Optimization of the Compressive Measurement Matrix in a Massive MIMO System Exploiting LSTM Networks
Abstract
:1. Introduction
2. Signal Model
2.1. Array Signal Model
2.2. Compressive Array Signal Model
2.3. Probabilistic Signal Model
3. Motivation for Using LSTM Network to Design the CMM
- Forget gate (): This gate combines the current input and the previous hidden state to decide which information to forget and which to remember from previous cell state. The operation is given by
- Input gate (): This gate combines the current input and the previous hidden state to decide which information to store in the cell state. The operation is given by
- Cell gate (): This gate combines the current input and the previous hidden state to compute the actual representation that will go into the cell state. The operation is given by
- Output gate (): This gate combines the current input and the previous hidden state to decide how much to weight the cell state information to generate the output of the LSTM cell, which is also denoted as hidden state . The operation is given by
4. Proposed LSTM Based Optimization of the CMM
4.1. Data Pre-Processing
4.2. Implementation Details of the Deep Learning Framework
4.3. Post-Processing
4.4. Loss Function and Back Propagation
5. Simulation Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- De Lamare, R.C. Massive MIMO systems: Signal processing challenges and research trends. arXiv 2013, arXiv:1310.7282. [Google Scholar]
- Rusek, F.; Persson, D.; Lau, B.K.; Larsson, E.G.; Marzetta, T.L.; Edfors, O.; Tufvesson, F. Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Process. Mag. 2013, 30, 40–60. [Google Scholar] [CrossRef]
- Larsson, E.G.; Edfors, O.; Tufvesson, F.; Marzetta, T.L. Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 2014, 52, 186–195. [Google Scholar] [CrossRef]
- Lu, L.; Li, G.Y.; Swindlehurst, A.L.; Ashikhmin, A.; Zhang, R. An overview of massive MIMO: Benefits and challenges. IEEE J. Sel. Top. Signal Process. 2014, 8, 742–758. [Google Scholar] [CrossRef]
- Alkhateeb, A.; El Ayach, O.; Leus, G.; Heath, R.W. Heath, Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE J. Sel. Top. Signal Process. 2014, 8, 831–846. [Google Scholar] [CrossRef]
- Jiang, F.; Chen, J.; Swindlehurst, A.L.; López-Salcedo, J.A. Massive MIMO for wireless sensing with a coherent multiple access channel. IEEE Trans. Signal Process. 2015, 63, 3005–3017. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Sun, S.; Mayzus, R.; Zhao, H.; Azar, Y.; Wang, K.; Gutierrez, F. Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access 2013, 1, 335–349. [Google Scholar] [CrossRef]
- Wang, C.X.; Haider, F.; Gao, X.; You, X.H.; Yang, Y.; Yuan, D.; Aggoune, H.M.; Hepsaydir, E. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun. Mag. 2014, 52, 122–130. [Google Scholar] [CrossRef]
- Molisch, A.F.; Ratnam, S.V.V.; Han, Z.; Li, S.; Nguyen, L.H.; Li, L.; Haneda, K. Hybrid beamforming for massive MIMO: A survey. IEEE Commun. Mag. 2017, 55, 134–141. [Google Scholar] [CrossRef]
- Björnson, E.; Sanguinetti, L.; Wymeersch, H.; Hoydis, J.; Marzetta, T.L. Massive MIMO is a reality—What is next?: Five promising research directions for antenna arrays. Digital Signal Process. 2019, 94, 3–20. [Google Scholar] [CrossRef]
- Fortunati, S.; Sanguinetti, L.; Gini, F.; Greco, M.S.; Himed, B. Massive MIMO radar for target detection. IEEE Trans. Signal Process. 2020, 68, 859–871. [Google Scholar] [CrossRef]
- Lin, T.; Cong, J.; Zhu, Y.; Zhang, J.; Letaief, K.B. Hybrid beamforming for millimeter wave systems using the MMSE criterion. IEEE Trans. Commun. 2019, 67, 3693–3708. [Google Scholar] [CrossRef]
- Zhang, D.; Pan, P.; You, R.; Wang, H. SVD-based low-complexity hybrid precoding for millimeter-wave MIMO systems. IEEE Commun. Lett. 2018, 22, 2176–2179. [Google Scholar] [CrossRef]
- Qi, C.; Ci, W.; Zhang, J.; You, X. Hybrid beamforming for millimeter wave MIMO integrated sensing and communications. IEEE Commun. Lett. 2022, 26, 1136–1140. [Google Scholar] [CrossRef]
- Rossi, M.; Haimovich, A.M.; Eldar, Y.C. Spatial compressive sensing for MIMO radar. IEEE Trans. Signal Process. 2013, 62, 419–430. [Google Scholar] [CrossRef]
- Wen, F.; Gui, G.; Gacanin, H.; Sari, H. Compressive sampling framework for 2D-DOA and polarization estimation in mmWave polarized massive MIMO systems. IEEE Trans. Wirel. Commun. 2022, 22, 3071–3083. [Google Scholar] [CrossRef]
- Pakrooh, P.; Scharf, L.L.; Pezeshki, A.; Chi, Y. Analysis of fisher information and the cramér-rao bound for nonlinear parameter estimation after compressed sensing. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 6630–6634. [Google Scholar]
- Gu, Y.; Zhang, Y.D. Compressive sampling optimization for user signal parameter estimation in massive MIMO systems. Digital Signal Process. 2019, 94, 105–113. [Google Scholar] [CrossRef]
- Gu, Y.; Zhang, Y.D.; Goodman, N.A. Optimized compressive sensing-based direction-of-arrival estimation in massive MIMO. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5 March 2017; pp. 3181–3185. [Google Scholar]
- Guo, M.; Zhang, Y.D.; Chen, T. DOA estimation using compressed sparse array. IEEE Trans. Signal Process. 2018, 66, 4133–4146. [Google Scholar] [CrossRef]
- Zhang, Y.D. Iterative learning for optimized compressive measurements in massive MIMO systems. In Proceedings of the 2022 IEEE Radar Conference (RadarConf22), New York, NY, USA, 21–25 March 2022; pp. 1–5. [Google Scholar]
- Nakos, V.; Shi, X.; Woodruff, D.P.; Zhang, H. Improved algorithms for adaptive compressed sensing. arXiv 2018, arXiv:1804.09673. [Google Scholar]
- Haupt, J.; Castro, R.M.; Nowak, R. Distilled sensing: Adaptive sampling for sparse detection and estimation. IEEE Trans. Inform. Theory 2011, 57, 6222–6235. [Google Scholar] [CrossRef]
- Sohrabi, F.; Chen, Z.; Yu, W. Deep active learning approach to adaptive beamforming for mmWave initial alignment. IEEE J. Sel. Areas Commun. 2021, 39, 2347–2360. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, S.; Gao, F.; Xu, C.; Ma, J.; Dobre, O.A. Deep learning based antenna selection for channel extrapolation in FDD massive MIMO. In Proceedings of the 2020 International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 21–23 October 2020; pp. 182–187. [Google Scholar]
- Huang, H.; Peng, Y.; Yang, J.; Xia, W.; Gui, G. Fast beamforming design via deep learning. IEEE Trans. Vehi. Tech. 2021, 69, 1065–1069. [Google Scholar] [CrossRef]
- Zhang, S.S.; Zhang, F.; Gao, J.; Ma, O.; Dobre, A. Deep learning optimized sparse antenna activation for reconfigurable intelligent surface assisted communication. IEEE Trans. Commun. 2021, 69, 6691–6705. [Google Scholar] [CrossRef]
- Jiang, T.; Cheng, H.V.; Yu, W. Learning to reflect and to beamform for intelligent reflecting surface with implicit channel estimation. IEEE J. Sel. Areas Commun. 2021, 39, 1931–1945. [Google Scholar] [CrossRef]
- Wu, L.; Liu, Z.M.; Huang, Z.T. Deep convolution network for direction of arrival estimation with sparse prior. IEEE Signal Process. Lett. 2019, 26, 1688–1692. [Google Scholar] [CrossRef]
- Pavel, S.R.; Chowdhury, M.W.T.; Zhang, Y.D.; Shen, D.; Chen, G. Machine learning-based direction-of-arrival estimation exploiting distributed sparse arrays. In Proceedings of the 2021 55th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 31 October–3 November 2021; pp. 241–245. [Google Scholar]
- Soltani, M.; Pourahmadi, V.; Mirzaei, A.; Sheikhzadeh, H. Deep learning-based channel estimation. IEEE Commun. Lett. 2019, 23, 652–655. [Google Scholar] [CrossRef]
- Chun, C.-J.; Kang, J.-M.; Kim, I.-M. Deep learning-based channel estimation for massive MIMO systems. IEEE Wirel. Commun. Lett. 2019, 8, 1228–1231. [Google Scholar] [CrossRef]
- He, H.; Wen, C.K.; Jin, S.; Li, G.Y. Deep learning-based channel estimation for beamspace mmWave massive MIMO systems. IEEE Wirel. Commun. Lett. 2018, 7, 852–855. [Google Scholar] [CrossRef]
- Pavel, S.R.; Zhang, Y.D. Deep learning-based compressive sampling optimization in massive MIMO systems. In Proceedings of the ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023. [Google Scholar]
- Sohrabi, F.; Jiang, T.; Cui, W.; Yu, W. Active sensing for communications by learning. IEEE J. Sel. Areas Commun. 2022, 40, 1780–1794. [Google Scholar] [CrossRef]
- Fernández, S.; Graves, A.; Schmidhuber, J. Sequence labelling in structured domains with hierarchical recurrent neural networks. In Proceedings of the 20th International Joint Conference on Artificial Intelligence, IJCAI, Hyderabad, India, 6–12 January 2007. [Google Scholar]
- Schafer, A.M.; Zimmermann, H.G. Recurrent neural networks are universal approximators. In Proceedings of the Artificial Neural Networks—ICANN 2006: 16th International Conference, Athens, Greece, 10–14 September 2006; pp. 632–640. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- DiPietro, R.; Hager, G.D. Deep learning: RNNs and LSTM. In Handbook of Medical Image Computing and Computer Assisted Intervention; Academic Press: Cambridge, MA, USA, 2020; pp. 503–519. [Google Scholar]
- Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. Lstm: A search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 2016, 28, 2222–2232. [Google Scholar] [CrossRef]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef]
- He, T.; Droppo, J. Exploiting LSTM structure in deep neural networks for speech recognition. In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016; pp. 5445–5449. [Google Scholar]
- Liu, C.-L.; Vaidyanathan, P.P. Cramér-Rao bounds for coprime and other sparse arrays, which find more sources than sensors. Digit. Signal Process. 2017, 61, 43–61. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavel, S.R.; Zhang, Y.D. Optimization of the Compressive Measurement Matrix in a Massive MIMO System Exploiting LSTM Networks. Algorithms 2023, 16, 261. https://doi.org/10.3390/a16060261
Pavel SR, Zhang YD. Optimization of the Compressive Measurement Matrix in a Massive MIMO System Exploiting LSTM Networks. Algorithms. 2023; 16(6):261. https://doi.org/10.3390/a16060261
Chicago/Turabian StylePavel, Saidur R., and Yimin D. Zhang. 2023. "Optimization of the Compressive Measurement Matrix in a Massive MIMO System Exploiting LSTM Networks" Algorithms 16, no. 6: 261. https://doi.org/10.3390/a16060261
APA StylePavel, S. R., & Zhang, Y. D. (2023). Optimization of the Compressive Measurement Matrix in a Massive MIMO System Exploiting LSTM Networks. Algorithms, 16(6), 261. https://doi.org/10.3390/a16060261