identification of diabetes using artificial neural network and support vector machine. Biocybern. Biomed. Eng. 2020, 40, 1002–1009. [Google Scholar] [CrossRef]
- Yildirim, O.; Talo, M.; Ay, B.; Baloglu, U.B.; Aydin, G.; Acharya, U.R. Automated detection of diabetic subject using pre-trained 2D-CNN models with frequency spectrum images extracted from heart rate signals. Comput. Biol. Med. 2019, 113, 103387. [Google Scholar] [CrossRef]
- Rathod, S.; Phadke, L.; Chaskar, U.; Patil, C. Heart Rate Variability measured during rest and after orthostatic challenge to detect autonomic dysfunction in Type 2 Diabetes Mellitus using the Classification and Regression Tree model. Technol. Health Care 2022, 30, 361–378. [Google Scholar] [CrossRef]
- Swapna, G.; Kp, S.; Vinayakumar, R. Automated detection of diabetes using CNN and CNN-LSTM network and heart rate signals. Procedia Comput. Sci. 2018, 132, 1253–1262. [Google Scholar]
- Materko, W.; Fernandes, D.F.; da Pureza, D.Y.; Alberto, A.A.D.; Pena, F.P.S. Deceleration capacity index for type 2 diabetes mellitus classification using support vector machines in elderly women. Int. J. Dev. Res. 2021, 11, 45963–45966. [Google Scholar]
- Novikov, R.; Zhukova, L.; Novopashin, M. Possibility to detect glycemia with heart rate variability in patients with type 2 diabetes mellitus in a non-invasive glycemic monitoring system. In Proceedings of the 2019 Actual Problems of Systems and Software Engineering (APSSE), Moscow, Russian, 12–14 November 2019; IEEE: New York, NY, USA, 2019; pp. 177–181. [Google Scholar]
- Venkataramanaiah, B.; Kamala, J. ECG signal processing and KNN classifier-based abnormality detection by VH-doctor for remote cardiac healthcare monitoring. Soft Comput. 2020, 24, 17457–17466. [Google Scholar] [CrossRef]
- Shaqiri, E.; Gusev, M. Deep learning method to estimate glucose level from heart rate variability. In Proceedings of the 2020 28th Telecommunications Forum (TELFOR), Belgrade, Serbia, 24–25 November 2020; IEEE: New York, NY, USA, 2020; pp. 1–4. [Google Scholar]
- Olde Bekkink, M.; Koeneman, M.; de Galan, B.E.; Bredie, S.J. Early detection of hypoglycemia in type 1 diabetes using heart rate variability measured by a wearable device. Diabetes Care 2019, 42, 689–692. [Google Scholar] [CrossRef]
- Maritsch, M.; Föll, S.; Lehmann, V.; Bérubé, C.; Kraus, M.; Feuerriegel, S.; Kowatsch, T.; Züger, T.; Stettler, C.; Fleisch, E.; et al. Towards wearable-based hypoglycemia detection and warning in diabetes. In Proceedings of the Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April 2020; pp. 1–8. [Google Scholar]
- Tuttolomondo, A.; Del Cuore, A.; La Malfa, A.; Casuccio, A.; Daidone, M.; Maida, C.D.; Di Raimondo, D.; Di Chiara, T.; Puleo, M.G.; Norrito, R.J.C.D.; et al. Assessment of heart rate variability (HRV) in subjects with type 2 diabetes mellitus with and without diabetic foot: Correlations with endothelial dysfunction indices and markers of adipo-inflammatory dysfunction. Cardiovasc. Diabetol. 2021, 20, 142. [Google Scholar] [CrossRef]
- Cha, S.A.; Park, Y.M.; Yun, J.S.; Lee, S.H.; Ahn, Y.B.; Kim, S.R.; Ko, S.H. Time-and frequency-domain measures of heart rate variability predict cardiovascular outcome in patients with type 2 diabetes. Diabetes Res. Clin. Pract. 2018, 143, 159–169. [Google Scholar] [CrossRef]
- Sulistyo, B.; Surantha, N.; Isa, S.M. Sleep apnea identification using HRV features of ECG signals. Int. J. Electr. Comput. Eng. 2018, 8, 3940–3948. [Google Scholar] [CrossRef]
- Le Bon, O. Relationships between REM and NREM in the NREM-REM sleep cycle: A review on competing concepts. Sleep Med. 2020, 70, 6–16. [Google Scholar] [CrossRef]
- Koo, D.L.; Nam, H.; Thomas, R.J.; Yun, C.H. Sleep disturbances as a risk factor for stroke. J. Stroke 2018, 20, 12. [Google Scholar] [CrossRef]
- Kondo, J.; Morelhão, P.K.; Tufik, S.; Andersen, M.L. The importance of assessing sleep disorders in multiple sclerosis. Sleep Breath. 2023, 27, 691–692. [Google Scholar] [CrossRef]
- Iannella, G.; Vicini, C.; Colizza, A.; Meccariello, G.; Polimeni, A.; Greco, A.; de Vincentiis, M.; de Vito, A.; Cammaroto, G.; Gobbi, R.; et al. Aging effect on sleepiness and apneas severity in patients with obstructive sleep apnea syndrome: A meta-analysis study. Eur. Arch. Oto-Rhino-Laryngol. 2019, 276, 3549–3556. [Google Scholar] [CrossRef]
- Xia, F.; Sawan, M.J.S. Clinical and research solutions to manage obstructive sleep apnea: A review. Sensors 2021, 21, 1784. [Google Scholar] [CrossRef] [PubMed]
- Jehan, S.; Myers, A.K.; Zizi, F.; Pandi-Perumal, S.R.; Jean-Louis, G.; McFarlane, S.I. Obesity, obstructive sleep apnea and type 2 diabetes mellitus: Epidemiology and pathophysiologic insights. Sleep Med. Disord. Int. J. 2018, 2, 52. [Google Scholar]
- Tveit, R.L.; Lehmann, S.; Bjorvatn, B. Prevalence of several somatic diseases depends on the presence and severity of obstructive sleep apnea. PLoS ONE 2018, 13, e0192671. [Google Scholar] [CrossRef] [PubMed]
- Weaver, T.E. Novel aspects of CPAP treatment and interventions to improve CPAP adherence. J. Clin. Med. 2019, 8, 2220. [Google Scholar] [CrossRef]
- Qin, H.; Steenbergen, N.; Glos, M.; Wessel, N.; Kraemer, J.F.; Vaquerizo-Villar, F.; Penzel, T. The different facets of heart rate variability in obstructive sleep apnea. Front. Psychiatry 2021, 12, 642333. [Google Scholar] [CrossRef]
- Ucak, S.; Dissanayake, H.U.; Sutherland, K.; de Chazal, P.; Cistulli, P.A. Heart rate variability and obstructive sleep apnea: Current perspectives and novel technologies. J. Sleep Res. 2021, 30, e13274. [Google Scholar] [CrossRef]
- Qin, H.; Keenan, B.T.; Mazzotti, D.R.; Vaquerizo-Villar, F.; Kraemer, J.F.; Wessel, N.; Tufik, S.; Bittencourt, L.; Cistulli, P.A.; de Chazal, P.; et al. Heart rate variability during wakefulness as a marker of obstructive sleep apnea severity. Sleep 2021, 44, zsab018. [Google Scholar] [CrossRef]
- Bozkurt, M.R.; Uçar, M.K.; Bozkurt, F.; Bilgin, C. In obstructive sleep apnea patients, automatic determination of respiratory arrests by photoplethysmography signal and heart rate variability. Australas. Phys. Eng. Sci. Med. 2019, 42, 959–979. [Google Scholar] [CrossRef]
- Fedorin, I.; Slyusarenko, K.; Lee, W.; Sakhnenko, N. Sleep stages classification in a healthy people based on optical plethysmography and accelerometer signals via wearable devices. In 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON), Lviv, Ukraine, 2–6 July 2019; IEEE: New York, NY, USA, 2019; pp. 1201–1204. [Google Scholar]
- Nakayama, C.; Fujiwara, K.; Sumi, Y.; Matsuo, M.; Kano, M.; Kadotani, H. Obstructive sleep apnea screening by heart rate variability-based apnea/normal respiration discriminant model. Physiol. Meas. 2019, 40, 125001. [Google Scholar] [CrossRef]
- Bozkurt, M.R.; Uçar, M.K.; Bozkurt, F.; Bilgin, C. Development of hybrid artificial intelligence based automatic sleep/awake detection. IET Sci. Meas. Technol. 2020, 14, 353–366. [Google Scholar] [CrossRef]
- Hayano, J.; Yamamoto, H.; Nonaka, I.; Komazawa, M.; Itao, K.; Ueda, N.; Tanaka, H.; Yuda, E. Quantitative detection of sleep apnea with wearable watch device. PLoS ONE 2020, 15, e0237279. [Google Scholar] [CrossRef] [PubMed]
- Huikuri, H.V.; Stein, P.K. Clinical application of heart rate variability after acute myocardial infarction. Front. Physiol. 2012, 3, 41. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.R.; Kumar, A.; Pachori, R.B.; Acharya, U.R. Accurate automated detection of congestive heart failure using eigenvalue decomposition based features extracted from HRV signals. Biocybern. Biomed. Eng. 2019, 39, 312–327. [Google Scholar] [CrossRef]
- Shahnawaz, M.B.; Dawood, H. An effective deep learning model for automated detection of myocardial infarction based on ultrashort-term heart rate variability analysis. Math. Probl. Eng. 2021, 2021, 6455053. [Google Scholar] [CrossRef]
- Rege, S.; Barkey, T.; Lowenstern, M. Heart arrhythmia detection. In Proceedings of the 2015 IEEE Virtual Conference on Applications of Commercial Sensors (VCACS), Raleigh, NC, USA, 5 March–15 October 2015; IEEE: New York, NY, USA, 2015; pp. 1–7. [Google Scholar]
- Mahgoub, A.; Tanveer, A.; Qidwai, U. Arrhythmia classification using DWT-coefficient energy ratios. In Proceedings of the 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), Sarawak, Malaysia, 3–6 December 2018; IEEE: New York, NY, USA, 2018; pp. 259–264. [Google Scholar]
- Serdyuk, S.; Davtyan, K.; Burd, S.; Drapkina, O.; Boytsov, S.; Gusev, E.; Topchyan, A. Cardiac arrhythmias and sudden unexpected death in epilepsy: Results of long-term monitoring. Heart Rhythm. 2021, 18, 221–228. [Google Scholar] [CrossRef]
- Sakamoto, J.T.; Liu, N.; Koh, Z.X.; Guo, D.; Heldeweg, M.L.A.; Ng, J.C.J.; Ong, M.E.H. Heart rate variability analysis in patients who have bradycardia presenting to the emergency department with chest pain. J. Emerg. Med. 2018, 54, 273–280. [Google Scholar] [CrossRef]
- Yoshida, K.; Chugh, A.; Ulfarsson, M.; Good, E.; Kuhne, M.; Crawford, T.; Sarrazin, J.F.; Chalfoun, N.; Wells, D.; Boonyapisit, W.; et al. Relationship between the spectral characteristics of atrial fibrillation and atrial tachycardias that occur after catheter ablation of atrial fibrillation. Heart Rhythm 2009, 6, 11–17. [Google Scholar] [CrossRef]
- Billman, G.E. The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front. Physiol. 2013, 4, 26. [Google Scholar] [CrossRef]
- Chua, K.C.; Chandran, V.; Acharya, U.R.; Lim, C.M. Computer-based analysis of cardiac state using entropies, recurrence plots and Poincare geometry. J. Med. Eng. Technol. 2008, 32, 263–272. [Google Scholar] [CrossRef]
- Sosnowski, M.; Clark, E.; Latif, S.; Macfarlane, P.W.; Tendera, M. Heart Rate Variability Fraction-A New Reportable Measure of 24-Hour R-R Interval Variation. Ann. Noninvasive Electrocardiol. 2005, 10, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Louch, W.E. A TRP to the emergency room: Understanding arrhythmia in the ageing heart. Cardiovasc. Res. 2022, 118, 932–933. [Google Scholar] [CrossRef]
- Lieve, K.V.; Verhagen, J.M.; Wei, J.; Bos, J.M.; van Der Werf, C.; i Noguer, F.R.; Mancini, G.M.; Guo, W.; Wang, R.; van den Heuvel, F.; et al. Linking the heart and the brain: Neurodevelopmental disorders in patients with catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm. 2019, 16, 220–228. [Google Scholar] [CrossRef]
- Christov, I.; Krasteva, V.; Simova, I.; Neycheva, T.; Schmid, R. Ranking of the most reliable beat morphology and heart rate variability features for the detection of atrial fibrillation in short single-lead ECG. Physiol. Meas. 2018, 39, 094005. [Google Scholar] [CrossRef] [PubMed]
- Udawat, A.S.; Singh, P. An automated detection of atrial fibrillation from single-lead ECG using HRV features and machine learning. J. Electrocardiol. 2022, 75, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Sinha, N. Prediction of atrial fibrillation based on nonlinear modeling of heart rate variability signal and SVM classifier. Res. Biomed. Eng. 2021, 37, 725–736. [Google Scholar] [CrossRef]
- Itzhak, S.B.; Ricon, S.S.; Biton, S.; Behar, J.A.; Sobel, J.A. Effect of temporal resolution on the detection of cardiac arrhythmias using HRV features and machine learning. Physiol. Meas. 2022, 43, 045002. [Google Scholar] [CrossRef]
- Vani, R.K.; Sowmya, B.; Kumar, S.R.; Babu GN, K.; Reena, R. An adaptive fuzzy neuro inference system for classification of ECG CardiacArrthymias. In Proceedings of the AIP Conference Proceedings, Krishnagiri, India, 27–28 February 2021; AIP Publishing: Melville, NY, USA, 2022; Volume 2393. [Google Scholar]
- Singh, R.S.; Saini, B.S.; Sunkaria, R.K. Arrhythmia detection based on time–frequency features of heart rate variability and back-propagation neural network. Iran J. Comput. Sci. 2019, 2, 245–257. [Google Scholar] [CrossRef]
- Hadj Ahmed, I.; Djebbari, A.; Kachenoura, A.; Senhadji, L. Telemedical transport layer security based platform for cardiac arrhythmia classification using quadratic time–frequency analysis of HRV signal. J. Supercomput. 2022, 78, 13680–13709. [Google Scholar] [CrossRef]
- Khan, S.A.; Khan, S.A.; Hafeez, A.; Zaka, A. Randomized Controlled Trial Study on Hypertension Reduction Based on Disease Control Priorities to Manage High Blood Pressure. Res. Sq. 2021. preprint. [Google Scholar] [CrossRef]
- Messerli, F.H.; Williams, B.; Ritz, E. Essential hypertension. Lancet 2007, 370, 591–603. [Google Scholar] [CrossRef]
- Kaplan, N.M. Kaplan’s Clinical Hypertension; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2010. [Google Scholar]
- Schroeder, E.B.; Liao, D.; Chambless, L.E.; Prineas, R.J.; Evans, G.W.; Heiss, G. Hypertension, blood pressure, and heart rate variability: The Atherosclerosis Risk in Communities (ARIC) study. Hypertension 2003, 42, 1106–1111. [Google Scholar] [CrossRef]
- Lan, K.C.; Raknim, P.; Kao, W.F.; Huang, J.H. Toward hypertension prediction based on PPG-derived HRV signals: A feasibility study. J. Med. Syst. 2018, 42, 103. [Google Scholar] [CrossRef]
- Deka, D.; Deka, B. Stratification of high-risk hypertensive patients using hybrid heart rate variability features and boosting algorithms. IEEE Access 2021, 9, 62665–62675. [Google Scholar] [CrossRef]
- Khan, A.A.; Junejo, R.T.; Thomas, G.N.; Fisher, J.P.; Lip, G.Y. Heart rate variability in patients with atrial fibrillation and hypertension. Eur. J. Clin. Investig. 2021, 51, e13361. [Google Scholar] [CrossRef] [PubMed]
- Ni, H.; Cho, S.; Mankoff, J.; Yang, J.; Dey, A.K. Automated recognition of hypertension through overnight continuous HRV monitoring. J. Ambient. Intell. Humaniz. Comput. 2018, 9, 2011–2023. [Google Scholar] [CrossRef]
- Martinez, P.F.; Okoshi, M.P. Heart rate variability in coexisting diabetes and hypertension. Arq. Bras. Cardiol. 2018, 111, 73–74. [Google Scholar] [CrossRef] [PubMed]
- Poddar, M.; Birajdar, A.C.; Virmani, J. Automated classification of hypertension and coronary artery disease patients by PNN, KNN, and SVM classifiers using HRV analysis. In Machine Learning in Bio-Signal Analysis and Diagnostic Imaging; Academic Press: Cambridge, MA, USA, 2019; pp. 99–125. [Google Scholar]
- Chou, Y.H.; Huang, W.L.; Chang, C.H.; Yang, C.C.; Kuo, T.B.; Lin, S.L.; Chiang, W.C.; Chu, T.S. Heart rate variability as a predictor of rapid renal function deterioration in chronic kidney disease patients. Nephrology 2019, 24, 806–813. [Google Scholar] [CrossRef]
- Forsström, J.; Forsström, J.; Heinonen, E.; Välimäki, I.; Antila, K. Effects of haemodialysis on heart rate variability in chronic renal failure. Scand. J. Clin. Lab. Investig. 1986, 46, 665–670. [Google Scholar] [CrossRef]
- Tsai, A.C.; Chiu, H.W. Relationship between heart rate variability and electrolyte concentration in chronic renal failure patients under hemodialysis. Int. J. Bioelectromagn. 2002, 4, 307–308. [Google Scholar]
- Chen, H.; Ren, W.; Gao, Z.; Zeng, M.; Tang, S.; Xu, F.; Huang, Y.; Zhang, L.; Cui, Y.; Yang, G.; et al. Effects of parathyroidectomy on plasma PTH fragments and heart rate variability in stage 5 chronic kidney disease patients. Ren. Fail. 2021, 43, 890–899. [Google Scholar] [CrossRef]
- Min, J.W.; Chang, J.-Y.; Lee, H.; Park, Y.; Ko, E.J.; Cho, J.H.; Yang, C.W.; Chung, B.H. Clinical significance of heart rate variability for the monitoring of cardiac autonomic neuropathy in end-stage renal disease patients. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 2089–2098. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Luo, J.; Liu, W.; Huang, X.; Xu, J.; Zhou, Y.; Jiang, L.; Yang, J. Elevated circulating growth differentiation factor 15 is related to decreased heart rate variability in chronic kidney disease patients. Ren. Fail. 2021, 43, 340–346. [Google Scholar] [CrossRef]
- Berntson, G.G.; Cacioppo, J.T. Heart rate variability: Stress and psychiatric conditions. Dyn. Electrocardiogr. 2004, 41, 57–64. [Google Scholar]
- Ottaviani, C.; Shahabi, L.; Tarvainen, M.; Cook, I.; Abrams, M.; Shapiro, D. Cognitive, behavioral, and autonomic correlates of mind wandering and perseverative cognition in major depression. Front. Neurosci. 2015, 8, 433. [Google Scholar] [CrossRef]
- Alvares, G.A.; Quintana, D.S.; Hickie, I.B.; Guastella, A.J. Autonomic nervous system dysfunction in psychiatric disorders and the impact of psychotropic medications: A systematic review and meta-analysis. J. Psychiatry Neurosci. 2016, 41, 89–104. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.C.; Hong, C.J.; Tsai, S.J. Heart rate variability in psychiatric disorders. Taiwan. J. Psychiatry 2010, 24, 99–109. [Google Scholar]
- Carney, R.M.; Blumenthal, J.A.; Stein, P.K.; Watkins, L.; Catellier, D.; Berkman, L.F.; Czajkowski, S.M.; O’Connor, C.; Stone, P.H.; Freedland, K.E. Depression, heart rate variability, and acute myocardial infarction. Circulation 2001, 104, 2024–2028. [Google Scholar] [CrossRef]
- Miu, A.C.; Heilman, R.M.; Miclea, M. Reduced heart rate variability and vagal tone in anxiety: Trait versus state, and the effects of autogenic training. Auton. Neurosci. 2009, 145, 99–103. [Google Scholar] [CrossRef]
- Cohen, H.; Loewenthal, U.; Matar, M.; Kotler, M. Association of autonomic dysfunction and clozapine: Heart rate variability and risk for sudden death in patients with schizophrenia on long-term psychotropic medication. Br. J. Psychiatry 2001, 179, 167–171. [Google Scholar] [CrossRef]
- Kobayashi, M.; Sun, G.; Shinba, T.; Matsui, T.; Kirimoto, T. Development of a mental disorder screening system using support vector machine for classification of heart rate variability measured from single-lead electrocardiography. In Proceedings of the 2019 IEEE Sensors Applications Symposium (SAS), Sophia Antipolis, France, 11–13 March 2019; IEEE: New York, NY, USA, 2019; pp. 1–6. [Google Scholar]
- Na, K.S.; Cho, S.E.; Cho, S.J. Machine learning-based discrimination of panic disorder from other anxiety disorders. J. Affect. Disord. 2021, 278, 1–4. [Google Scholar] [CrossRef]
- Schneider, M.; Schwerdtfeger, A. Autonomic dysfunction in posttraumatic stress disorder indexed by heart rate variability: A meta-analysis. Psychol. Med. 2020, 50, 1937–1948. [Google Scholar] [CrossRef]
- Kontaxis, S.; Orini, M.; Gil, E.; Posadas-de Miguel, M.; Bernal, M.L.; Aguiló, J.; De La Camara, C.; Laguna, P.; Bailón, R. Heart rate variability analysis guided by respiration in major depressive disorder. In Proceedings of the 2018 Computing in Cardiology Conference (CinC), Maastricht, Netherlands, 23–26 September 2018; IEEE: New York, NY, USA, 2018; Volume 45, pp. 1–4. [Google Scholar]
- Byun, S.; Kim, A.Y.; Jang, E.H.; Kim, S.; Choi, K.W.; Yu, H.Y.; Jeon, H.J. Entropy analysis of heart rate variability and its application to recognize major depressive disorder: A pilot study. Technol. Health Care 2019, 27, 407–424. [Google Scholar] [CrossRef] [PubMed]
- Hao, T.; Zheng, X.; Wang, H.; Xu, K.; Chen, S. Linear and nonlinear analyses of heart rate variability signals under mental load. Biomed. Signal Process. Control 2022, 77, 103758. [Google Scholar] [CrossRef]
- Giannakakis, G.; Marias, K.; Tsiknakis, M. A stress recognition system using HRV parameters and machine learning techniques. In Proceedings of the 2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW), Cambridge, UK, 3–6 September 2019; IEEE: New York, NY, USA, 2019; pp. 269–272. [Google Scholar]
- Kasai, M.; Lear, C.A.; Davidson, J.O.; Beacom, M.J.; Drury, P.P.; Maeda, Y.; Miyagi, E.; Ikeda, T.; Bennet, L.; Gunn, A.J. Early sinusoidal heart rate patterns and heart rate variability to assess hypoxia–ischaemia in near-term fetal sheep. J. Physiol. 2019, 597, 5535–5548. [Google Scholar] [CrossRef] [PubMed]
- Joshi, R.; Kommers, D.; Oosterwijk, L.; Feijs, L.; Van Pul, C.; Andriessen, P. Predicting neonatal sepsis using features of heart rate variability, respiratory characteristics, and ECG-derived estimates of infant motion. IEEE J. Biomed. Health Inform. 2019, 24, 681–692. [Google Scholar] [CrossRef] [PubMed]
- Kranzler, H.R. Is it time to rethink low-risk drinking guidelines? Alcohol. Clin. Exp. Res. 2022. [Google Scholar] [CrossRef]
- Shin, J.; Paik, H.Y.; Joung, H.; Shin, S. Smoking and alcohol consumption influence the risk of cardiovascular diseases in Korean adults with elevated blood pressure. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 2187–2194. [Google Scholar] [CrossRef]
- Kwapong, F.L.; Eghan, C.; Norman, B.; Enimil, A. Determinants of alcohol use among the youth in the Bosomtwe District, Ashanti Region-Ghana. World J. Adv. Res. Rev. 2022, 14, 243–257. [Google Scholar] [CrossRef]
- Tran DM, T.; Silvestri-Elmore, A.; Sojobi, A. Lifestyle choices and risk of developing cardiovascular disease in College students. Int. J. Exerc. Sci. 2022, 15, 808. [Google Scholar]
- Pop, G.N.; Christodorescu, R.; Velimirovici, D.E.; Sosdean, R.; Corbu, M.; Bodea, O.; Valcovici, M.; Dragan, S. Assessment of the impact of alcohol consumption patterns on heart rate variability by machine learning in healthy young adults. Medicina 2021, 57, 956. [Google Scholar] [CrossRef]
- Brunner, S.; Winter, R.; Werzer, C.; von Stülpnagel, L.; Clasen, I.; Hameder, A.; Stöver, A.; Graw, M.; Bauer, A.; Sinner, M.F. Impact of acute ethanol intake on cardiac autonomic regulation. Sci. Rep. 2021, 11, 13255. [Google Scholar] [CrossRef]
- Shen, H.N.; Lin, L.Y.; Chen, K.Y.; Kuo, P.H.; Yu, C.J.; Wu, H.D.; Yang, P.C. Changes of heart rate variability during ventilator weaning. Chest 2003, 123, 1222–1228. [Google Scholar] [CrossRef]
- Frazier, S.K.; Moser, D.K.; Schlanger, R.; Widener, J.; Pender, L.; Stone, K.S. Autonomic tone in medical intensive care patients receiving mechanical ventilation and during a CPAP weaning trial. Biol. Res. Nurs. 2008, 9, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Krasteva, V.; Matveev, M.; Jekova, I.; Georgiev, G. Heart rate variability analysis during weaning from mechanical ventilation: Models for prediction of the weaning trial outcome. In Proceedings of the 2018 Computing in Cardiology Conference (CinC), Maastricht, The Netherlands, 23–26 September 2018; IEEE: New York, NY, USA, 2018; Volume 45, pp. 1–4. [Google Scholar]
- Papaioannou, V.E.; Pneumatikos, I.; Chouvarda, I.; Dragoumanis, C.; Magklaveras, N. Changes of Heart and Respiratory Rate Dynamics during Weaning from Mechanical Ventilation; No. RefW-23-26172; Aristotle University of Thessaloniki: Thessaloniki, Greece, 2011. [Google Scholar]
- Pham, T.; Lau, Z.J.; Chen, S.A.; Makowski, D. Heart rate variability in psychology: A review of HRV indices and an analysis tutorial. Sensors 2021, 21, 3998. [Google Scholar] [CrossRef] [PubMed]
Author, Year | Feature Extraction Methods Used | Feature Selection/ Reduction Methods Employed | Classifiers Used | Inference |
---|---|---|---|---|
Swapna et al. (2018) [100] | - | - | Deep learning (CNN and CNN LSTM) | Diabetic and normal HRV features could be distinguished with 93.6% and 95.1% accuracy using CNN and CNN-LSTM networks, respectively. |
Aggarwal et al. (2020) [97] | Poincare plot, recurrence plot, entropy, DFA, and correlation dimension | - | ANN and SVM | An ANN design (13:7:1) with a learning rate of 0.01 yielded a classification accuracy of 86.3%. At the same time, SVM had a slightly higher accuracy of 90.5% in distinguishing diabetic and control patients. Non-linear HRV attributes exhibit changes as a result of diabetes and can thus be employed in the construction of a prognostic system for detecting diabetes. |
Materko et al. (2021) [101] | Cardiac deceleration rate index (CDRI) | - | SVM | This study evaluated the seriousness of T2DM in women between 60 and 70 years of age. The SVM classifier was validated using 10-fold cross-validation. An accuracy of 97.5% was achieved. |
Novikov et al. (2019) [102] | Time and frequency domain methods | - | Decision tree | The study proposes two mathematical models to determine the blood glucose level of an individual. The first model considers the age of the individual and the HRV features, while the second model also considers the individual HRV values. The second model was found to be 10.1% more sensitive to critically high glycemic levels than the first. |
Venkataramanaiah et al. (2020) [103] | Adaptive neuro-fuzzy methods | - | KNN | Biomedical sensors, an ARM processor, and an FPGA were employed to identify, test, analyze, and report normal or abnormal situations. The KNN classifier used in this paper attained a maximum accuracy of 99%, which is greater than that achieved with other ML algorithms such as ANN, SVM, softmax, random forest, and PCA. |
Shaqiri et al. (2020) [104] | Time-domain methods (features: SDNN, RMSSD) | - | DL architecture with three hidden layers | The authors used DL to design a model to predict glucose levels with the help of HRV features. A dataset of 155 patients was used. The resulting architecture has three hidden layers. These layers are made up of 32 neurons, 256 neurons, and 64 neurons, respectively. The outlier removal methods, IQR and Z-Score, result in a higher F1 score value and accuracy, respectively. |
Bekkink et al. (2019) [105] | Time and frequency domain methods | T-test | - | This study aimed to develop a functional hypoglycemia alert device for T1DM patients. It was found that the LF/HF ratio increased, and RMSSD increased in the case of hypoglycemic events, although some instances showed opposing effects. |
Maritsch et al. (2020) [106] | Time and frequency domain methods | - | Gradient boosting decision tree | This study proposes a model that detects hypoglycemia based on data from smartwatch sensors. The authors used SHAP (Shapley additive explanations) values to mitigate false positive values. SHAP assigns an attribution value to all the instances and classes. The model considers the sensor data and the historical patterns and alerts the user if need be. |
Tuttolomondo et al. (2021) [107] | Time and frequency domain methods | Chi-squared statistics (CSS) and ANOVA | - | This study considers increased activation of the PNS in patients with diabetic feet. It also discusses the resultant upsurge in HF values and the decreased LF/HF ratio. |
Cha et al. (2018) [108] | Time and frequency domain methods | - | - | The lowest 10th percentile of the HRV features was proven to indicate adverse cardiovascular outcomes. However, the LF/HF ratio did not significantly predict cardiovascular diseases. |
Author, Year | Feature Extraction Methods Used | Feature Selection/Reduction Methods Employed | Classifiers Used | Inference |
---|---|---|---|---|
Bozkurt et al. (2019) [121] | Time and frequency domain methods | The F-score algorithm and PCA | KNN, probabilistic neural network (PNN), SVM, and multilayer feed-forward neural network (MLFFNN) | The study proposed a respiration scoring algorithm for OSA patients. The Photoplethysmography (PPG) signal and derived HRV features were used to achieve a classification accuracy up to 95%. |
Fedorin et al. (2019) [122] | Time and frequency domain methods | Cohen’s Kappa coefficient of agreement and Pearson correlation coefficient | Linear discriminant analysis (LDA) | A novel approach for the classification of four sleep stages (REM, NREM, combined light, and deep) was proposed. The HRV and motion statistics-based features were employed to achieve an accuracy of up to 85%. |
Nakayama et al. (2019) [123] | Time and frequency domain methods | - | Random forest | A simple OSA screening method was proposed using HRV features and a random forest-based A/N discriminant architecture. The suggested approach showed 76% sensitivity and 92% specificity. |
Bozkurt et al. (2020) [124] | Time and frequency domain methods | F-score feature selection algorithm | KNN, PNN, MLFNN, SVM | This study proposed AI models based on PPG and HRV features to diagnose OSA. The model achieved an accuracy of 91.09%. |
Hayano et al. (2020) [125] | Time and frequency domain methods | T-test | aggregated Cauchy association test (ACAT) | The study proposed a model using the ACAT algorithm on PPG and HRV data. The model could detect cyclic variation of heart rate (CVHR) with 85% accuracy. |
Author, Year | Feature Extraction Methods Used | Feature Selection/Reduction Methods Employed | Classifiers Used | Inference |
---|---|---|---|---|
Khan et al. (2020) [152] | Time-domain, frequency-domain, and non-linear methods | Mann–Whitney U test, Wilcoxon signed rank test | Multivariable regression analysis | The study revealed that HRV could be used as a marker of atrial fibrillation (AF). In contrast to paroxysmal AF, HRV was higher in persistent AF. It indicated a clear autonomic role in the pathophysiology of chronic AF. |
Ni et al. (2018) [153] | Time-domain and frequency-domain methods, entropy features | Pooling methods, namely average, maximum, minimum, and magnitude | L1-regularized logistic regression and linear SVM | The study proposed a method that can distinguish hypertensive patients from healthy controls with 93.33% accuracy when tested on 24 hypertensive patients and 24 healthy controls. |
Martinez et al. (2018) [154] | Non-linear methods | - | - | The study indicated that hypertensive and diabetic subjects exhibited reduced SD1 (calculated using Poincaré plot) and Shannon entropy than non-hypertensive diabetic patients. |
Poddar et al. (2019) [155] | Time-domain, frequency-domain, and non-linear methods | - | SVM, PNN, and KNN | The study proposed an SVM classifier that could achieve a classification accuracy of 96.67% for the healthy volunteers and hypertension and coronary artery disease classes. |
Author, Year | Feature Extraction Methods Used | Feature Selection/Reduction Methods Employed | Classifiers Used | Inference |
---|---|---|---|---|
Chen et al. (2021) [159] | Time-domain and frequency-domain methods | One-way ANOVA, or the Wilcoxon rank-sum test for continuous variables, and the chi-square test or exact probability test for the categorical variables | - | This study examined the link between plasma PTH fragments and HRV in CKD5 patients. It was found that neither (1–84) PTH nor (7–84) PTH affected HRV features. |
Min et al. (2021) [160] | Time-domain and frequency-domain methods | T-test or Mann–Whitney test, and chi-square or Fisher’s exact test | - | The values of the HRV features were reduced in end-stage renal disease (ESRD) patients in comparison with healthy volunteers. It also showed that hemoglobin and serum albumin correlated positively with HRV features. |
Wang et al. (2021) [161] | Time-domain and frequency-domain methods | Pearson coefficient correlation analysis and multiple linear regression analysis | - | The study discovered a correlation between elevated plasma growth differentiation factor 15 (GDF15) plasma levels and lower HRV. |
Author, Year | Feature Extraction Methods Used | Feature Selection/Reduction Methods Employed | Classifiers Used | Inference |
---|---|---|---|---|
Kobayashi et al. (2019) [169] | Frequency-domain methods | - | SVM | The study employed an HRV analysis and an SVM classifier for detecting psychiatric disorders. The projected scheme attained a categorization accuracy of 87.0% between depression patients and healthy persons. |
Na et al. (2021) [170] | Time-domain, frequency-domain, and non-linear methods | - | RF, gradient boosting machine (GBM), SVM, ANN, and regularized logistic regression (LR) | The study presented ML approaches using HRV features as input to detect the panic disorder. L1-regularized logistic regression showed the best accuracy of 78.4%. |
Schneider et al. (2020) [171] | Time-domain and frequency-domain methods | - | - | The study found that individuals with post-traumatic stress disorder (PTSD) exhibited pointedly advanced HR. Throughout stress, people with PTSD displayed increased HR and decreased HF values. |
Kontaxis et al. (2020) [172] | Joint T-F analysis method, i.e., SPWVD | Student t-test or Wilcoxon test | - | The research showed that sympathetic dominance decreased significantly (p < 0.05) in major depressive disorder (MDD) patients compared to control participants under stress, implying that ANS responsiveness to stress stimuli is weaker in MDD patients. |
Byun et al. (2019) [173] | Entropy computation methods | SVM-RFE algorithm | SVM, linear discriminant analysis (LDA), K-NN, and NB | The values of HRV entropy attributes were inferior in MDD patients. It also achieved 70% accuracy in classifying MDD and healthy groups with three optimal features. |
Hao et al. (2022) [174] | Time-domain, frequency-domain, and non-linear methods | Pearson’s correlation coefficient analysis and t-test | - | The study revealed that in a condition of mental strain, the subjective survey score amplified considerably (p < 0.01), the time perception fault value increased dramatically (p < 0.01), and the relative fault rate improved exponentially (p < 0.05), indicating that the individuals were experiencing a mental load. |
Giannakakis et al. (2019) [175] | Time-domain and frequency-domain methods | Minimum redundancy maximum relevance (mRMR) selection algorithm | KNN, GLM, NB, LDA, SVM, and RF classifiers. | The study projected a stress recognition system utilizing HRV features. The SVM classifier achieved the highest categorization accuracy of 84.4% in a 10-fold cross-validation approach. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nayak, S.K.; Pradhan, B.; Mohanty, B.; Sivaraman, J.; Ray, S.S.; Wawrzyniak, J.; Jarzębski, M.; Pal, K. A Review of Methods and Applications for a Heart Rate Variability Analysis. Algorithms 2023, 16, 433. https://doi.org/10.3390/a16090433
Nayak SK, Pradhan B, Mohanty B, Sivaraman J, Ray SS, Wawrzyniak J, Jarzębski M, Pal K. A Review of Methods and Applications for a Heart Rate Variability Analysis. Algorithms. 2023; 16(9):433. https://doi.org/10.3390/a16090433
Chicago/Turabian StyleNayak, Suraj Kumar, Bikash Pradhan, Biswaranjan Mohanty, Jayaraman Sivaraman, Sirsendu Sekhar Ray, Jolanta Wawrzyniak, Maciej Jarzębski, and Kunal Pal. 2023. "A Review of Methods and Applications for a Heart Rate Variability Analysis" Algorithms 16, no. 9: 433. https://doi.org/10.3390/a16090433
APA StyleNayak, S. K., Pradhan, B., Mohanty, B., Sivaraman, J., Ray, S. S., Wawrzyniak, J., Jarzębski, M., & Pal, K. (2023). A Review of Methods and Applications for a Heart Rate Variability Analysis. Algorithms, 16(9), 433. https://doi.org/10.3390/a16090433