An Automatic Motion-Based Artifact Reduction Algorithm for fNIRS in Concurrent Functional Magnetic Resonance Imaging Studies (AMARA–fMRI)
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Jobsis, F.F. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 1977, 198, 1264. [Google Scholar] [CrossRef] [PubMed]
- Boas, D.A.; Chen, K.; Grebert, D.; Franceschini, M.A. Improving the diffuse optical imaging spatial resolution of the cerebral hemodynamic response to brain activation in humans. Opt. Lett. 2004, 29, 1506–1508. [Google Scholar] [CrossRef] [PubMed]
- Huppert, T.J.; Diamond, S.G.; Franceschini, M.A.; Boas, D.A. HomER: A review of time-series analysis methods for near-infrared spectroscopy of the brain. Appl. Opt. 2009, 48, D280–D298. [Google Scholar] [CrossRef][Green Version]
- Feinberg, D.A.; Moeller, S.; Smith, S.M.; Auerbach, E.; Ramanna, S.; Gunther, M.; Glasser, M.F.; Miller, K.L.; Ugurbil, K.; Yacoub, E. Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging. PLoS ONE 2010, 5, e15710. [Google Scholar] [CrossRef][Green Version]
- Moeller, S.; Yacoub, E.; Olman, C.A.; Auerbach, E.; Strupp, J.; Harel, N.; Ugurbil, K. Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn. Reson. Med. 2010, 63, 1144–1153. [Google Scholar] [CrossRef][Green Version]
- Steinbrink, J.; Villringer, A.; Kempf, F.; Haux, D.; Boden, S.; Obrig, H. Illuminating the BOLD signal: Combined fMRI-fNIRS studies. Magn. Reson. Imaging 2006, 24, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Brigadoi, S.; Ceccherini, L.; Cutini, S.; Scarpa, F.; Scatturin, P.; Selb, J.; Gagnon, L.; Boas, D.A.; Cooper, R.J. Motion artifacts in functional near-infrared spectroscopy: A comparison of motion correction techniques applied to real cognitive data. Neuroimage 2014, 85 Pt 1, 181–191. [Google Scholar] [CrossRef][Green Version]
- Cooper, R.J.; Selb, J.; Gagnon, L.; Phillip, D.; Schytz, H.W.; Iversen, H.K.; Ashina, M.; Boas, D.A. A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy. Front. Neurosci. 2012, 6, 147. [Google Scholar] [CrossRef][Green Version]
- Chiarelli, A.M.; Maclin, E.L.; Fabiani, M.; Gratton, G. A kurtosis-based wavelet algorithm for motion artifact correction of fNIRS data. Neuroimage 2015, 112, 128–137. [Google Scholar] [CrossRef][Green Version]
- Molavi, B.; Dumont, G.A. Wavelet-based motion artifact removal for functional near-infrared spectroscopy. Physiol. Meas. 2012, 33, 259–270. [Google Scholar] [CrossRef]
- Scholkmann, F.; Spichtig, S.; Muehlemann, T.; Wolf, M. How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation. Physiol. Meas. 2010, 31, 649–662. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Metz, A.J.; Wolf, M.; Achermann, P.; Scholkmann, F. A New Approach for Automatic Removal of Movement Artifacts in Near-Infrared Spectroscopy Time Series by Means of Acceleration Data. Algorithms 2015, 8, 1052–1075. [Google Scholar] [CrossRef][Green Version]
- Virtanen, J.; Noponen, T.; Kotilahti, K.; Virtanen, J.; Ilmoniemi, R.J. Accelerometer-based method for correcting signal baseline changes caused by motion artifacts in medical near-infrared spectroscopy. J. Biomed. Opt. 2011, 16, 087005. [Google Scholar] [CrossRef] [PubMed]
- Jenkinson, M.; Smith, S. A global optimisation method for robust affine registration of brain images. Med. Image Anal. 2001, 5, 143–156. [Google Scholar] [CrossRef]
- Jenkinson, M.; Bannister, P.; Brady, M.; Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 2002, 17, 825–841. [Google Scholar] [CrossRef]
- Cox, R.W. AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 1996, 29, 162–173. [Google Scholar] [CrossRef]
- Cox, R.W.; Jesmanowicz, A. Real-time 3D image registration for functional MRI. Magn. Reson. Med. 1999, 42, 1014–1018. [Google Scholar] [CrossRef]
- Hocke, L.M.; Frederick, B.B. Post-hoc physiological waveform extraction from motion estimation in simultaneous multislice (SMS) functional MRI using separate stack processing. Magn. Reson. Med. 2021, 85, 309–315. [Google Scholar] [CrossRef]
- Beall, E.B.; Lowe, M.J. SimPACE: Generating simulated motion corrupted BOLD data with synthetic-navigated acquisition for the development and evaluation of SLOMOCO: A new, highly effective slicewise motion correction. Neuroimage 2014, 101, 21–34. [Google Scholar] [CrossRef][Green Version]
- Hoinkiss, D.C.; Erhard, P.; Breutigam, N.J.; von Samson-Himmelstjerna, F.; Gunther, M.; Porter, D.A. Prospective motion correction in functional MRI using simultaneous multislice imaging and multislice-to-volume image registration. Neuroimage 2019, 200, 159–173. [Google Scholar] [CrossRef]
- Teruel, J.R.; Kuperman, J.M.; Dale, A.M.; White, N.S. High temporal resolution motion estimation using a self-navigated simultaneous multi-slice echo planar imaging acquisition. J. Magn. Reson. Imaging 2018, 48, 780–787. [Google Scholar] [CrossRef] [PubMed]
- Aslan, S.; Hocke, L.M.; Schwarz, N.; Frederick, B. Extraction of the cardiac waveform from simultaneous multislice fMRI data using slice sorted averaging and a deep learning reconstruction filter. Neuroimage 2019, 198, 303–316. [Google Scholar] [CrossRef] [PubMed]
- Hocke, L.M.; Cayetano, K.; Tong, Y.; Frederick, B. Optimized multimodal functional magnetic resonance imaging/near-infrared spectroscopy probe for ultrahigh-resolution mapping. Neurophotonics 2015, 2, 045004. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Smith, S.M.; Jenkinson, M.; Woolrich, M.W.; Beckmann, C.F.; Behrens, T.E.; Johansen-Berg, H.; Bannister, P.R.; De Luca, M.; Drobnjak, I.; Flitney, D.E.; et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004, 23 (Suppl. S1), S208–S219. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bloom, P.A. Available online: https://github.com/pab2163/estimate_respiratory_traces.git (accessed on 20 February 2023).
- Scholkmann, F.; Wolf, M. General equation for the differential pathlength factor of the frontal human head depending on wavelength and age. J. Biomed. Opt. 2013, 18, 105004. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Santosa, H.; Zhai, X.; Fishburn, F.; Huppert, T. The NIRS Brain AnalyzIR Toolbox. Algorithms 2018, 11, 73. [Google Scholar] [CrossRef][Green Version]
- Fang, Q.; Boas, D.A. Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units. Opt. Express 2009, 17, 20178–20190. [Google Scholar] [CrossRef][Green Version]
- Yu, L.; Nina-Paravecino, F.; Kaeli, D.; Fang, Q. Scalable and massively parallel Monte Carlo photon transport simulations for heterogeneous computing platforms. J. Biomed. Opt. 2018, 23, 010504. [Google Scholar] [CrossRef][Green Version]
- Wyser, D.; Mattille, M.; Wolf, M.; Lambercy, O.; Scholkmann, F.; Gassert, R. Short-channel regression in functional near-infrared spectroscopy is more effective when considering heterogeneous scalp hemodynamics. Neurophotonics 2020, 7, 035011. [Google Scholar] [CrossRef]
- Santosa, H.; Zhai, X.; Fishburn, F.; Sparto, P.J.; Huppert, T.J. Quantitative comparison of correction techniques for removing systemic physiological signal in functional near-infrared spectroscopy studies. Neurophotonics 2020, 7, 035009. [Google Scholar] [CrossRef]
- Defenderfer, J.; Kerr-German, A.; Hedrick, M.; Buss, A.T. Investigating the role of temporal lobe activation in speech perception accuracy with normal hearing adults: An event-related fNIRS study. Neuropsychologia 2017, 106, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Scholkmann, F.; Tachtsidis, I.; Wolf, M.; Wolf, U. Systemic physiology augmented functional near-infrared spectroscopy: A powerful approach to study the embodied human brain. Neurophotonics 2022, 9, 030801. [Google Scholar] [CrossRef] [PubMed]
- Dravida, S.; Noah, J.A.; Zhang, X.; Hirsch, J. Comparison of oxyhemoglobin and deoxyhemoglobin signal reliability with and without global mean removal for digit manipulation motor tasks. Neurophotonics 2018, 5, 011006. [Google Scholar] [CrossRef]
- Pereira, J.; Direito, B.; Luhrs, M.; Castelo-Branco, M.; Sousa, T. Multimodal assessment of the spatial correspondence between fNIRS and fMRI hemodynamic responses in motor tasks. Sci. Rep. 2023, 13, 2244. [Google Scholar] [CrossRef]
- Sassaroli, A.; Frederick, B.B.; Tong, Y.; Renshaw, P.; Fantini, S. Spatially weighted BOLD signal for comparison of functional magnetic resonance imaging and near-infrared imaging of the brain. Neuroimage 2006, 33, 505–514. [Google Scholar] [CrossRef]
- Cui, X.; Bray, S.; Bryant, D.M.; Glover, G.H.; Reiss, A.L. A quantitative comparison of NIRS and fMRI across multiple cognitive tasks. Neuroimage 2011, 54, 2808–2821. [Google Scholar] [CrossRef][Green Version]
- Strangman, G.; Culver, J.P.; Thompson, J.H.; Boas, D.A. A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation. Neuroimage 2002, 17, 719–731. [Google Scholar] [CrossRef] [PubMed]
- Hocke, L. Automatic Motion-based artifact reduction algorithm for fNIRS in concurrent functional Magnetic Resonance Imaging studies (AMARA-fMRI). In Proceedings of the NIR 2019, Gold Coast, Australia, 17 September 2019. [Google Scholar]
Subject | Channel 1 | Channel 2 | Channel 3 | Channel 4 | Channel 5 | Channel 6 |
---|---|---|---|---|---|---|
#1 | 37.3 | 28.2 | 13.0 | 13.0 | 28.0 | 39.0 |
#2 | 35.9 | 27.3 | 11.8 | 15.5 | 28.6 | 40.2 |
#3 | 37.0 | 28.6 | 13.6 | 17.0 | 29.2 | 37.0 |
#4 | 35.9 | 26.2 | 10.4 | 14.3 | 24.4 | 34.7 |
#5 | 37.8 | 27.0 | 12.2 | 14.6 | 29.1 | 37.8 |
#6 | 35.4 | 25.1 | 12.1 | 13.7 | 29.0 | 37.0 |
#7 | 34.1 | 25.5 | 11.4 | 13.1 | 28.6 | 42.2 |
#8 | 35.4 | 28.5 | 12.6 | 13.2 | 29.6 | 37.3 |
#9 | 35.6 | 25.6 | 11.9 | 18.0 | 26.9 | 36.6 |
#10 | 38.0 | 24.6 | 12.9 | 16.4 | 30.2 | 39.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hocke, L.M.; Tong, Y.; Frederick, B.d. An Automatic Motion-Based Artifact Reduction Algorithm for fNIRS in Concurrent Functional Magnetic Resonance Imaging Studies (AMARA–fMRI). Algorithms 2023, 16, 230. https://doi.org/10.3390/a16050230
Hocke LM, Tong Y, Frederick Bd. An Automatic Motion-Based Artifact Reduction Algorithm for fNIRS in Concurrent Functional Magnetic Resonance Imaging Studies (AMARA–fMRI). Algorithms. 2023; 16(5):230. https://doi.org/10.3390/a16050230
Chicago/Turabian StyleHocke, Lia Maria, Yunjie Tong, and Blaise deBonneval Frederick. 2023. "An Automatic Motion-Based Artifact Reduction Algorithm for fNIRS in Concurrent Functional Magnetic Resonance Imaging Studies (AMARA–fMRI)" Algorithms 16, no. 5: 230. https://doi.org/10.3390/a16050230
APA StyleHocke, L. M., Tong, Y., & Frederick, B. d. (2023). An Automatic Motion-Based Artifact Reduction Algorithm for fNIRS in Concurrent Functional Magnetic Resonance Imaging Studies (AMARA–fMRI). Algorithms, 16(5), 230. https://doi.org/10.3390/a16050230