Chatbots for Cultural Venues: A Topic-Based Approach
Abstract
:1. Introduction
1.1. Chatbots in Enterprises and Organizations
1.2. Chatbots for Museums
1.3. Chatbot Platforms
2. Materials and Methods
2.1. Information Structuring
- according to the exhibit type (e.g., statues, reliefs, funerary arts, etc.);
- according to the historic period (e.g., Archaic Greece, Classical Greece, and the Hellenistic period);
- according to the area of discovery.
2.2. Mapping of Structured Information to Google DialogFlow Elements
- by selecting from the list/menu;
- by entering the number corresponding to the exhibit’s sequence;
- by entering phrases that match the names of the exhibits or concepts related to them, which are recorded as training phrases for the corresponding intents;
- by using the ‘next’ and ‘previous’ buttons, where applicable, which are generated according to the order of exhibits specified in the reflective topic information modeling (c.f. Section 2.1).
startingPoint = createDefaultWelcomeIntent(); museumInfo = createMuseumInfoIntent(); startingPoint.addFollowUpIntent(museumInfo); FOR EACH navigationPath IN getAllNavigationPaths() DO itineraryEntryIntent = createEntryIntent(infoPresentationPath); exhibitsInItinerary = navigationPath.getNavigationPathElements(); // the ‘previous’ variable will be used to provide for next/previous navigation style previous = itineraryEntryIntent; FOR EACH exhibit IN exhibitsInItinerary DO content = exhibit.getInformation(); IF (content.length < PRESENTATION_LENGTH_THRESHOLD) THEN exhibitIntent = content.createIntent(); ELSE //Split the content to chunks contentChunks = content.splitToChunks(); // the entry point for the exhibit is the first information chunk exhibitIntent = contentChunks[0].createIntent(); previousChunk = exhibitIntent; // iterate over remaining chunks FOR EACH chunk IN contentChunks[1:] DO chunkIntent = chunk.createIntent(); // add ‘previous/next’ buttons IF (previousChunk <> contentChunks[0]) THEN previousChunk.addNavigation(chunkIntentIntent, 'Next'); chunkIntent.addNavigation(previousChunk, 'Previous'); chunkIntent.addNavigation(exhibitIntent, 'Return to exhibit'); END IF END FOR // FOR EACH chunk END IF // link to itinerary entry point exhibitIntent.addNavigation(itineraryEntryIntent, 'Return to reflective point'); itineraryEntryIntent.addFollowUpIntent(exhibitIntent); // add ‘previous/next’ buttons IF (previous <> itineraryEntryIntent) THEN previous.addNavigation(exhibitIntent, 'Next'); exhibitIntent.addNavigation(previous, 'Previous'); // If the previous exhibit is split into chunks, add navigation to chunks, // allowing the user to skip detail chunks, moving to the next exhibit IF (previous.IsChunked()) THEN FOR EACH chunk IN previous.getChunks() DO chunk.addNavigation(exhibitIntent, 'Next exhibit'); END FOR // FOR EACH chunk END IF END IF previous = exhibitIntent; END FOR // FOR EACH exhibit // Link the itinerary to the welcome intent startingPoint.addFollowUpIntent(itineraryEntryIntent); END FOR // FOR EACH infoPresentationPath // publish the chatbot publishChatbot(startingPoint);
2.3. Automating the Creation of Chatbots
- describing how the necessary data can be extracted from the repository hosting the information model presented in Section 2.1;
- detailing how the data can be mapped to appropriate representations that can be directly imported to the Google DialogFlow engine.
2.3.1. Data Extraction from the Information Repository
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX cc: <http://www.crosscult.eu/KB#> PREFIX crm: <http://erlangen-crm.org/current/> SELECT ?iri ?name ?description ?firstElement ?lastElement WHERE {{?iri rdf:type cc:ReflectiveTopic} . {?iri rdfs:label ?name . {?iri crm:P3_has_note ?description} . {?iri cc:isNarratedBy ?narrationAxis} . {?narrationAxis cc:isRealizedBy ?navigationPath} . {?navigationPath cc:hasFirst ?firstElement} . {?navigationPath cc:hasLast ?lastElement} }
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX cc: <http://www.crosscult.eu/KB#> PREFIX crm: <http://erlangen-crm.org/current/> SELECT ?narAxisIri ?conceptIri ?conceptName ?conceptDescription ?firstElement ?lastElement WHERE {{?narAxisIri rdf:type cc:NarrationAxis} . {?narAxisIri cc:narrates ?conceptIri} . {?conceptIri rdfs:label ?name . {?conceptIri crm:P3_has_note ?description} . {?narAxisIri cc:isRealizedBy ?navigationPath} . {?navigationPath cc:hasFirst ?firstElement} . {?navigationPath cc:hasLast ?lastElement} }
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX cc: <http://www.crosscult.eu/KB#> PREFIX crm: <http://erlangen-crm.org/current/> SELECT ?elementIRI ?elementName ?elementDescription ?exhibitIri ?exhibitName ?exhibitDescription ?previous ?next WHERE {{<ID> cc:isNarratedBy ?narrationAxis} . {?narrationAxis cc:isRealizedBy ?navigationPath} . {?navigationPath cc:hasElements ?elementIRI} . {?elementIRI rdfs:label ?elementName} . {?elementIRI crm:P3_has_note ? elementDescription} . {?elementIRI cc:hasPrevious ?previous} . {?elementIRI cc:hasNext ?next} . {?elementIRI cc:refersTo ? exhibitIri} . {?exhibitIri rdfs:label ?exhibitName} . {?exhibitIri crm:P3_has_note ?exhibitDescription} }
2.3.2. Automating Mapping of Data to DialogFlow Information Elements
- initialize an empty directory on the file system;
- for each intent created by the algorithm, create a JSON representation of the intent according to the schema of the DialogFlow engine and store the representation in a file, within the created directory;
- create a zip file containing all the files within the populated directory.
FUNCTION mapToDialogFlow(chatbot) directory = createEmptyDirectory(); FOR EACH intent IN chatbot.getAllIntents() DO // Create and populate a new dialogFlow intent construct dialogFlowIntent = new DialogFlowIntent(); dialogFlowIntent.id = intent.getId().toUUID(); dialogFlowIntent.name = intent.getTitle(); // create the content of the element content = new DialogFlowResponse(); content.messages[0].type = 0; // 0 means that this is the content content.messages[0].title = intent.getTitle(); content.messages[0].speech = intent.getContent(); // add the content to the DialogFlow intent construct dialogFlowIntent.responses.append(content); // map navigation links FOREACH link in intent.getLinks() DO // Create the DialogFlow structure of the link dialogFlowLink = new DialogFlowResponse(); dialogFlowLink.action = link.target(); dialogFlowLink.messages[0].type = "suggestion_chips"; dialogFlowLink.messages[0].suggestions[0].title = link.getNavigationText(); // add the link to the DialogFlow intent construct dialogFlowIntent.responses.append(dialogFlowLink); END FOR // FOREACH link // add parent link, if present IF (intent.getParentIntent() <> NULL) THEN dialogFlowIntent. parentId = intent.getParentIntent().getId().toUUID(); END IF // Create appropriate JSON file filename = directory.path + '/’ + dialogFlowIntent.id + '.json'; dialogFlowIntent.saveAsJSON(filename); END FOR // FOR EACH intent // create zip file createZipFile(chatbot.name + ".zip", directory.path); END FUNCTION // FUNCTION mapToDialogFlow
{ "id": "0e6a460b-3206-4d06-a8d2-9999172f82d4", "parentId": "778473fc-857b-4216-a00b-4e2d4d3e8853", "name": "Appearance Antiohis - more ", "contexts": [ "AntiohisApperance-followup" ], "responses": [ { "action": "AntiohisApperance.AntiohisApperance-more", "messages": [ { "type": "suggestion_chips", "suggestions": [ { "title": "More..." } ], }, { "type": "0", "title": "Appearance Antiohis - more", "speech": [ "The clothes you are wearing today, did you choose them simply because you liked them or you want to tell something to the world? Ancient societies also found appearance important and clothes often function as a code between the person and the world. Archaeologist use items’ appearance to understand what this person was and the society he or she belonged to." ] } ] } [ }
3. Results
3.1. Implementation of the Chatbot
- Education;
- Appearance;
- Daily life;
- Religion and rituals;
- Immortality/mortality;
- Social status;
- Names/animals/myths.
- Statues;
- Bass reliefs;
- Figurines;
- Funerary art;
- Man-made objects;
- Reliefs;
- Sculptures;
- Tombstones;
- Tondi (circular sculptures);
- Votive offerings.
- The material that had been prepared for the narratives of the museum in the context of developing a digital application were studied and the three most prominent reflective topics for implementation within the chatbot engine were chosen.
- The exhibit type dimension was also selected for implementation, as this was considered to be the most comprehensible for users.
- The methodology presented in Section 2.2 was followed to create the chatbot.
3.2. Evaluation
3.2.1. Evaluation of the Chatbot Creation Process
3.2.2. Evaluation of Chatbot Use
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maroević, I. The Museum Message: Between the Document and Information. In Museum, Media, Message; Routledge: London, UK, 1995; ISBN 978-0-203-45651-4. [Google Scholar]
- Banisharif, M.; Mazloumzadeh, A.; Sharbaf, M.; Zamani, B. Automatic Generation of Business Intelligence Chatbot for Organizations. In Proceedings of the 2022 27th International Computer Conference, Computer Society of Iran (CSICC), Tehran, Iran, 23–24 February 2022; IEEE: Piscataway, NJ, USA; pp. 1–5. [Google Scholar]
- Isinkaye, F.O.; AbiodunBabs, I.G.; Paul, M.T. Development of a Mobile-Based Hostel Location and Recommendation Chatbot System. Int. J. Inf. Technol. Comput. Sci. 2022, 14, 23–33. [Google Scholar] [CrossRef]
- Stoeckli, E.; Dremel, C.; Uebernickel, F.; Brenner, W. How Affordances of Chatbots Cross the Chasm between Social and Traditional Enterprise Systems. Electron. Mark. 2020, 30, 369–403. [Google Scholar] [CrossRef] [Green Version]
- Richter, A.; Riemer, K. Malleable End-User Software. Bus. Inf. Syst. Eng. 2013, 5, 195–197. [Google Scholar] [CrossRef]
- Seddon, P.; Calvert, C.; Yang, S. A Multi-Project Model of Key Factors Affecting Organizational Benefits from Enterprise Systems. MIS Q. 2010, 34, 305–328. [Google Scholar] [CrossRef] [Green Version]
- Gaia, G.; Boiano, S.; Borda, A. Engaging Museum Visitors with AI: The Case of Chatbots. In Museums and Digital Culture; Giannini, T., Bowen, J.P., Eds.; Springer Series on Cultural Computing; Springer International Publishing: Cham, Switzerland, 2019; pp. 309–329. ISBN 978-3-319-97456-9. [Google Scholar]
- Pequignot, C. Teaching a Titanosaur to Talk: Conversational UX Design for Field Museum. Available online: https://purplerockscissors.com/blog/teaching-a-titanosaur-to-talk (accessed on 11 May 2023).
- Field Museum If the World’s Biggest Dinosaur Could Talk, What Would He Say? Available online: https://www.fieldmuseum.org/exhibitions/maximo-titanosaur (accessed on 11 May 2023).
- Anne Frank House Anne Frank House. Available online: https://www.annefrank.org/en/ (accessed on 11 May 2023).
- Rosen, A.; Kölbl, M. Talk to Me! Chatbots in Museums: A Chronological Overview. Available online: https://zkm.de/en/talk-to-me-chatbots-in-museums (accessed on 11 May 2023).
- Varitimiadis, S.; Kotis, K.; Spiliotopoulos, D.; Vassilakis, C.; Margaris, D. “Talking” Triples to Museum Chatbots. In Culture and Computing; Rauterberg, M., Ed.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2020; Volume 12215, pp. 281–299. ISBN 978-3-030-50266-9. [Google Scholar]
- Varitimiadis, S.; Kotis, K.; Pittou, D.; Konstantakis, G. Graph-Based Conversational AI: Towards a Distributed and Collaborative Multi-Chatbot Approach for Museums. Appl. Sci. 2021, 11, 9160. [Google Scholar] [CrossRef]
- Noh, Y.-G.; Hong, J.-H. Designing Reenacted Chatbots to Enhance Museum Experience. Appl. Sci. 2021, 11, 7420. [Google Scholar] [CrossRef]
- Spiliotopoulos, D.; Kotis, K.; Vassilakis, C.; Margaris, D. Semantics-Driven Conversational Interfaces for Museum Chatbots. In Proceedings of the Culture and Computing; Rauterberg, M., Ed.; Springer International Publishing: Cham, Switzerland, 2020; Volume 12215, pp. 255–266. [Google Scholar]
- Toumanidis, L.; Karapetros, P.; Giannousis, C.; Kogias, D.G.; Feidakis, M.; Patrikakis, C.Z. Developing the Museum-Monumental Experience from Linear to Interactive Using Chatbots. In Strategic Innovative Marketing and Tourism; Kavoura, A., Kefallonitis, E., Giovanis, A., Eds.; Springer Proceedings in Business and Economics; Springer International Publishing: Cham, Switzerland, 2019; pp. 1159–1167. ISBN 978-3-030-12452-6. [Google Scholar]
- Zhou, C.; Sinha, B.; Liu, M. An AI Chatbot for the Museum Based on User Interaction over a Knowledge Base. In Proceedings of the 2nd International Conference on Artificial Intelligence and Advanced Manufacture, Manchester, UK, 15–17 October 2020; ACM: New York, NY, USA, 2020; pp. 54–58. [Google Scholar]
- Schaffer, S.; Ruß, A.; Gustke, O. User Experience of a Conversational User Interface in a Museum. In ArtsIT, Interactivity and Game Creation; Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering; Brooks, A.L., Ed.; Springer Nature Switzerland: Cham, Switzerland, 2023; Volume 479, pp. 215–223. ISBN 978-3-031-28992-7. [Google Scholar]
- Casillo, M.; Clarizia, F.; D’Aniello, G.; De Santo, M.; Lombardi, M.; Santaniello, D. CHAT-Bot: A Cultural Heritage Aware Teller-Bot for Supporting Touristic Experiences. Pattern Recognit. Lett. 2020, 131, 234–243. [Google Scholar] [CrossRef]
- Tsepapadakis, M.; Gavalas, D. Are You Talking to Me? An Audio Augmented Reality Conversational Guide for Cultural Heritage. Pervasive Mob. Comput. 2023, 92, 101797. [Google Scholar] [CrossRef]
- Barth, F.; Candello, H.; Cavalin, P.; Pinhanez, C. Intentions, Meanings, and Whys: Designing Content for Voice-Based Conversational Museum Guides. In Proceedings of the 2nd Conference on Conversational User Interfaces, Bilbao, Spain, 22–24 July 2020; ACM: New York, NY, USA, 2020; pp. 1–8. [Google Scholar]
- Wirawan, K.T.; Sukarsa, I.M.; Bayupati, I.P.A. Balinese Historian Chatbot Using Full-Text Search and Artificial Intelligence Markup Language Method. Int. J. Intell. Syst. Appl. 2019, 11, 21–34. [Google Scholar] [CrossRef]
- Kontiza, K.; Antoniou, A.; Daif, A.; Reboreda-Morillo, S.; Bassani, M.; González-Soutelo, S.; Lykourentzou, I.; Jones, C.E.; Padfield, J.; López-Nores, M. On How Technology-Powered Storytelling Can Contribute to Cultural Heritage Sustainability across Multiple Venues—Evidence from the CrossCult H2020 Project. Sustainability 2020, 12, 1666. [Google Scholar] [CrossRef] [Green Version]
- Vlachidis, A.; Bikakis, A.; Kyriaki-Manessi, D.; Triantafyllou, I.; Antoniou, A. The CrossCult Knowledge Base: A Co-Inhabitant of Cultural Heritage Ontology and Vocabulary Classification. In New Trends in Databases and Information Systems; Kirikova, M., Nørvåg, K., Papadopoulos, G.A., Gamper, J., Wrembel, R., Darmont, J., Rizzi, S., Eds.; Communications in Computer and Information Science; Springer International Publishing: Cham, Switzerland, 2017; Volume 767, pp. 353–362. ISBN 978-3-319-67161-1. [Google Scholar]
- Daif, A.; Dahroug, A.; López-Nores, M.; González-Soutelo, S.; Bassani, M.; Antoniou, A.; Gil-Solla, A.; Ramos-Cabrer, M.; Pazos-Arias, J. A Mobile App to Learn About Cultural and Historical Associations in a Closed Loop with Humanities Experts. Appl. Sci. 2018, 9, 9. [Google Scholar] [CrossRef] [Green Version]
- Kontiza, K.; Loboda, O.; Deladiennee, L.; Castagnos, S.; Naudet, Y. A Museum App to Trigger Users’ Reflection. In Proceedings of the 2nd Workshop on Mobile Access to Cultural Heritage Co-Located with 20th International Conference on Human-Computer Interaction with Mobile Devices and Services, mobileCH@Mobile HCI 2018, Barcelona, Spain, 3 September 2018; Castagnos, S., Kuflik, T., Lykourentzou, I., Wallace, M., Eds.; CEUR-WS.org. Volume 2176. [Google Scholar]
- Daif, A.; Dahroug, A.; Nores, M.L.; Gil-Solla, A.; Cabrer, M.R.; Pazos-Arias, J.J.; Blanco-Fernández, Y. Developing Quiz Games Linked to Networks of Semantic Connections Among Cultural Venues. In Proceedings of the Metadata and Semantic Research–11th International Conference, MTSR 2017, Tallinn, Estonia, 28 November–1 December 2017; Garoufallou, E., Virkus, S., Siatri, R., Koutsomiha, D., Eds.; Springer International Publishing AG: Cham, Switzerland, 2017; Volume 755, pp. 239–246. [Google Scholar]
- Botpress Botpress—The Building Blocks for Building Chatbots. Available online: https://github.com/botpress/botpress (accessed on 5 June 2023).
- Bisser, S. Introduction to the Microsoft Bot Framework. In Microsoft Conversational AI Platform for Developers; Apress: Berkeley, CA, USA, 2021; pp. 25–66. ISBN 978-1-4842-6836-0. [Google Scholar]
- Biswas, M. Microsoft Bot Framework. In Beginning AI Bot Frameworks; Apress: Berkeley, CA, USA, 2018; pp. 25–66. ISBN 978-1-4842-3753-3. [Google Scholar]
- Microsoft Microsoft Bot Framework. Available online: https://dev.botframework.com/ (accessed on 10 May 2023).
- Sabharwal, N.; Barua, S.; Anand, N.; Aggarwal, P. Building Your First Bot Using Watson Assistant. In Developing Cognitive Bots Using the IBM Watson Engine; Apress: Berkeley, CA, USA, 2020; pp. 47–102. ISBN 978-1-4842-5554-4. [Google Scholar]
- Biswas, M. IBM Watson Chatbots. In Beginning AI Bot Frameworks; Apress: Berkeley, CA, USA, 2018; pp. 101–137. ISBN 978-1-4842-3753-3. [Google Scholar]
- Williams, S. Hands-On Chatbot Development with Alexa Skills and Amazon Lex: Create Custom Conversational and Voice Interfaces for Your Amazon Echo Devices and Web Platforms; Packt: Birmingham, UK, 2016; ISBN 978-1-78899-348-7. [Google Scholar]
- Amazon Web Services Platform Amazon Lex. Available online: https://aws.amazon.com/lex/ (accessed on 10 May 2023).
- Sabharwal, N.; Agrawal, A. Introduction to Google Dialogflow. In Cognitive Virtual Assistants Using Google Dialogflow; Apress: Berkeley, CA, USA, 2020; pp. 13–54. ISBN 978-1-4842-5740-1. [Google Scholar]
- OpenDialog.ai OpenDialog-Open-Source Conversational Application Platform. Available online: https://github.com/opendialogai/opendialog (accessed on 5 June 2023).
- RASA Introduction to Rasa Open Source & Rasa Pro. Available online: https://rasa.com/docs/rasa/ (accessed on 5 June 2023).
- Bourlakos, I.; Wallace, M.; Antoniou, A.; Vassilakis, C.; Lepouras, G.; Karapanagiotou, A.V. Formalization and Visualization of the Narrative for Museum Guides. In Semantic Keyword-Based Search on Structured Data Sources; Lecture Notes in Computer Science; Szymański, J., Velegrakis, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2018; Volume 10546, pp. 3–13. ISBN 978-3-319-74496-4. [Google Scholar]
- Antoniou, A.; Morillo, S.R.; Lepouras, G.; Diakoumakos, J.; Vassilakis, C.; Nores, M.L.; Jones, C.E. Bringing a Peripheral, Traditional Venue to the Digital Era with Targeted Narratives. Digit. Appl. Archaeol. Cult. Herit. 2019, 14, e00111. [Google Scholar] [CrossRef]
- Shanahan, M.J. Historical Change and Human Development. In International Encyclopedia of the Social & Behavioral Sciences; Pergamon: Oxford, UK, 2001; pp. 6720–6725. ISBN 978-0-08-043076-8. [Google Scholar]
- Gonçalves, M.A.; Fox, E.A.; Watson, L.T. Towards a Digital Library Theory: A Formal Digital Library Ontology. Int. J. Digit. Libr. 2008, 8, 91–114. [Google Scholar] [CrossRef]
- Luo, B.; Lau, R.Y.K.; Li, C.; Si, Y. A Critical Review of State-of-the-art Chatbot Designs and Applications. WIREs Data Min. Knowl. Discov. 2022, 12, e1434. [Google Scholar] [CrossRef]
- Banane, M.; Belangour, A. A Survey on RDF Data Store Based on NoSQL Systems for the Semantic Web Applications. In Advanced Intelligent Systems for Sustainable Development (AI2SD’2018); Advances in Intelligent Systems and Computing; Ezziyyani, M., Ed.; Springer International Publishing: Cham, Switzerland, 2019; Volume 915, pp. 444–451. ISBN 978-3-030-11927-0. [Google Scholar]
- Ali, W.; Saleem, M.; Yao, B.; Hogan, A.; Ngomo, A.-C.N. A Survey of RDF Stores & SPARQL Engines for Querying Knowledge Graphs. VLDB J. 2022, 31, 1–26. [Google Scholar] [CrossRef]
- Bampatzia, S.; Bravo-Quezada, O.G.; Antoniou, A.; López Nores, M.; Wallace, M.; Lepouras, G.; Vassilakis, C. The Use of Semantics in the CrossCult H2020 Project. In Semantic Keyword-Based Search on Structured Data Sources; Lecture Notes in Computer Science; Calì, A., Gorgan, D., Ugarte, M., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 10151, pp. 190–195. ISBN 978-3-319-53639-2. [Google Scholar]
- Lepouras, G.; Vassilakis, C.; Halatsis, C.; Georgiadis, P. Domain Expert User Development: The Smartgov Approach. Commun. ACM 2007, 50, 79–83. [Google Scholar] [CrossRef]
- Adams, N.; McKay-Hubbard, A.; Whyte, A.; Macintosh, A.; Spanos, E.; Vassilakis, C.; Lepouras, G. Deliverable D91: Evaluation of Project Results; SmartGov project; Athens, Greece. Available online: http://smartgov.e-gov.gr/index.php?category=results (accessed on 13 July 2023).
- Casillo, M.; De Santo, M.; Mosca, R.; Santaniello, D. An Ontology-Based Chatbot to Enhance Experiential Learning in a Cultural Heritage Scenario. Front. Artif. Intell. 2022, 5, 808281. [Google Scholar] [CrossRef] [PubMed]
- Chagas, B.A.; Pagano, A.S.; Prates, R.O.; Praes, E.C.; Ferreguetti, K.; Vaz, H.; Reis, Z.S.N.; Ribeiro, L.B.; Ribeiro, A.L.P.; Pedroso, T.M.; et al. Evaluating User Experience With a Chatbot Designed as a Public Health Response to the COVID-19 Pandemic in Brazil: Mixed Methods Study. JMIR Hum. Factors 2023, 10, e43135. [Google Scholar] [CrossRef] [PubMed]
- Hobert, S. How are You, Chatbot? Evaluating Chatbots in Educational Settings-Results of a Literature Review. In Proceedings of the DELFI 2019; Gesellschaft für Informatik e.V.: Berlin, Germany, 2019. [Google Scholar]
- Casas, J.; Tricot, M.-O.; Abou Khaled, O.; Mugellini, E.; Cudré-Mauroux, P. Trends & Methods in Chatbot Evaluation. In Proceedings of the Companion Publication of the 2020 International Conference on Multimodal Interaction, Virtual Event. Utrecht, The Netherlands, 25–29 October 2020; ACM: New York, NY, USA, 2020; pp. 280–286. [Google Scholar]
- Vella, K.; Poesio, M.; Sigamani, M.; Dogan, C.; Dutra, A.; Dimakopoulos, D.; Gemma, A.; Walters, E. Measuring Conversational Fluidity in Automated Dialogue Agents. arXiv 2019, arXiv:1910.11790. [Google Scholar]
Class | Description |
---|---|
Reflective topic | A key concept characterizing a subset of the museum’s exhibits and conveying a tailored museum message |
Exhibit type | A form that museum exhibits may take, such as statue, relief, jewelry, etc. |
Historic period | An interval in history that represent relatively cohesive and distinct patterns of material living conditions, ideologies, norms, social organizations, and institutions [41] |
Area of discovery | A geographical area where an exhibit was discovered. It may be of spatiotemporal nature, e.g., ‘Lacedaemonia’ is an ancient region of Greece, overlapping with the area that is known as ‘Mistras’ since 1262 A.D. |
Narration axis | A unique organization of presentation of selected museum exhibits that conveys a certain museum message. |
Navigation path | A sequential presentation of selected museum exhibits, meticulously crafted by content curators |
Navigation path element | A unique presentation of an exhibit, tailored to the needs of a specific navigation path |
Exhibit | An item whose digital representation is hosted by the cultural institution and displayed by the chatbot. The physical item may be also hosted. |
Element | Description |
---|---|
id | A UUID uniquely identifying the intent in the context of the agent. |
parentId | The id of the parent intent. Specified only when the intent is a follow-up intent. |
name | The title of the intent. |
responses | An array of elements providing the content of the intent. The most notable part of this element is the ‘messages’ subcomponent, for which two notable subtypes are identified:
|
contexts | An array listing additional intents within which the current intent can be activated. |
Question |
---|
The chatbot creation process was straightforward |
The chatbot creation process was easy to learn and memorize |
The user interface was convenient/easy to use |
The chatbot creation process was interesting and satisfying |
Question |
---|
The chatbot was easy to use |
The dialogues with the chatbot were fluid |
The user interface was intuitive |
The user interface was pleasant |
I would like to use the chatbot further to explore additional content and narratives |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouras, V.; Spiliotopoulos, D.; Margaris, D.; Vassilakis, C.; Kotis, K.; Antoniou, A.; Lepouras, G.; Wallace, M.; Poulopoulos, V. Chatbots for Cultural Venues: A Topic-Based Approach. Algorithms 2023, 16, 339. https://doi.org/10.3390/a16070339
Bouras V, Spiliotopoulos D, Margaris D, Vassilakis C, Kotis K, Antoniou A, Lepouras G, Wallace M, Poulopoulos V. Chatbots for Cultural Venues: A Topic-Based Approach. Algorithms. 2023; 16(7):339. https://doi.org/10.3390/a16070339
Chicago/Turabian StyleBouras, Vasilis, Dimitris Spiliotopoulos, Dionisis Margaris, Costas Vassilakis, Konstantinos Kotis, Angeliki Antoniou, George Lepouras, Manolis Wallace, and Vassilis Poulopoulos. 2023. "Chatbots for Cultural Venues: A Topic-Based Approach" Algorithms 16, no. 7: 339. https://doi.org/10.3390/a16070339