On Modeling Antennas Using MoM-Based Algorithms: Wire-Grid versus Surface Triangulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Mathematical Formulation
n × Htot(r)|S = n × (Hinc(r) + Hscat(r))|S = J(r),
2.2. Wire-Grid
2.2.1. Wire-Grid: Overview
2.2.2. Wire-Grid: Algorithm
- Excite the wire by an external electric field (Einc).
- Assume that the tangential component of the electric field strength vector on the surface of the wire is equal to zero. Then, for an arbitrarily oriented in space wire you getEl = 0.
- Determine the relationship between the incident and scattered electromagnetic waves using (1). At that time
- Write (2), (5), and (6) on the wire surface S taking into account (4) and (17). As a result, the following is obtained
- Divide the wire into N segments (Figure 1b) and for (18)–(21) use the pulse functions and the Dirac delta functions as test ones. In this case, the integrals in them are approximated by the sum of N integrals over segments. The current and charge on each segment are assumed constant, and the derivatives are approximated by finite differences on the same segments. Then, these equations will take the form of
- Apply (22)–(25) to two separate segments (n and m from Figure 2) and obtain their impedance. In other words, for these segments, one should get the general notation of the integrals from (23)–(25) asIn this way, according to (23), the vector potential at point m, created by the current I(n) flowing in segment n, is defined as
- Determine the scalar potentials. To do this, assume that segment n consists of a current filament I(n) and two charge filaments are connected with the first one as
- Substitute (27), (30), and (31) into (22). Then
- Calculate the impedance of the two segments using the obtained expression
- Use (34) to calculate all matrix elements and form an SLAE of form (15), in which the voltage matrix in the right part is defined by the applied field as
- Solve SLAE (15) or calculate the total conductance matrix which is the inverse of the impedance matrix Z.
- Determine the current distribution across the wire by multiplying the matrices of total conductivity and applied voltage.
- Make adjustments regarding the wire excitation to solve the antenna problem. In this way, an antenna radiator is obtained by exciting a wire at one or more points along its length with a voltage source. Then, when the antenna in segment n is excited in the gap with voltage Vin (Vin = 1 V), the matrix of applied voltage (35) will look like
- Calculate the antenna input impedance as
- Consider the antenna as an array of N current elements and obtain its radiation pattern (RP). Here, the vector potential in the far zone is calculated as
- Calculate the antenna gain as
2.2.3. Wire-Grid: Code Implementation
2.3. Triangle-Grid
2.3.1. Surface Patch Approach: Overview
2.3.2. Triangle-Grid: Algorithm
2.3.3. Triangle-Grid: Code Implementation
2.4. Algorithm of Combining Wire- and Triangle-Grid
3. Results
3.1. Planar Rectangle Spiral Antenna
3.2. Planar Spiral Antenna
3.3. Planar Rounded Bow-Tie Antenna
3.4. Biconical Antenna
3.5. Horn Antenna
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AIM | Adaptive integral method |
BCE | Boundary-condition error |
BOR | Bodies of revolution |
CFIE | Combined field integral equations |
CGM | Conjugate gradient method |
CIM | Complex image method |
CSIE | Combined source IE |
DCIM | Discrete CIM |
EAR | Equal area rule |
EFIE | Integral electric field equations |
EP | Equivalence principle |
ESCM | Electric surface current model |
ESP | Electromagnetic surface patch |
FDTD | Finite-difference time-domain |
FEM | Finite element method |
FFT | Fast Fourier transform |
FMM | Fast multipole method |
FSS | Frequency-selective surfaces |
GPU | Graphics processing unit |
HO-MoM | Higher order MoM |
JMCFIE | Electric and magnetic current CFIE |
MB-RWG | Multibranch RWGs |
MFIE | Magnetic field integral equations |
MLFMA | Multilevel fast multipole algorithm |
MoM | Method of moment |
NEC | Numerical electromagnetic |
PEC | Perfectly electric conductor |
RWG | Rao-Wilton-Glisson |
SLAE | System of linear algebraic equations |
SIE | Surface integral equation |
WIPL | Wire and plate structures |
References
- Yee, K.S. Numerical solution of initial boundary value problems involving Maxwell’s equations in esotropic media. IEEE Trans. Antennas Propag. 1966, 14, 302–307. [Google Scholar]
- Taflove, A. Application of the finite-difference time-domain method to sinusoidal steady state electromagnetic penetration problems. IEEE Trans. Electromagn. Compat. 1980, EMC–22, 191–202. [Google Scholar] [CrossRef]
- Weiland, T. A discretization model for the solution of Maxwell’s equations for sixcomponent fields. Electron. Commun. AEUE 1977, 31, 116–120. [Google Scholar]
- Van Rienen, U. Numerical Methods in Computational Electrodynamics. Linear Systems in Practical; Springer: Berlin, Germany, 2001; p. 375. [Google Scholar]
- Courant, R. Variational methods for the solution of problems of equilibrium and vibrations. Bull. Am. Math. Soc. 1943, 49, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Desai, C.S.; Abel, J.F. Introduction to the Finite Element Method: A Numerical Approach for Engineering Analysis; Van Nostrand Reinhold: New York, NY, USA, 1972; p. 477. [Google Scholar]
- Gordon, W.J.; Hall, C.A. Construction of curvilinear co-ordinate systems and applications to mesh generation. Int. J. Numer. Methods Eng. 1973, 7, 461–477. [Google Scholar] [CrossRef]
- Luukkonen, O.; Simovski, C.; Granet, G.; Goussetis, G.; Lioubtchenko, D.; Raisanen, A.V.; Tretyakov, S.A. Simple and Accurate Analytical Model of Planar Grids and High-Impedance Surfaces Comprising Metal Strips or Patches. IEEE Trans. Antennas Propag. 2008, 56, 1624–1632. [Google Scholar] [CrossRef] [Green Version]
- Harrington, R.F. Matrix methods for field problems. Proc. IEEE 1967, 55, 136–149. [Google Scholar] [CrossRef] [Green Version]
- Davidson, D.B. Computational Electromagnetics for RF and Microwave Engineering; Cambridge University Press: Cambridge, UK, 2011; p. 505. [Google Scholar]
- Gibson, W.C. The Method of Moments in Electromagnetics; Chapman & Hall/CRC: Boca Raton, FL, USA, 2008; p. 272. [Google Scholar]
- Makarov, S.N. Antenna and EM Modeling with MATLAB; John Wiley & Sons: New York, NY, USA, 2002; p. 288. [Google Scholar]
- Levin, B.M. The Theory of Thin Antennas and Its Use in Antenna Engineering; Bentham Science Publishers: Sharjah, United Arab Emirates, 2013; p. 318. [Google Scholar]
- Balanis, C.A. Advanced Engineering Electromagnetics, 2nd ed.; John Wiley & Sons: New York NY, USA, 2012; p. 1040. [Google Scholar]
- King, R.W.P. Antennas in Matter: Fundamentals, Theory, and Applications, 2nd ed.; MIT Press: Cambridge, MA, USA, 1981; p. 824. [Google Scholar]
- Werner, D.H.; Werne, P.L.; Breakall, J.K. Some computational aspects of Pocklington electric field integral equation for thin wires. IEEE Trans. Antennas Propag. 1994, 42, 561–563. [Google Scholar] [CrossRef]
- Vipiana, F.; Vecchi, G.; Wilton, D.R. A Multi-Resolution Moment Method for Wire-Surface Objects. IEEE Trans. Antennas Propag. 2010, 58, 1807–1813. [Google Scholar] [CrossRef]
- Leat, C.J.; Shuley, N.V.; Stickley, G.F. Triangular-patch model of bowtie antennas: Validation against Brown and Woodward. IEEE Proc. Microw. Antennas Propag. 1998, 145, 465–470. [Google Scholar] [CrossRef]
- Yla-Oijala, P.; Taskinen, M. Calculation of CFIE impedance matrix elements with RWG and n×RWG functions. IEEE Trans. Antennas Propag. 2003, 51, 1837–1846. [Google Scholar] [CrossRef]
- Newman, E.; Tulyathan, P. A surface patch model for polygonal plate. IEEE Trans. Antennas Propag. 1982, 30, 588–593. [Google Scholar] [CrossRef]
- Singh, J.; Adams, A. A nonrectangular patch model for scattering from surfaces. IEEE Trans. Antennas Propag. 1979, 27, 531–535. [Google Scholar] [CrossRef]
- Albertsen, N.; Hansen, J.; Jensen, N. Computation of radiation from wire antennas on conducting bodies. IEEE Trans. Antennas Propag. 1974, 22, 200–206. [Google Scholar] [CrossRef]
- Newman, E.; Pozar, D. Electromagnetic modeling of composite wire and surface geometries. IEEE Trans. Antennas Propag. 1978, 26, 784–789. [Google Scholar] [CrossRef]
- Tulyathan, P. Moment Method Solutions for Radiation and Scattering from Arbitrarily Shaped Surfaces; The Ohio State University: Columbus, OH, USA, 1981. [Google Scholar]
- Glisson, A.W., Jr. On the Development of Numerical Techniques for Treating Arbitrarily-Shaped Surfaces; The University of Mississippi: Ann Arbor, MI, USA, 1978. [Google Scholar]
- NEC Based Antenna Modeler and Optimizer. Available online: https://www.qsl.net/4nec2/ (accessed on 15 January 2023).
- MMANA–CAL Basic. Available online: http://gal-ana.de/basicmm/en/ (accessed on 15 January 2023).
- CONCEPT-II—Institut für Theoretische Elektrotechnik. Available online: https://www.tet.tuhh.de/en/concept-2/ (accessed on 15 January 2023).
- Kadlec, D.L.; Coffey, E.L. General Electromagnetic Model for the Analysis of Complex Systems (GEMACS) Computer Code Documentation (Version 3); Bdm Corp Albuquerque Nm: Albuquerque, NM, USA, 1983. [Google Scholar]
- AN-SOF Overview Antenna Simulation Software. Available online: https://antennasimulator.com/index.php/knowledge-base/an-sof-overview/ (accessed on 15 January 2023).
- Richie, J.E.; Gangl, H.R. EFIE-MFIE hybrid simulation using NEC:VSWR for the WISP experiment. IEEE Trans. Electromagn. Compat. 1995, 37, 293–296. [Google Scholar] [CrossRef]
- Newman, E.H.A. User’s Manual for: Electromagnetic Surface Patch Code (ESP); Ohio State University Columbus Electroscience Lab: Columbus, OH, USA, 1981. [Google Scholar]
- Newman, E.; Pozar, D. Considerations for efficient wire/surface modeling. IEEE Trans. Antennas Propag. 1980, 28, 121–125. [Google Scholar] [CrossRef]
- Peng, J.; Balanis, C.A.; Barber, G.C. NEC and ESP codes: Guidelines, limitations, and EMC applications. IEEE Trans. Electromagn. Compat. 1993, 35, 124–133. [Google Scholar] [CrossRef]
- Analoui, M.; Kagawa, Y. On the surface-patch and wire-grid modeling for planar antenna mounted on metal housing. IEICE Trans. Commun. 1993, 76, 1450–1455. [Google Scholar]
- Kashyap, S. Wire grid and surface patch modelling for EMP interaction. In Proceedings of the International Symposium on Antennas and Propagation Society, Merging Technologies for the 90′s, Dallas, TX, USA, 7–11 May 1990; Volume 4, pp. 1388–1391. [Google Scholar]
- Ida, I.; Takada, J.; Ito, K. Surface-patch modelling of a Wheeler cap for radiation efficiency simulation of a small loop antenna with NEC2. Electron. Lett. 1994, 30, 278–280. [Google Scholar] [CrossRef]
- Raschkowan, L.R. Near and Far Field Comparison Using Wire-Grid and Patch Models; Concordia University: Montreal, QB, Canada, 2003. [Google Scholar]
- Garg, R. Analytical and Computational Methods in Electromagnetic; Artech House: Norwood, MA, USA, 2008. [Google Scholar]
- Mosig, J.R.; Itoh, J. Integral equation technique. Numer. Tech. Microw. Millim. Wave Passiv. Struct. 1989, 31, 133–213. [Google Scholar]
- Larsen, T. A Survey of the Theory of Wire Grids. IRE Trans. Microw. Theory Tech. 1962, 10, 191–201. [Google Scholar] [CrossRef]
- Wait, J. Electromagnetic scattering from a wire grid parallel to a planar stratified medium. IEEE Trans. Antennas Propag. 1972, 20, 672–675. [Google Scholar] [CrossRef]
- Wait, J.R.; Hill, D.A. Electromagnetic scattering by two perpendicular wire grids over a conducting half-space. Radio Sci. 1976, 11, 725–730. [Google Scholar] [CrossRef]
- Wang, Z.-G.; Zhou, B.-Q. A quasi-optical method of measuring polarised wire grids at short millimetre wauelengths. In Proceedings of the International Conference on Millimeter Wave and Far-Infrared Technology: ICMWFT ’90, Beijing, China, 19–23 June 1989; pp. 542–544. [Google Scholar]
- Wait, J.R. Reflection from a wire grid parallel to a conducting plane. Can. J. Phys. 1954, 32, 571–579. [Google Scholar] [CrossRef]
- Wait, J.R. The Impedance of a Wire Grid Parallel to a Dielectric Interface. IRE Trans. Microw. Theory Tech. 1957, 5, 99–102. [Google Scholar] [CrossRef]
- Young, J.L.; Wait, J.R. Note on the impedance of a wire grid parallel to homogeneous interface. IEEE Trans. Microw. Theory Tech. 1989, 37, 1136–1138. [Google Scholar] [CrossRef]
- Yatsenko, V.V.; Tretyakov, S.A.; Maslovski, S.I.; Sochava, A.A. Higher order impedance boundary conditions for sparse wire grids. IEEE Trans. Antennas Propag. 2000, 48, 720–727. [Google Scholar] [CrossRef]
- Macfarlane, G.G. Surface impedance of an infinite parallel-wire grid at oblique angles of incidence. J. Inst. Electr. Eng. Part IIIA Radiolocation 1946, 93, 1523–1527. [Google Scholar] [CrossRef]
- Wait, J.R. Effective impedance of a wire grid parallel to the earth’s surface. IRE Trans. Antennas Propag. 1962, 10, 538–542. [Google Scholar] [CrossRef]
- Richmond, J.H. Radiation and Scattering by Thin-Wire Structures in the Complex Frequency Domain; NASA Technical Reports Server (NTRS): Washington, DC, USA, 1974. [Google Scholar]
- Wait, J.R.; Spies, K. On the radiation from a vertical dipole with an inductive wire-grid ground system. IEEE Trans. Antennas Propag. 1970, 18, 558–560. [Google Scholar] [CrossRef]
- Zheng, K.; Yang, M.; Tu, X.; Qin, S.; An, K. Analysis of Waveform Parameters for Multi-segments of Wire Grids of Bounded Wave Simulator. In Proceedings of the 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), Taiyuan, China, 18–21 July 2019; pp. 1–3. [Google Scholar]
- Nagy, A.W. An Experimental Study of Parasitic Wire Reflectors on 2.5 Meters. Proc. Inst. Radio Eng. 1936, 24, 233–254. [Google Scholar] [CrossRef]
- Saenz, E.; Gonzalo, R.; Ederra, I. Design of a planar meta-surface based on dipoles and wires for antenna applications. Proceed EuCAP 2006, 626, 167. [Google Scholar]
- Feresidis, A.P.; Apostolopoulos, G.; Serfas, N.; Vardaxoglou, J.C. Closely coupled metallodielectric electromagnetic band-gap structures formed by double-layer dipole and tripole arrays. IEEE Trans. Antennas Propag. 2004, 52, 1149–1158. [Google Scholar] [CrossRef]
- Belov, P.A.; Simovski, C.R.; Tretyakov, S.A. Two-dimensional electromagnetic crystals formed by reactively loaded wires. Phys. Rev. E 2002, 66, 036610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belov, P.A.; Tretyakov, S.A.; Viitanen, A.J. Dispersion and Reflection Properties of Artificial Media Formed By Regular Lattices of Ideally Conducting Wires. J. Electromagn. Waves Appl. 2002, 16, 1153–1170. [Google Scholar] [CrossRef] [Green Version]
- Moses, C.A.; Engheta, N. Electromagnetic wave propagation in the wire medium: A complex medium with long thin inclusions. Wave Motion 2001, 34, 301–317. [Google Scholar] [CrossRef] [Green Version]
- Taub, J.J.; Goldberg, J. A New Technique for Multimode Power Measurement. PGMTT Natl. Symp. Dig. 1961, 62, 64–69. [Google Scholar] [CrossRef]
- Schiffman, B.M.; Young, L.; Larrick, R.B. Wire-Grid Waveguide Bolometers for Multimode Power Measurement. IEEE Trans. Microw. Theory Tech. 1965, 13, 427–431. [Google Scholar] [CrossRef]
- Wait, J.R. On the theory of scattering from a periodically loaded wire grid. IEEE Trans. Antennas Propag. 1977, 25, 409–413. [Google Scholar] [CrossRef]
- Ikonen, P.M.T.; Saenz, E.; Gonzalo, R.; Tretyakov, S.A. Modeling and Analysis of Composite Antenna Superstrates Consisting on Grids of Loaded Wires. IEEE Trans. Antennas Propag. 2007, 55, 2692–2700. [Google Scholar] [CrossRef] [Green Version]
- Malyuskin, O.; Fusco, V.F.; Schuchinsky, A. Modelling of impedance-loaded wire frequency-selective surfaces with tunable reflection and transmission characteristics. Int. J. Numer. Model. 2008, 21, 439–453. [Google Scholar] [CrossRef]
- Sharp, E. Electromagnetic theory of wire-grid lens HF antennas. Antennas Propag. Soc. Int. Symp. 1964, 13, 7–12. [Google Scholar]
- Tanner, R.; Andreasen, M. A wire-grid lens antenna of wide application part I: The wire-grid lens-Concept and experimental confirmation. IRE Trans. Antennas Propag. 1962, 10, 408–415. [Google Scholar] [CrossRef]
- Jones, E. Measured angle-diversity performance of the wire-grid lens antenna. IEEE Trans. Antennas Propag. 1967, 15, 484–486. [Google Scholar] [CrossRef]
- Jones, E. Measured performance of the wire-grid lens HF antenna (Luneburg lens). In Proceedings of the 1966 Antennas and Propagation Society International Symposium, Palo Alto, CA, USA, 5–7 December 1966; pp. 131–137. [Google Scholar]
- Jones, E.; Tanner, R.; Sharp, E.; Andreasen, M.; Harris, F. Performance of the wire-grid lens HF antenna. IEEE Trans. Antennas Propag. 1967, 15, 744–749. [Google Scholar] [CrossRef]
- Andreasen, M.; Tanner, R. A wire-grid lens antenna of wide application part II: Wave-propagating properties of a pair of wire grids with squre, hexagonal or triangular mesh. IRE Trans. Antennas Propag. 1962, 10, 416–429. [Google Scholar] [CrossRef]
- Rahmat-Samii, Y.; Lee, S.-W. Vector diffraction analysis of reflector antennas with mesh surfaces. IEEE Trans. Antennas Propag. 1985, 33, 76–90. [Google Scholar] [CrossRef]
- Farr, E.G. Analysis of the impulse radiating antenna. In Proceedings of the IEEE Antennas and Propagation Society International Symposium 1992 Digest, Chicago, IL, USA, 18–25 June 1992; Volume 3, pp. 1232–1235. [Google Scholar]
- Sarkar, T.; Rao, S. The application of the conjugate gradient method for the solution of electromagnetic scattering from arbitrarily oriented wire antennas. IEEE Trans. Antennas Propag. 1984, 32, 398–403. [Google Scholar] [CrossRef]
- Cwik, T.; Mittra, R. Spectral domain solution of scattering from periodic surfaces using the FFT. In Proceedings of the 1984 Antennas and Propagation Society International Symposium, Boston, MA, USA, 25–29 June 1984; pp. 913–916. [Google Scholar]
- Christodoulou, C.G.; Kauffman, J. On the electromagnetic scattering from infinite rectangular grids with finite conductivity. IEEE Trans. Antennas Propag. 1986, 34, 144–154. [Google Scholar] [CrossRef]
- Christodoulou, C.G. Electromagnetic scattering from skew-symmetric metallic grids. Microw. Opt. Technol. Lett. 1993, 6, 777–782. [Google Scholar] [CrossRef]
- Sarkar, T.; Arvas, E.; Rao, S. Application of FFT and the conjugate gradient method for the solution of electromagnetic radiation from electrically large and small conducting bodies. IEEE Trans. Antennas Propag. 1986, 34, 635–640. [Google Scholar] [CrossRef]
- Christodoulou, C.G.; Yin, S.; Kauffman, J.F. Effects of the Schottky impedance of wire contact points on the reflection properties of a mesh. IEEE Trans. Antennas Propag. 1988, 36, 1714–1721. [Google Scholar] [CrossRef]
- Andreasen, M. Scattering from bodies of revolution. IEEE Trans. Antennas Propag. 1965, 13, 303–310. [Google Scholar] [CrossRef]
- Shaeffer, J. EM scattering from bodies of revolution with attached wires. IEEE Trans. Antennas Propag. 1982, 30, 426–431. [Google Scholar] [CrossRef]
- Glisson, A.; Butler, C. Analysis of a wire antenna in the presence of a body of revolution. IEEE Trans. Antennas Propag. 1980, 28, 604–609. [Google Scholar] [CrossRef]
- Nagy, L. Analysis of Bodies of Revolution Antennas with Circular Ground Plane. In Proceedings of the 1991 21st European Microwave Conference, Stuttgart, Germany, 9–12 September 1991; pp. 769–773. [Google Scholar]
- Kawakami, H.; Sato, G. Broad-band characteristics of rotationally symmetric antennas and thin wire constructs. IEEE Trans. Antennas Propag. 1987, 35, 26–32. [Google Scholar] [CrossRef]
- Li, R.-L.; Nakano, H. Numerical analysis of arbitrarily shaped probe-excited single-arm printed wire antennas. IEEE Trans. Antennas Propag. 1998, 46, 1307–1317. [Google Scholar]
- Knepp, D.; Goldhirsh, J. Numerical analysis of electromagnetic radiation properties of smooth conducting bodies of arbitrary shape. IEEE Trans. Antennas Propag. 1972, 20, 383–388. [Google Scholar] [CrossRef]
- Wang, J.J.H. Numerical analysis of three-dimensional arbitrarily-shaped conducting scatterers by trilateral surface cell modelling. Radio Sci. 1978, 13, 947–952. [Google Scholar] [CrossRef]
- Waterman, P.C. Matrix formulation of electromagnetic scattering. Proc. IEEE 1965, 53, 805–812. [Google Scholar] [CrossRef]
- Baghdasarian, A.; Angelakos, D.J. Scattering from conducting loops and solution of circular loop antennas by numerical methods. Proc. IEEE 1965, 53, 818–822. [Google Scholar] [CrossRef]
- Kamardin, K.; Khamas, S. Stationary Phase Analysis of a Printed Circular Wire Loop Antenna with Dielectric Superstrate Cover Based on an Efficient Moment Method. In Proceedings of the 2007 International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, Hangzhou, China, 16–17 August 2007; pp. 710–713. [Google Scholar]
- Richmond, J. A wire-grid model for scattering by conducting bodies. IEEE Trans. Antennas Propag. 1966, 14, 782–786. [Google Scholar] [CrossRef]
- Chen, W.-T.; Chuang, H.-R. Numerical computation of human interaction with arbitrarily oriented superquadric loop antennas in personal communications. IEEE Trans. Antennas Propag. 1998, 46, 821–828. [Google Scholar] [CrossRef]
- Richmond, J.H. Digital computer solutions of the rigorous equations for scattering problems. Proc. IEEE 1965, 53, 796–804. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Curtis, W.; Vincent, M. Radar cross section of a rectangular conducting plate by wire mesh modeling. IEEE Trans. Antennas Propag. 1974, 22, 718–720. [Google Scholar]
- Lin, J.-L.; Curtis, W.; Vincent, M. Radar cross section of a conducting plate by wire mesh modeling. In Proceedings of the 1973 Antennas and Propagation Society International Symposium, Boulder, CO, USA, 22–24 April 1973; pp. 422–425. [Google Scholar]
- Simpson, T. The theory of top-loaded antennas: Integral equations for the currents. IEEE Trans. Antennas Propag. 1971, 19, 186–190. [Google Scholar] [CrossRef]
- Agrawal, P.; Bailey, M. An analysis technique for microstrip antennas. IEEE Trans. Antennas Propag. 1977, 25, 756–759. [Google Scholar] [CrossRef]
- Conti, R.; Toth, J.; Dowling, T.; Weiss, J. The wire grid microstrip antenna. IEEE Trans. Antennas Propag. 1981, 29, 157–166. [Google Scholar] [CrossRef]
- Hildebrand, L.T. The Analysis of Microstrip Wire-Grid Antenna Arrays; University of Pretoria: Pretoria, South Africa, 2010. [Google Scholar]
- Lee, S.-W.; Zarrillo, G.; Law, C.-L. Simple formulas for transmission through periodic metal grids or plates. IEEE Trans. Antennas Propag. 1982, 30, 904–909. [Google Scholar]
- Wang, J.; Ryan, C. Application of wire-grid modelling to the design of low-profile aircraft antenna. In Proceedings of the 1977 Antennas and Propagation Society International Symposium, Stanford, CA, USA, 20–22 June 1977; pp. 222–225. [Google Scholar]
- Owen, J. Wire grid modelling of helicopter HF aerials. In Proceedings of the 1980 Antennas and Propagation Society International Symposium, Quebec, QB, Canada, 2–6 June 1980; pp. 722–725. [Google Scholar]
- Luu, Q.C.; Kubina, S.J.; Trueman, C.W.; De Carlo, D. Study of HF antenna coupling modes on the EC-130 aircraft. In Proceedings of the 1992 Symposium on Antenna Technology and Applied Electromagnetics, Winnipeg, MB, Canada, 5–7 August 1992; pp. 223–232. [Google Scholar]
- Austin, B.A.; Najm, R.K. Wire-grid modelling of vehicles with flush-mounted window antennas. In Proceedings of the 1991 Seventh International Conference on Antennas and Propagation, ICAP 91 (IEE), York, UK, 15–18 April 1991; Volume 2, pp. 950–953. [Google Scholar]
- Imbriale, W.A.; Galindo-Israel, V.; Rahmat-Samii, Y. On the reflectivity of complex mesh surfaces (spacecraft reflector antennas). IEEE Trans. Antennas Propag. 1991, 39, 1352–1365. [Google Scholar] [CrossRef]
- Ghaderi, P.; Aliakbarian, H.; Sadeghzadeh, R. Integration of one dimentional wire grid antennas with solar cells for LEO satellite application. In Proceedings of the 2015 Loughborough Antennas & Propagation Conference (LAPC), Loughborough, UK, 2–3 November 2015; pp. 1–4. [Google Scholar]
- Sarolic, A.; Modlic, B.; Poljak, D. Measurement validation of ship wiregrid models of different complexity. In Proceedings of the 2001 IEEE EMC International Symposium. Symposium Record. International Symposium on Electromagnetic Compatibility (Cat. No.01CH37161), Montreal, QC, Canada, 13–17 August 2001; Volume 1, pp. 147–150. [Google Scholar]
- McLachlan, J.; Antar, Y.M.M.; Kubina, S.J.; Kashyap, S. Electromagnetic modelling of a warship at high frequency. In Proceedings of the 1992 Symposium on Antenna Technology and Applied Electromagnetics, Winnipeg, MB, Canada, 5–7 August 1992; pp. 662–667. [Google Scholar]
- Lin, Y.; Richmond, J. EM modeling of aircraft at low frequencies. IEEE Trans. Antennas Propag. 1975, 23, 53–56. [Google Scholar] [CrossRef]
- Palmer, K.D.; Cloete, J.H. Synthesis of the microstrip wire grid array. In Proceedings of the Tenth International Conference on Antennas and Propagation (Conf. Publ. No. 436), Edinburgh, UK, 14–17 April 1997; Volume 1, pp. 114–118. [Google Scholar]
- McCormick, S.A.; Coburn, W.O. Microstrip grid array fed against an EBG. In Proceedings of the 2016 IEEE/ACES International Conference on Wireless Information Technology and Systems (ICWITS) and Applied Computational Electromagnetics (ACES), Honolulu, HI, USA, 13–18 March 2016; pp. 1–2. [Google Scholar]
- Hildebrand, L.T.; McNamara, D.A. Experimental verification of an integral equation analysis of etched wire-grid antenna arrays. Proc. IEEE Antennas Propag. Soc. Int. Symp. 1993, 3, 1494–1497. [Google Scholar]
- Gallagher, J.G.; Brammer, D.J. Electromagnetic Scattering by an Infinite Array of Periodic Broken Wires Buried in a Dielectric Sheet. In Proceedings of the 1983 13th European Microwave Conference, Nurnberg, Germany, 3–8 September 1983; pp. 778–782. [Google Scholar]
- Schneider, S.W.; Munk, B.A. The scattering properties of “Super Dense” arrays of dipoles. IEEE Trans. Antennas Propag. 1994, 42, 463–472. [Google Scholar] [CrossRef]
- Lockyer, D.; Moore, C.; Seager, R.; Simpkin, R.; Vardaxoglou, J.C. Coupled dipole arrays as reconfigurable frequency selective surfaces. Electron. Lett. 1994, 30, 1258–1259. [Google Scholar] [CrossRef]
- Dmitriev, D.D.; Ratushnyak, V.N.; Gladyshev, A.B.; Buravleva, M.E.; Chernovolenko, A.I. Synthesis of Directivity Pattern for Various Antenna Arrays Configurations of Vertical Atmospheric Sensing Radar Station. In Proceedings of the 2021 International Siberian Conference on Control and Communications (SIBCON), Kazan, Russia, 13–15 May 2021; pp. 1–5. [Google Scholar]
- Richmond, J.H. Scattering by an Arbitrary Array of Parallel Wires. IEEE Trans. Microw. Theory Tech. 1965, 13, 408–412. [Google Scholar] [CrossRef]
- Harrington, R.F. The method of moments in electromagnetics. J. Electromagn. Waves Appl. 1987, 1, 181–200. [Google Scholar] [CrossRef]
- Thiele, G.; Newhouse, T. A hybrid technique for combining moment methods with the geometrical theory of diffraction. IEEE Trans. Antennas Propag. 1975, 23, 62–69. [Google Scholar] [CrossRef]
- Fan, D. A new approach to diffraction analysis of conductor grids. I. Parallel-polarized incident plane waves. IEEE Trans. Antennas Propag. 1989, 37, 84–88. [Google Scholar] [CrossRef]
- Fan, D. A new approach to diffraction analysis of conductor grids. II. Perpendicular-polarized incident plane waves. IEEE Trans. Antennas Propag. 1989, 37, 89–93. [Google Scholar] [CrossRef]
- Ferguson, T.R. Efficient solution of large moments problems: Wire grid modeling criteria and conversion to surface currents. Appl. Comput. Electromagn. Soc. J. 2022, 3, 55–81. [Google Scholar]
- Geranmayeh, A.; Moini, R.; Sadeghi, S.H.H.; Deihimi, A. A fast wavelet-based moment method for solving thin-wire EFIE. IEEE Trans. Magn. 2006, 42, 575–578. [Google Scholar] [CrossRef]
- Lewis, G.; Fortuny-Guasch, J.; Sieber, A. Bistatic radar scattering experiments of parallel wire grids. IEEE Int. Geosci. Remote Sens. Symp. 2002, 1, 444–446. [Google Scholar]
- Kolev, N.Z. An application of the method of moments for computation of RCS of PEC wire-grid models of complicated objects. In Proceedings of the 1998 International Conference on Mathematical Methods in Electromagnetic Theory, MMET 98 (Cat. No.98EX114), Kharkov, Ukraine, 2–5 June 1998; Volume 2, pp. 499–501. [Google Scholar]
- Abd-Alhameed, R.A.; Zhou, D.; See, C.H.; Excell, P.S. A Wire-Grid Adaptive-Meshing Program for Microstrip-Patch Antenna Designs Using a Genetic Algorithm [EM Programmer’s Notebook]. IEEE Antennas Propag. Mag. 2009, 51, 147–151. [Google Scholar] [CrossRef]
- Gurel, L. Design and Simulation of Circular Arrays of Trapezoidal-Tooth Log-Periodic Antennas via Genetic Optimization. Prog. Electromagn. Res. 2008, 85, 243–260. [Google Scholar] [CrossRef] [Green Version]
- Lindell, I.V.; Akimov, V.P.; Alanen, E. Image Theory for Dipole Excitation of Fields above and below a Wire Grid with Square Cells. IEEE Trans. Electromagn. Compat. 1986, 28, 107–110. [Google Scholar] [CrossRef]
- Harrington, R.; Mautz, J. Theory of characteristic modes for conducting bodies. IEEE Trans. Antennas Propag. 1971, 19, 622–628. [Google Scholar] [CrossRef]
- Mayhan, J.T. Characteristic modes and wire grid modeling. IEEE Trans. Antennas Propag. 1990, 38, 457–469. [Google Scholar] [CrossRef]
- Chung, A.M.; Balmain, K.G. Tray-shape effect in a computational model of microwave heating. Can. J. Electr. Comput. Eng. 1995, 20, 173–178. [Google Scholar] [CrossRef]
- Tsunekawa, K.; Ando, A. Advanced wire grid method for solving the scattered field of a lossy dielectric object. IEEE Antennas Propag. Soc. Int. Symp. 1992, 2, 797–800. [Google Scholar]
- Goňa, S.; Jilková, J. Homogenization of composite consisting from dielectric slab and wire grid assuming negative and non-negative permittivity, a comparison. In Proceedings of the 15th Conference on Microwave Techniques COMITE 2010, Brno, Czech Republic, 19–21 April 2010; pp. 209–212. [Google Scholar]
- Yung, E.K.N.; Cheng, C.C. Scattering of electromagnetic waves by a wire grid of hexagonal meshes. Dig. Antennas Propag. Soc. Int. Symp. 1989, 2, 730–733. [Google Scholar]
- Ghaffari-Miab, M.; Firouzeh, Z.H.; Faraji-Dana, R.; Moini, R.; Sadeghi, S.H.H.; Vandenbosch, G.A.E. Time-domain MoM for the analysis of thin-wire structures above half-space media using complex-time Green’s functions and band-limited quadratic B-spline temporal basis functions. Eng. Anal. Bound. Elem. 2012, 36, 1116–1124. [Google Scholar] [CrossRef]
- Štumpf, M.; Lager, I.E.; Antonini, G. Time-Domain Analysis of Thin-Wire Structures Based on the Cagniard-DeHoop Method of Moments. IEEE Trans. Antennas Propag. 2022, 70, 4655–4662. [Google Scholar] [CrossRef]
- Kedzia, J.C.; Jecko, B. Frequency and Time Domain Analysis of Microstrip Antennas. In Proceedings of the 1985 15th European Microwave Conference, Paris, France, 9–13 September 1985; pp. 1045–1051. [Google Scholar]
- Rao, S. A Simple and Efficient Method of Moments Solution Procedure for Solving Time-Domain Integral Equation—Application to Wire-Grid Model of Perfect Conducting Objects. IEEE J. Multiscale Multiphysics Comput. Tech. 2019, 4, 57–63. [Google Scholar] [CrossRef]
- Kontorovich, M.I.; Yu, V.P.; Petrun’kin, N.A.; Yesepkina, M.I. The coefficient of reflection of a plane electromagnetic wave from a plane wire mesh. Radio Eng. Electron. Phys. 1962, 7, 222–231. (In Russian) [Google Scholar]
- Kontorovich, M.I.; Petrunkin, V.Y.; Esepkina, N.A.; Astrakhan, M.I. Reflection factor of a plane electromagnetic wave reflecting from a plane wire grid. Radio Eng. Electron. Phys. 1962, 7, 239–249. (In Russian) [Google Scholar]
- Kontorovich, M.I. Averaged boundary conditions at the surfaceof a grating with square mesh. Radio Eng. Electron. Phys. 1963, 8, 1446–1454. (In Russian) [Google Scholar]
- Kontorovich, M.I.; Astrakhan, M.I.; Akimov, V.P.; Fersman, G.A. Electrodynamics of Grid Structures; Radio i Svyaz: Moscow, Russia, 1987. (In Russian) [Google Scholar]
- Castillo, J.P.; Chen, K.C.; Singaraju, B.K. Calculation of currents induced on a disk by a wire grid code. Interact. Note 1975, 230, 14. [Google Scholar]
- Burke, G.J.; Poggio, A.J.; Logan, J.C.; Rockway, J.W. Numerical Electromagnetic Code (NEC). In Proceedings of the 1979 IEEE International Symposium on Electromagnetic Compatibility, San Diego, CA, USA, 9–11 October 1979; pp. 1–3. [Google Scholar]
- Çakir, G.; Sevgi, L. Radar cross-section (RCS) analysis of high frequency surface wave radar targets. Turk. J. Electr. Eng. Comput. Sci. 2010, 18, 457–468. [Google Scholar] [CrossRef]
- Trueman, C.W. Wire-Grid Model Construction and Verification Using Programs MESHES, FNDRAD and CHECK; Department of Electrical and Computer Engineering, Concordia University: Montreal, QB, Canada, 1990. [Google Scholar]
- Trueman, C.W.; Kubina, S.J. Verifying wire-grid model integrity with program ‘Check’. Appl. Comput. Electromagn. Soc. J. 1990, 5, 17–42. [Google Scholar]
- Yang, X.H.; Shafai, L.; Sebak, A. A comparison study on wire-grid model and point matching technique with subdomain basis functions. In Proceedings of the 1992 Symposium on Antenna Technology and Applied Electromagnetics, Winnipeg, MB, Canada, 5–7 August 1992; pp. 656–661. [Google Scholar]
- Elliniadis, P.; Breakall, J.K. An investigation of near fields for shipboard antennas using the numerical electromagnetics code (NEC). Dig. Antennas Propag. Soc. Int. Symp. 1989, 1, 236–239. [Google Scholar]
- Burke, G.J. Recent advances to NEC: Applications and validation. AGARD Lect. Ser. 1989, 165, 25. [Google Scholar]
- McKaughan, M.E. Coast Guard applications of NEC. IEEE Antennas Propag. Soc. Symp. 2004, 3, 2879–2882. [Google Scholar]
- Colgan, M.A.; Mirotznik, M.S. Design and Fabrication of 3D Wire Grid Antenna An Integrated Method for Optimization in Constrained Volumes. In Proceedings of the 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, Montreal, QC, Canada, 5–10 July 2020; pp. 1553–1554. [Google Scholar]
- Chao, H.H.; Strait, B.S. Computer Programs for Radiation and Scattering by Arbitrary Configurations of Bent Wires; Syracuse University NY Department of Electrical Engineering: Syracuse, NY, USA, 1970. [Google Scholar]
- Richmond, J.H. Computer Program for Thin-Wire Structures in a Homogeneous Conducting Medium; NASA Technical Reports Server (NTRS): Washington, DC, USA, 1974. [Google Scholar]
- Coffey, E.; Thomas, D. Wire grid modeling with interactive graphics. In Proceedings of the 1985 Antennas and Propagation Society International Symposium, Vancouver, BC, Canada, 17–21 June 1985; pp. 269–271. [Google Scholar]
- Tam, D.W.S.; Azu, C. A computer-aided design technique for EMC analysis. In Proceedings of the International Symposium on Electromagnetic Compatibility, Atlanta, GA, USA, 14–18 August 1995; pp. 234–235. [Google Scholar] [CrossRef]
- Lee, K.S.H.; Marin, L.; Castillo, J.P. Limitations of Wire-Grid Modeling of a Closed Surface. IEEE Trans. Electromagn. Compat. 1976, 18, 123–129. [Google Scholar] [CrossRef]
- Ludwig, A. Wire grid modeling of surfaces. IEEE Trans. Antennas Propag. 1987, 35, 1045–1048. [Google Scholar] [CrossRef]
- Paknys, R.J. The near field of a wire grid model. IEEE Trans. Antennas Propag. 1991, 39, 994–999. [Google Scholar] [CrossRef]
- Rubinstein, A.; Rachidi, F.; Rubinstein, M. On wire-grid representation of solid metallic surfaces. IEEE Trans. Electromagn. Compat. 2005, 47, 192–195. [Google Scholar] [CrossRef]
- Rubinstein, A.; Rubinstein, M.; Rachidi, F. A physical interpretation of the equal area rule. IEEE Trans. Electromagn. Compat. 2006, 48, 258–263. [Google Scholar] [CrossRef]
- Rubinstein, A.; Rostamzadeh, C.; Rubinstein, M.; Rachidi, F. On the use of the equal area rule for the wire-grid representation of metallic surfaces. In Proceedings of the 2006 17th International Zurich Symposium on Electromagnetic Compatibility, Singapore, 28 February–3 March 2006; pp. 212–215. [Google Scholar]
- Golden, T. Equivalent Wire-Grids for the Electromagnetic Modeling of Conducting Surfaces; Gyan Books: New Delhi, India, 2022. [Google Scholar]
- Trueman, C.W.; Kubina, S.J. Fields of complex surfaces using wire grid modelling. IEEE Trans. Magn. 1991, 27, 4262–4267. [Google Scholar] [CrossRef]
- Awan, Z.A.; Rizvi, A.A. Effects of Random Positioning Errors Upon Electromagnetic Characteristics of a Wire Grid. J. Electromagn. Waves Appl. 2011, 25, 351–364. [Google Scholar] [CrossRef]
- Tulyathan, P.; Newman, E. The circumferential variation of the axial component of current in closely spaced thin-wire antennas. IEEE Trans. Antennas Propag. 1979, 27, 46–50. [Google Scholar] [CrossRef]
- Sarkar, T.; Siarkiewicz, K.; Stratton, R. Survey of numerical methods for solution of large systems of linear equations for electromagnetic field problems. IEEE Trans. Antennas Propag. 1981, 29, 847–856. [Google Scholar] [CrossRef]
- Ferguson, T.R.; Balestri, R.J. Solution of Large Wire Grid Moments Problems. In Proceedings of the IEEE 1976 International Symposium on Electromagnetic Compatibility, Washington, DC, USA, 13–15 July 1976; pp. 1–5. [Google Scholar]
- Yung, E.K.N.; Law, C.L. Scattering of EM waves by a wire grid of linear and non-linear wire segments. In Proceedings of the Antennas and Propagation Society Symposium 1991 Digest, London, ON, Canada, 24–28 June 1991; Volume 2, pp. 806–809. [Google Scholar]
- Burton, M.; Kashyap, S. Using software to push back the limits of the moment method. In Proceedings of the Antennas and Propagation Society Symposium 1991 Digest, London, ON, Canada, 24–28 June 1991; Volume 3, pp. 1504–1507. [Google Scholar]
- Shaeffer, J. Million plus unknown MOM LU factorization on a PC. In Proceedings of the 2015 International Conference on Electromagnetics in Advanced Applications (ICEAA), Turin, Italy, 7–11 September 2015; pp. 62–65. [Google Scholar]
- Ferguson, T.; Lehman, T.; Balestri, R. Efficient solution of large moments problems: Theory and small problem results. IEEE Trans. Antennas Propag. 1976, 24, 230–235. [Google Scholar] [CrossRef]
- Fourie, A.P.C.; Nitch, D.C. A fast sparse iterative method (SIM) for method of moments. In Proceedings of the IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting, Seattle, WA, USA, 20–24 June 1994; Volume 2, pp. 1146–1149. [Google Scholar]
- Fourie, A.P.C.; Nitch, D.C. Comparing the sparse iterative method (SIM) with the banded Jacobi and conjugate gradient techniques. In Proceedings of the IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting, Seattle, WA, USA, 20–24 June 1994; Volume 2, pp. 1181–1184. [Google Scholar]
- Davidson, D.B. Parallel Algorithms for Electromagnetic Moment Method Formulations; Stellenbosch University: Stellenbosch, South Africa, 1991. [Google Scholar]
- Rubinstein, A.; Rachidi, F.; Rubinstein, M.; Reusser, B. A parallel implementation of NEC for the analysis of large structures. IEEE Trans. Electromagn. Compat. 2003, 45, 177–188. [Google Scholar] [CrossRef]
- Excell, P.S.; Porter, G.J.; Tang, Y.K.; Yip, K.W. Re-working of two standard moment-method codes for execution on parallel processors. Int. J. Numer. Model. Electron. Netw. Devices Fields 1995, 8, 243–248. [Google Scholar] [CrossRef]
- Reeve, J. Running SuperNEC on the 22 processor ibm-sp2 at southampton university. Appl. Comput. Electromagn. Soc. J. 2022, 13, 99–106. [Google Scholar]
- Topa, T.; Karwowski, A.; Noga, A. Using GPU with CUDA to Accelerate MoM-Based Electromagnetic Simulation of Wire-Grid Models. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 342–345. [Google Scholar] [CrossRef]
- Kraus, J.D.; Marhefka, R.J. Antennas for All Applications, 3rd ed.; McGraw-Hill: New Delhi, India, 2006; p. 892. [Google Scholar]
- Pocklington, H.C. Electrical oscillations in wires. Math. Proc. Camb. Philos. Soc. 1897, 1, 324–332. [Google Scholar]
- Hallen, E. Theoretical investigation into the transmitting and receiving qualities of antennas. Nova Acta 1938, 11, 1–44. [Google Scholar]
- Gee, S.; Miller, E.K.; Poggio, A.J.; Selden, E.S.; Burke, G.J. Computer Techniques for Electromagnetic Scattering and Radiation Analyses. In Proceedings of the 1971 IEEE International Electromagnetic Compatibility Symposium Record, Philadelphia, PA, USA, 13–15 July 1971; pp. 1–10. [Google Scholar]
- Stutzman, W.L.; Thiele, G.A. Antenna Theory and Design, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1998; p. 598. [Google Scholar]
- Joy, V.; Rajeshwari, G.L.; Singh, H.; Nair, R.U. Fundamentals of RCS Prediction Methodology Using Parallelized Numerical Electromagnetics Code (NEC) and Finite Element Pre-Processor; Springer Nature: Berlin/Heidelberg, Germany, 2021; p. 84. [Google Scholar]
- Rao, B.R.; Jones, D.N.; Debroux, P.S. Resistivity Tapered wideband high frequency antennas for tactical communications. Tactical Commun. Conf. 1992, 1, 271–279. [Google Scholar]
- Song, J.M.; Chew, W.C. Moment method solutions using parametric geometry. J. Electromagn. Waves Appl. 1995, 9, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Poggio, A.J.; Miller, E.K. Integral Equation Solutions of Three-Dimensional Scattering Problems; MB Associates: Newton, MA, USA, 1970. [Google Scholar]
- Wang, J.; Papanicolopulos, C. Surface-patch modeling of scatterers of arbitrary shapes. In Proceedings of the 1979 Antennas and Propagation Society International Symposium, Seattle, WA, USA, 18–22 June 1979; pp. 159–162. [Google Scholar]
- van der Pauw, L.J. The Radiation of Electromagnetic Power by Microstrip Configurations. IEEE Trans. Microw. Theory Tech. 1977, 25, 719–725. [Google Scholar] [CrossRef]
- Perlmutter, P.; Shtrikman, S.; Treves, D. Electric surface current model for the analysis of microstrip antennas with application to rectangular elements. IEEE Trans. Antennas Propag. 1985, 33, 301–311. [Google Scholar] [CrossRef]
- Chew, W.; Kong, J. Analysis of a circular microstrip disk antenna with a thick dielectric substrate. IEEE Trans. Antennas Propag. 1981, 29, 68–76. [Google Scholar] [CrossRef]
- Ashkenazy, J.; Shtrikman, S.; Treves, D. Radiation patterns of half-wavelength microstrip elements on cylindrical bodies. In Proceedings of the 1985 Antennas and Propagation Society International Symposium, Vancouver, BC, Canada, 17–21 June 1985; pp. 401–404. [Google Scholar]
- Ashkenazy, J.; Shtrikman, S.; Treves, D. Electric surface current model for the analysis of microstrip antennas on cylindrical bodies. IEEE Trans. Antennas Propag. 1985, 33, 295–300. [Google Scholar] [CrossRef]
- Cooray, F.R.; Kot, J.S. Analysing radiation from a cylindrical-rectangular microstrip patch antenna loaded with a superstrate and an air gap, using the electric surface current model. In Proceedings of the 2006 First European Conference on Antennas and Propagation, Nice, France, 6–10 November 2006; pp. 1–5. [Google Scholar]
- Cohen, M. Application of the reaction concept to scattering problems. IRE Trans. Antennas Propag. 1955, 3, 193–199. [Google Scholar] [CrossRef]
- Harrington, R.F. Time-Harmonic Electromagnetic Fields; McGraw-Hill: New York, NY, USA, 1961; pp. 340–345. [Google Scholar]
- Richmond, J. A reaction theorem and its application to antenna impedance calculations. IRE Trans. Antennas Propag. 1961, 9, 515–520. [Google Scholar] [CrossRef]
- Rumsey, V.H. Reaction concept in electromagnetic theory. Phys. Rev. 1954, 94, 1483. [Google Scholar] [CrossRef]
- Wang, N.; Richmond, J.; Gilreath, M. Sinusoidal reaction formulation for radiation and scattering from conducting surfaces. IEEE Trans. Antennas Propag. 1975, 23, 376–382. [Google Scholar] [CrossRef] [Green Version]
- Richmond, J. Admittance matrix of coupled V antennas. IEEE Trans. Antennas Propag. 1970, 18, 820–821. [Google Scholar] [CrossRef]
- Agrawal, P.; Thiele, G. Analysis and design of TEM-line antennas. In Proceedings of the 1971 Antennas and Propagation Society International Symposium, Los Angeles, CA, USA, 22–24 September 1971; pp. 41–44. [Google Scholar]
- Peterson, A.F.; Bibby, M.M. An Introduction to the Locally-Corrected Nyström Method; Morgan & Claypool: San Rafael, CA, USA, 2010. [Google Scholar]
- Peterson, A.F. Accuracy of currents produced by the locally-corrected Nyström method and the method of moments when used with higher order representations. Appl. Comput. Electromagn. Soc. J. 2002, 17, 74–83. [Google Scholar]
- Ubeda, E.; Rius, M.J.; Heldring, A. Nonconforming discretization of the electric-field integral equation for closed perfectly conducting objects. IEEE Trans. Antennas Propag. 2014, 62, 4171–4186. [Google Scholar] [CrossRef]
- Ubeda, E.; Rius, M.J.; Heldring, A.; Sekulic, I. Volumetric testing parallel to the boundary surface for a nonconforming discretization of the electric-field integral equation. IEEE Trans. Antennas Propag. 2015, 63, 3286–3291. [Google Scholar] [CrossRef] [Green Version]
- Quarfoth, R.; Sievenpiper, D. Simulation of anisotropic artificial impedance surface with rectangular and diamond lattices. In Proceedings of the 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), Spokane, WA, USA, 3–8 July 2011; pp. 1498–1501. [Google Scholar]
- Holloway, C.L.; Kuester, E.F.; Gordon, J.A.; O’Hara, J.; Booth, J.; Smith, D.R. An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials. IEEE Antennas Propag. Mag. 2012, 54, 10–35. [Google Scholar] [CrossRef]
- Lee, J.; Sievenpiper, D. Extracting surface impedance method for an anisotropic polygon unit cell. In Proceedings of the 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Phuket, Thailand, 30 October–2 November 2017; pp. 1943–1944. [Google Scholar]
- Lee, J.; Sievenpiper, D.F. Patterning Technique for Generating Arbitrary Anisotropic Impedance Surfaces. IEEE Trans. Antennas Propag. 2016, 64, 4725–4732. [Google Scholar] [CrossRef] [Green Version]
- Quarfoth, R.G.; Sievenpiper, D.F. Nonscattering waveguides based on tensor impedance surfaces. IEEE Trans. Antennas Propag. 2015, 63, 1746–1755. [Google Scholar] [CrossRef] [Green Version]
- Patel, A.M.; Grbic, A. Transformation electromagnetics devices based on printed-circuit tensor impedance surfaces. IEEE Trans. Microw. Theory Tech. 2014, 62, 1102–1111. [Google Scholar] [CrossRef] [Green Version]
- Quarfoth, R.; Sievenpiper, D. Surface wave scattering reduction using beam shifters. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 963–966. [Google Scholar] [CrossRef]
- Sievenpiper, D.; Colburn, J.; Fong, B.; Ottusch, J.; Visher, J. Holographic artificial impedance surfaces for conformal antennas. In Proceedings of the 2005 IEEE Antennas and Propagation Society International Symposium, Washington, DC, USA, 3–8 July 2005; Volume 1B, pp. 256–259. [Google Scholar]
- Quarfoth, R.; Sievenpiper, D. Artificial tensor impedance surface waveguides. IEEE Trans. Antennas Propag. 2013, 61, 3597–3606. [Google Scholar] [CrossRef]
- Holloway, C.L.; Love, D.C.; Kuester, E.F.; Gordon, J.A.; Hill, D.A. Use of generalized sheet transition conditions to model guided waves on metasurfaces/metafilms. IEEE Trans. Antennas Propag. 2012, 60, 5173–5186. [Google Scholar] [CrossRef]
- Fong, B.H.; Colburn, J.S.; Ottusch, J.J.; Visher, J.L.; Sievenpiper, D.F. Scalar and tensor holographic artificial impedance surfaces. IEEE Trans. Antennas Propag. 2010, 58, 3212–3221. [Google Scholar] [CrossRef]
- Minatti, G.; Faenzi, M.; Martini, E.; Caminita, F.; De Vita, P.; Gonzalez-Ovejero, D.; Sabbadini, M.; Maci, S. Modulated metasurface antennas for space: Synthesis analysis and realizations. IEEE Trans. Antennas Propag. 2015, 63, 1288–1300. [Google Scholar] [CrossRef]
- Lo, S.H. A new mesh generation scheme for arbitrary planar domains. Int. J. Numer. Methods Eng. 1985, 21, 1403–1426. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Phillips, D.V. An automatic mesh generation scheme for plane and curved surfaces by ‘isoparametric’ co-ordinates. Int. J. Numer. Methods Eng. 1971, 3, 519–528. [Google Scholar] [CrossRef]
- Thacker, W.C. A brief review of techniques for generating irregular computational grids. Int. J. Numer. Methods Eng. 1980, 15, 1335–1341. [Google Scholar] [CrossRef]
- Rao, S.M. Electromagnetic Scattering and Radiation of ArbitrarilyShaped Surfaces by Triangular Patch Modelling; University of Mississippi: Oxford, MI, USA, 1980. [Google Scholar]
- Analoui, M.; Tsuboi, H.; Nakata, T. Numerical analysis of antenna by a surface patch modeling. IEEE Trans. Magn. 1990, 26, 905–908. [Google Scholar] [CrossRef]
- Glisson, A.; Wilton, D. Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from surfaces. IEEE Trans. Antennas Propag. 1980, 28, 593–603. [Google Scholar] [CrossRef]
- Tsuboi, H.; Tanaka, H.; Fujita, M. Electromagnetic field analysis of the wire antenna in the presence of a dielectric with three-dimensional shape. IEEE Trans. Magn. 1989, 25, 3602–3604. [Google Scholar] [CrossRef]
- Abd-Alhameed, R.A.; Excell, P.S. An electric surface patch formulation for scattering and radiation by surfaces with arbitrary shape. In Proceedings of the 1995 Ninth International Conference on Antennas and Propagation, ICAP ‘95 (Conf. Publ. No. 407), Eindhoven, The Netherlands, 4–7 April 1995; Volume 1, pp. 369–373. [Google Scholar]
- Yun, D.; Choi, J.; Lee, S. The quadrilateral patch modeling using a generalized roof-top vector basis function. In Proceedings of the IEEE Antennas and Propagation Society International Symposium 1996 Digest, Baltimore, MD, USA, 21–26 July 1996; Volume 3, pp. 2138–2141. [Google Scholar]
- Newman, E.; Alexandropoulos, P.; Walton, E. Polygonal plate modeling of realistic structures. IEEE Trans. Antennas Propag. 1984, 32, 742–747. [Google Scholar] [CrossRef]
- Chang, D.C.; Zheng, J.-X. Electromagnetic modeling of passive circuit elements in MMIC. IEEE Trans. Microw. Theory Tech. 1992, 40, 1741–1747. [Google Scholar] [CrossRef]
- Medgyesi-Mitschang, L.N.; Wang, D.-S. Hybrid methods for analysis of complex scatterers. Proc. IEEE 1989, 77, 770–779. [Google Scholar] [CrossRef]
- Arredondo, J.C.; Ruiz, F.; Catedra, M.F.; Basterrechea, J. Analysis of scattering from arbitrary metallic surfaces conformed to a body of revolution. In Proceedings of the Antennas and Propagation Society Symposium 1991 Digest, Baltimore, MD, USA, 21–26 July 1996; Volume 2, pp. 790–793. [Google Scholar]
- Sarkar, T.K.; Arvas, E.; Ponnapalli, S. Electromagnetic scattering from dielectric bodies. IEEE Trans. Antennas Propag. 1989, 37, 673–676. [Google Scholar] [CrossRef]
- Livesay, D.E.; Chen, K. Electromagnetic Fields Induced Inside Arbitrarily Shaped Biological Bodies. IEEE Trans. Microw. Theory Tech. 1974, 22, 1273–1280. [Google Scholar] [CrossRef]
- Borup, D.T.; Sullivan, D.M.; Gandhi, O.P. Comparison of the FFT Conjugate Gradient Method and the Finite-Difference Time-Domain Method for the 2-D Absorption Problem. IEEE Trans. Microw. Theory Tech. 1987, 35, 383–395. [Google Scholar] [CrossRef]
- Schaubert, D.; Wilton, D.; Glisson, A. A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies. IEEE Trans. Antennas Propag. 1984, 32, 77–85. [Google Scholar] [CrossRef]
- Tsai, C.-T.; Massoudi, H.; Durney, C.H.; Iskander, M.F. A Procedure for Calculating Fields Inside Arbitrarily Shaped, Inhomogeneous Dielectric Bodies Using Linear Basis Functions with the Moment Method. IEEE Trans. Microw. Theory Tech. 1986, 34, 1131–1139. [Google Scholar] [CrossRef]
- Graglia, R.D. The use of parametric elements in the moment method solution of static and dynamic volume integral equations. IEEE Trans. Antennas Propag. 1988, 36, 636–646. [Google Scholar] [CrossRef]
- Catedra, M.F.; Gago, E.; Nuno, L. A numerical scheme to obtain the RCS of three-dimensional bodies of resonant size using the conjugate gradient method and the fast Fourier transform. IEEE Trans. Antennas Propag. 1989, 37, 528–537. [Google Scholar] [CrossRef]
- Trintinalia, L.C.; Ling, H. An improved triangular patch basis for the method of moments. In Proceedings of the IEEE Antennas and Propagation Society International Symposium. Transmitting Waves of Progress to the Next Millennium. 2000 Digest. Held in Conjunction with: USNC/URSI National Radio Science Meeting, Salt Lake City, UT, USA, 16–21 July 2000; Volume 4, pp. 2306–2309. [Google Scholar]
- Popovic, B.D.; Kolundzija, B.M. Analysis of Metallic Antennas and Scatters; Institution of Electrical Engineers: London, UK, 1994. [Google Scholar]
- Notaros, B.M.; Popovic, B.D.; Brown, R.A.; Popovic, Z. Large-domain MoM solution of complex electromagnetic problems. In Proceedings of the IEEE MTT-S Digest, Anaheim, CA, USA, 13–19 June 1999; pp. 1665–1668. [Google Scholar]
- Notaros, B.M.; Popovic, B.D.; Weem, J.P.; Brown, R.A.; Popovic, Z. Efficient large-domain MoM solutions to electrically large practical EM problems. IEEE Trans. Microw. Theory Tech. 2001, 49, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Djordjevic, M.; Notaros, B.M. Double higher order method of moments for surface integral equation modeling of metallic and dielectric antennas and scatterers. IEEE Trans. Antennas Propag. 2004, 52, 2118–2129. [Google Scholar] [CrossRef]
- Khairi, R.; Coatanhay, A.; Khenchaf, A. Modeling of electromagnetic waves scattering from sea surface using Higher-Order Moment Method (HO-MoM) and NURBS patch. In Proceedings of the 2011 International Conference on Electromagnetics in Advanced Applications, Turin, Italy, 12–16 September 2011; pp. 694–697. [Google Scholar]
- Yang, Z.-L.; Liu, J. Analysis of Electromagnetic Scattering with Higher-Order Moment Method and NURBS Model. Prog. Electromagn. Res. 2009, 96, 83–100. [Google Scholar]
- Yuan, H.; Wang, N.; Liang, C. Combining the Higher Order Method of Moments With Geometric Modeling by NURBS Surfaces. IEEE Trans. Antennas Propag. 2009, 57, 3558–3563. [Google Scholar] [CrossRef]
- Bernstein, S. Démostration du theórème de Weierstrass fondé sur le calcul des probabilités. Commun. De La Société Mathématique De Kharkow 1912, 13, 1–2. [Google Scholar]
- Lorentz, G. Bernstein Polynomials; Toronto Press: Toronto, ON, Canada, 1953. [Google Scholar]
- Valle, L.; Rivas, F.; Catedra, M.F. Combining the moment method with geometrical modelling by NURBS surfaces and Bezier patches. IEEE Trans. Antennas Propag. 1994, 42, 373–381. [Google Scholar] [CrossRef]
- Wang, J.J.H. Surface-Patch Techniques for Modeling Three-Dimensional Radiating or Scattering Objects; Final Technical Report; Rome Air Development Center: Rome, NY, USA, 1981. [Google Scholar]
- Qian, Z.-G.; Cui, T.J.; Lu, W.-B.; Yin, X.-X.; Hong, W. A new MOM model for line-fed patch antennas. IEEE Antennas Propag. Soc. Symp. 2004, 4, 3633–3636. [Google Scholar]
- Rao, S.; Wilton, D.; Glisson, A. Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans. Antennas Propag. 1982, 30, 409–418. [Google Scholar] [CrossRef] [Green Version]
- Rao, S.M.; Wilton, D.R.; Glisson, A.W. RWG functions: Evolution and progress. In Wiley Encyclopedia of Electrical and Electronics Engineering; Wiley: Hoboken, NJ, USA, 2016; pp. 1–13. [Google Scholar]
- Gurel, L.; Sendur, I.K.; Sertel, K. Quantitative comparison of rooftop and RWG basis functions. IEEE Antennas Propag. Soc. Int. Symp. 1997, 2, 796–799. [Google Scholar]
- Xia, M.Y.; Chan, C.H.; Li, S.Q.; Zhang, B.; Tsang, L. Simulation of wave scattering from rough surfaces using single integral equation and multilevel sparse-matrix canonical-grid method. In Proceedings of the IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in Conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229), Boston, MA, USA, 8–13 July 2001; Volume 3, pp. 744–747. [Google Scholar]
- Xia, M.Y.; Chan, C.H.; Li, S.-Q.; Hu, J.-L.; Tsang, L. Wavelet-based simulations of electromagnetic scattering from large-scale two-dimensional perfectly conducting random rough surfaces. IEEE Trans. Geosci. Remote Sens. 2001, 39, 718–725. [Google Scholar] [CrossRef]
- Matthews, J.C.G.; Cook, G.G. An efficient method for attaching thin wire monopoles to surfaces modeled using triangular patch segmentation. IEEE Trans. Antennas Propag. 2003, 51, 1623–1629. [Google Scholar] [CrossRef]
- Bunger, R.; Beyer, R.; Arndt, F. Rigorous combined mode-matching integral equation analysis of horn antennas with arbitrary cross section. IEEE Trans. Antennas Propag. 1999, 47, 1641–1648. [Google Scholar] [CrossRef]
- Liu, Z.; Chew, W.C.; Michielssen, E. Moment method based analysis of dielectric-resonator antennas. In Proceedings of the IEEE Antennas and Propagation Society International Symposium. 1999 Digest. Held in Conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.99CH37010), Orlando, FL, USA, 11–16 July 1999; Volume 2, pp. 806–809. [Google Scholar]
- Liu, Z.; Chew, W.C.; Michielssen, E. Numerical modeling of dielectric-resonator antennas in a complex environment using the method of moments. IEEE Trans. Antennas Propag. 2002, 50, 79–82. [Google Scholar]
- Shin, J.; Kishk, A.A.; Glisson, A.W. Analysis of rectangular dielectric resonator antennas excited through a slot over a finite ground plane. In Proceedings of the IEEE Antennas and Propagation Society International Symposium. Transmitting Waves of Progress to the Next Millennium. 2000 Digest. Held in Conjunction with: USNC/URSI National Radio Science Meeting, Salt Lake City, UT, USA, 16–21 July 2000; Volume 4, pp. 2076–2079. [Google Scholar]
- Shin, J.; Glisson, A.W.; Kishk, A.A. Analysis of combined conducting and dielectric structures of arbitrary shapes using an E-PMCHW integral equation formulation. In Proceedings of the IEEE Antennas and Propagation Society International Symposium. Transmitting Waves of Progress to the Next Millennium. 2000 Digest. Held in Conjunction with: USNC/URSI National Radio Science Meeting, Salt Lake City, UT, USA, 16–21 July 2000; Volume 4, pp. 2282–2285. [Google Scholar]
- Rahmani, M.; Tavakoli, A.; Amindavar, H.; Moghaddamjoo, A. Analysis of microstrip antennas by means of RWG, MoM and wavelet transformation. In Proceedings of the Loughborough Antennas and Propagation Conference, Loughborough, UK, 2–3 April 2007; pp. 185–188. [Google Scholar]
- Li, J.-Y.; Oo, Z.Z.; Li, L.-W. The difference characteristics of two type double-patch antennas. In Proceedings of the IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313), San Antonio, TX, USA, 16–21 June 2002; Volume 4, pp. 186–189. [Google Scholar]
- Ghannay, N.; Samet, A. E-shaped patch antenna modeling with MoM and RWG basis functions. In Proceedings of the 16th IEEE International Conference on Electronics, Circuits and Syctems (ICECS), Yasmine Hammamet, Tunisia, 13–16 December 2009; pp. 199–202. [Google Scholar]
- Vegni, C.; Bilotti, F. Parametric analysis of slot-loaded trapezoidal patch antennas. IEEE Trans. Antennas Propag. 2002, 50, 1291–1298. [Google Scholar] [CrossRef]
- Molinet, F. Hybrid numerical-asymptotic method for the calculation of the coupling between elements of a conformal microstrip patch array. In Proceedings of the International Conference on Mathematical Methods in Electromagnetic Theory, Kiev, Ukraine, 10–13 September 2002; Volume 1, pp. 38–41. [Google Scholar]
- Bertrand, M.; Valerio, G.; Ettorre, M.; Casaletti, M. RWG Basis Functions for Accurate Modeling of Substrate Integrated Waveguide Slot-Based Antennas. IEEE Trans. Magn. 2020, 56, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Ge, Y.; Esselle, K.P. A fast full-wave MoM analysis of arbitrary microstrip structures based on new close-form Green’s functions. In Proceedings of the IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313), San Antonio, TX, USA, 16–21 June 2002; Volume 4, pp. 178–181. [Google Scholar]
- Lin, C.-M.; Chan, C.H. Analysis of densely packed microstrip interconnects. In Proceedings of the 1997 Asia-Pacific Microwave Conference, Hong Kong, China, 2–5 December 1997; Volume 2, pp. 841–844. [Google Scholar]
- Yuan, N.; Yeo, T.S.; Nie, X.C.; Li, L.W. Efficient numerical modeling of large-scale microstrip structures. In Proceedings of the IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313), San Antonio, TX, USA, 16–21 June 2002; Volume 4, pp. 182–185. [Google Scholar]
- Khorrami, M.A.; Dehkhoda, P.; Mazandaran, R.M.; Sadeghi, S.H.H. Fast shielding effectiveness calculation of metallic enclosures with apertures using a multiresolution method of moments technique. IEEE Trans. Electromagn. Compat. 2010, 52, 230–235. [Google Scholar] [CrossRef]
- Abdul-Gaffoor, M.R.; Smith, H.K.; Kishk, A.A.; Glisson, A.W. Full wave analysis of electromagnetic coupling in realistic RF multilayer PCB layouts using cascaded parallel plate waveguide model. In Proceedings of the 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157), Phoenix, AZ, USA, 20–24 May 2001; Volume 3, pp. 1933–1936. [Google Scholar]
- Abdul-Gaffoor, M.R.; Smith, H.K.; Kishk, A.A.; Glisson, A.W. Simple and efficient full-wave modeling of electromagnetic coupling in realistic RF multilayer PCB layouts. IEEE Trans. Microw. Theory Tech. 2002, 50, 1445–1457. [Google Scholar] [CrossRef] [Green Version]
- Raziman, T.V.; Somerville, W.R.C.; Martin, O.J.F.; Le Ru, E.C. Accuracy of surface integral equation matrix elements in plasmonic calculations. J. Opt. Soc. Am. 2015, 32, 485–492. [Google Scholar] [CrossRef] [Green Version]
- Cvetkovic, M.; Poljak, D.; Haueisen, J. Analysis of transcranial magnetic stimulation based on the surface integral equation formulation. IEEE Trans. Biomed. Eng. 2015, 62, 1535–1545. [Google Scholar] [CrossRef]
- Kilic, O.; Garcia-Rubia, J.M.; Nghia, T.; Nyugen, Q. Detection of moving human micro-Doppler signature in forest environments with swaying tree components by wind. Radio Sci. 2015, 50, 238–248. [Google Scholar] [CrossRef] [Green Version]
- Yla-Oijala, P.; Taskinen, M. Efficient use of closed form Green’s functions for the electromagnetic scattering by 3D buried objects. In Proceedings of the IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in Conjunction with: USNC/URSI National Radio Science Meeting, Boston, MA, USA, 8–13 July 2001; Volume 4, pp. 834–837. [Google Scholar]
- Bellez, S.; Bourlier, C.; Kubické, G. 3-D Scattering From a PEC Target Buried Beneath a Dielectric Rough Surface: An Efficient PILE-ACA Algorithm for Solving a Hybrid KA-EFIE Formulation. IEEE Trans. Antennas Propag. 2015, 63, 5003–5014. [Google Scholar] [CrossRef]
- Graglia, R.D.; Wilton, D.R.; Peterson, A.F. Higher order interpolatory vector bases for computational electromagnetics. IEEE Trans. Antennas Propag. 1997, 45, 329–342. [Google Scholar] [CrossRef]
- Cai, W.; Yu, T.; Wang, H.; Yu, Y. High-order mixed RWG basis functions for electromagnetic applications. IEEE Trans. Microw. Theory Tech. 2001, 49, 1295–1303. [Google Scholar] [CrossRef]
- Wilton, D.R.; Vipiana, F.; Johnson, W.A. Evaluating singular, near-singular, and non-singular integrals on curvilinear elements. Electromagnetics 2014, 34, 307–327. [Google Scholar] [CrossRef]
- Topa, T.; Noga, A.; Karwowski, A. Adapting MoM with RWG basis functions to GPU technology using CUDA. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 480–483. [Google Scholar] [CrossRef]
- Yu, T.; Zhu, B.; Cai, W. Mix-RWG current basis function and its simple implementation in MoM. In Proceedings of the 2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No.00CH37017), Boston, MA, USA, 11–16 June 2000; Volume 2, pp. 1105–1108. [Google Scholar]
- Rius, J.M.; Ubeda, E.; Parron, J. On the testing of the magnetic field integral equation with RWG basis functions in method of moments. IEEE Trans. Antennas Propag. 2001, 49, 1550–1553. [Google Scholar] [CrossRef]
- Huang, W.-F.; Ren, Y.; Liu, Q.H. Solid-Angle Error in the Magnetic-Field Integral Equation for Perfectly Electric Conducting Objects. IEEE Trans. Antennas Propag. 2016, 64, 1158–1163. [Google Scholar] [CrossRef]
- Kim, S.K.; Peterson, A.F. Evaluation of Local Error Estimators for the RWG-Based EFIE. IEEE Trans. Antennas Propag. 2018, 66, 819–826. [Google Scholar] [CrossRef]
- Kornprobst, J.; Eibert, T.F. An Accurate Low-Order Discretization Scheme for the Identity Operator in the Magnetic Field and Combined Field Integral Equations. IEEE Trans. Antennas Propag. 2018, 66, 6146–6157. [Google Scholar] [CrossRef]
- Gu, J.; Ding, D.; He, Z.; Chen, R. A Low-Frequency EFIE-MLFMA Solver Based on Approximate Diagonalization of Green’s Function. IEEE Trans. Antennas Propag. 2017, 65, 7150–7156. [Google Scholar] [CrossRef]
- Kornprobst, J.; Eibert, T.F. A Combined Source Integral Equation with Weak Form Combined Source Condition. IEEE Trans. Antennas Propag. 2018, 66, 2151–2155. [Google Scholar] [CrossRef]
- Simon, P.S. Modified RWG basis functions for analysis of periodic structures. In Proceedings of the 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278), Seattle, WA, USA, 2–7 June 2002; Volume 3, pp. 2029–2032. [Google Scholar]
- Li, Z.; Chen, X.; Dong, Z.; Gao, F.; Xu, B.; Gu, C. Surface Integral Equation with Multibranch RWG Basis Functions for Electromagnetic Scattering from Dielectric Objects. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 2337–2341. [Google Scholar] [CrossRef]
- Huang, S.; Xiao, G.; Hu, Y.; Liu, R.; Mao, J. Multibranch Rao–Wilton–Glisson Basis Functions for Electromagnetic Scattering Problems. IEEE Trans. Antennas Propag. 2021, 69, 6624–6634. [Google Scholar] [CrossRef]
- Huang, S.; Xiao, G.; Hu, Y.; Liu, R.; Mao, J. Loop-Star Functions Including Multibranch Rao-Wilton-Glisson Basis Functions. IEEE Trans. Antennas Propag. 2022, 70, 3910–3915. [Google Scholar] [CrossRef]
- He, Z.; Li, Y.-S.; Zhao, W.Y.J.; Yin, H.-C.; Chen, R.-S. Uncertainty RCS Computation for Multiple and Multilayer Thin Medium-Coated Conductors by an Improved TDS Approximation. IEEE Trans. Antennas Propag. 2020, 68, 8053–8061. [Google Scholar] [CrossRef]
- Zhuang, W.; Fan, Z.H.; Ding, D.Z.; Chen, R.S. An efficient technique for analysis of drequency selective surface in spectral domain with RWG basis functions. In Proceedings of the IEEE MTT-S International Microwave Workshop Aeries on Art of Miniaturizing RF and Microwave Passive Components, Chengdu, China, 14–15 December 2008; pp. 224–226. [Google Scholar]
- Ng Mou Kehn, M.; Iglesias, E.R. Moment method analysis of dispersion in SRR-type FSS loaded rectangular waveguides using spectral domain green’s functions and RWG basis functions. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, Honolulu, HI, USA, 9–15 June 2007; pp. 165–168. [Google Scholar]
- Sendur, I.K.; Gurel, L. Solution of radiation problems using the fast multipole method. IEEE Antennas Propag. Soc. Int. Symp. 1997, 1, 88–91. [Google Scholar]
- Yu, Y.X.; Chan, C.H. A fast convergent technique for analyzing planar periodic structures with non-uniform discretization. In Proceedings of the 1997 Asia-Pacific Microwave Conference, Hong Kong, China, 2–5 December 1997; Volume 2, pp. 669–672. [Google Scholar]
- Ling, F.; Wang, C.-F.; Jin, J.-M. An efficient algorithm for analyzing large-scale microstrip structures using adaptive integral method combined with discrete complex image method. In Proceedings of the ICMMT’98. 1998 International Conference on Microwave and Millimeter Wave Technology. Proceedings (Cat. No.98EX106), Beijing, China, 18–20 August 1998; pp. 953–956. [Google Scholar]
- Bunger, R.; Arndt, F. GSM/moment-method CAD of waffle-iron-filters with round teeth. In Proceedings of the 1999 IEEE MTT-S International Microwave Symposium Digest (Cat. No.99CH36282), Anaheim, CA, USA, 13–19 June 1999; Volume 4, pp. 1691–1694. [Google Scholar]
- Cheng, G.S.; Ding, D.Z.; Chen, R.S. An Efficient Fast Algorithm for Accelerating the Time-Domain Integral Equation Discontinuous Galerkin Method. IEEE Trans. Antennas Propag. 2017, 65, 4919–4924. [Google Scholar] [CrossRef]
- Zhao, Y.; Ding, D.; Chen, R. A Discontinuous Galerkin Time-Domain Integral Equation Method for Electromagnetic Scattering From PEC Objects. IEEE Trans. Antennas Propag. 2016, 64, 2410–2417. [Google Scholar] [CrossRef]
- Yang, C.X.; Tong, M.S. Time-Domain Analysis of Transient Electromagnetic Scattering From Dielectric Objects Based on Electric Field Integral Equations. IEEE Trans. Antennas Propag. 2017, 65, 966–971. [Google Scholar] [CrossRef]
- Lu, M.; Michielssen, E. Closed form evaluation of time domain fields due to Rao-Wilton-Glisson sources for use in marching-on-in-time based EFIE solvers. In Proceedings of the IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313), San Antonio, TX, USA, 16–21 June 2002; Volume 1, pp. 74–77. [Google Scholar]
- He, Z.; Chen, R.-S.; Sha, W.E.I. An Efficient Marching-on-in-Degree Solution of Transient Multiscale EM Scattering Problems. IEEE Trans. Antennas Propag. 2016, 64, 3039–3046. [Google Scholar] [CrossRef] [Green Version]
- Chang, R.R.; Wang, Z.; Xie, Q. Fast Convergent Quadrature Method for Evaluating the RWG- and SWG-Related Convolutional Integrals. IEEE Trans. Antennas Propag. 2021, 69, 8583–8592. [Google Scholar] [CrossRef]
- Zhang, L.; Tong, M.S. Low-Frequency Analysis of Lossy Interconnect Structures Based on Two-Region Augmented Volume-Surface Integral Equations. IEEE Trans. Antennas Propag. 2022, 70, 2863–2872. [Google Scholar] [CrossRef]
- Liu, J.; Li, Z.; Su, J.; Song, J. On the Volume-Surface Integral Equation for Scattering From Arbitrary Shaped Composite PEC and Inhomogeneous Bi-Isotropic Objects. IEEE Access 2019, 7, 85594–85603. [Google Scholar] [CrossRef]
- He, Y.; Li, J.F.; Jing, X.J.; Tong, M.S. Fast Solution of Volume–Surface Integral Equations for Multiscale Structures. IEEE Trans. Antennas Propag. 2019, 67, 7649–7654. [Google Scholar] [CrossRef]
- Xiang, W.; Xiong, T.; Lu, W.-B.; Yang, W.; Liu, Z.-G. New Accurate Subentire-Domain Basis Functions Method for the Analysis of Large-Scale Finite Periodic Structures with Electrically Connected Cells. IEEE Trans. Antennas Propag. 2019, 67, 2017–2022. [Google Scholar] [CrossRef]
- Li, X.; Lei, L.; Zhao, H.; Guo, L.; Jiang, M.; Cai, Q.; Nie, Z.; Hu, J. Efficient Solution of Scattering From Composite Planar Thin Dielectric-Conductor Objects by Volume-Surface Integral Equation and Simplified Prism Vector Basis Functions. IEEE Trans. Antennas Propag. 2018, 66, 2686–2690. [Google Scholar] [CrossRef]
- Kong, B.; Ylä-Oijala, P.; Sihvola, A. Surface Integral Equation Method for Generalized Soft-and-Hard Boundary Condition. IEEE Trans. Antennas Propag. 2020, 68, 3807–3814. [Google Scholar] [CrossRef]
- Kong, B.; Ylä-Oijala, P.; Sihvola, A. Surface Integral Equation Method for Soft-and-Hard/DB Boundary Condition. IEEE Trans. Antennas Propag. 2021, 69, 2790–2797. [Google Scholar] [CrossRef]
- Ylä-Oijala, P.; Kiminki, S.P.; Wallén, H.; Sihvola, A. Uniform Surface Integral Equation Formulation for Mixed Impedance Boundary Conditions. IEEE Trans. Antennas Propag. 2015, 63, 5718–5726. [Google Scholar] [CrossRef]
- Li, M.; Su, T.; Chen, R. Equivalence Principle Algorithm With Body of Revolution Equivalence Surface for the Modeling of Large Multiscale Structures. IEEE Trans. Antennas Propag. 2016, 64, 1818–1828. [Google Scholar] [CrossRef]
- Alian, M.; Oraizi, H. Electromagnetic Multiple PEC Object Scattering Using Equivalence Principle and Addition Theorem for Spherical Wave Harmonics. IEEE Trans. Antennas Propag. 2018, 66, 6233–6243. [Google Scholar] [CrossRef]
- Hassan, M.A.M.; Kishk, A.A. Solutions for General-Purpose Electromagnetic Problems Using the Random Auxiliary Sources Method. IEEE Trans. Antennas Propag. 2018, 66, 1947–1956. [Google Scholar] [CrossRef]
- Bunger, R.; Arndt, F. Moment-method analysis of arbitrary 3-D metallic N-port waveguide structures. IEEE Trans. Microw. Theory Tech. 2000, 48, 531–537. [Google Scholar] [CrossRef]
- Graglia, R.D.; Lombardi, G.; Wilton, D.R.; Johnson, W.A. Modeling edge singularities in the method of moments. In Proceedings of the 2005 IEEE Antennas and Propagation Society International Symposium, Washington, DC, USA, 3–8 July 2005; Volume 3A, pp. 56–59. [Google Scholar]
- Xu, K.-J.; Song, W.; Pan, X.-M.; Sheng, X.-Q. Accurate and Efficient Singularity Treatment in Integral Equation Discontinuous Galerkin Method. IEEE Trans. Antennas Propag. 2018, 66, 2957–2966. [Google Scholar] [CrossRef]
- Champagne, N.J.; Williams, J.T.; Wilton, D.R. The use of curved segments for numerically modeling thin wire antennas and scatterers. IEEE Trans. Antennas Propag. 1992, 40, 682–689. [Google Scholar] [CrossRef]
- Chao, H.-Y.; Chen, S.; Chew, W.C.; Liu, Z.; Michielssen, E.; Song, J. An application-independent multilevel fast multipole code for the analysis of curvilinear surfaces with wire attachment. In Proceedings of the IEEE Antennas and Propagation Society International Symposium. Transmitting Waves of Progress to the Next Millennium. 2000 Digest. Held in Conjunction with: USNC/URSI National Radio Science Meeting, Salt Lake City, UT, USA, 16–21 July 2000; Volume 4, pp. 1880–1883. [Google Scholar]
- Chao, H.-Y.; Zhao, J.-S.; Chew, W.C. Application of curvilinear basis functions and MLFMA for radiation and scattering problems involving curved PEC structures. IEEE Trans. Antennas Propag. 2003, 51, 331–336. [Google Scholar] [CrossRef]
- Davidson, D.B. Convergence of the MPIE Galerkin MoM Thin Wire Formulation. IEEE Trans. Antennas Propag. 2021, 69, 7073–7078. [Google Scholar] [CrossRef]
- Vipiana, F.; Pirinoli, P.; Vecchi, G. A multiresolution method of moments for triangular meshes. IEEE Trans. Antennas Propag. 2005, 53, 2247–2258. [Google Scholar] [CrossRef]
- Carr, M.A.; Volakis, J.L.; Ross, D.C. Acceleration of moment method solutions for discrete bodies of revolution in free space. In Proceedings of the IEEE Antennas and Propagation Society International Symposium. Transmitting Waves of Progress to the Next Millennium. 2000 Digest. Held in Conjunction with: USNC/URSI National Radio Science Meeting, Salt Lake City, UT, USA, 16–21 July; Volume 4, pp. 2286–2289.
- Waller, M.L.; Rao, S.A. Application of adaptive basis functions for a diagonal moment matrix solution of arbitrarily shaped three-dimensional conducting body problems. IEEE Trans. Antennas Propag. 2002, 50, 1445–1452. [Google Scholar] [CrossRef]
- Antilla, G.E. Radiation and scattering from curvilinear 3D composite geometries using the hybrid finite element-method of moments SWITCH code. In Proceedings of the IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting, Seattle, WA, USA, 20–24 June 1994; Volume 1, pp. 443–446. [Google Scholar]
- Taflove, A.; Umashankar, K.R. Advanced Numerical Modeling of Microwave Penetration and Coupling for Complex Structures; Final Report; U.S. Department of Energy Office of Scientific and Technical Information: Oak Ridge, TN, USA, 1987.
- Burnside, W.D.; Kim, J.J.; Grandchamp, B.; Rojas, R.G.; Law, P. Airborne Antenna Radiation Pattern Code User’s Manual; NASA Technical Reports; NASA: Washington, DC, USA, 1985. [Google Scholar]
- Integrated Design and Engineering Analysis Laboratory (IDEA Lab). Available online: https://web.me.iastate.edu/idealab/ (accessed on 15 January 2023).
- Farin, G. Curves and Surfaces for Computer Aided Geometric Design, A Practical Guide, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Kolundzija, B.M.; Ognjanovic, J.S.; Sarkar, T.K.; Harrington, R.F. WIPL: A program for electromagnetic modeling of composite-wire and plate structures. IEEE Antennas Propag. Mag. 1996, 38, 75–79. [Google Scholar] [CrossRef]
- Song, J.M.; Chew, W.C. Large scale computations using FISC. IEEE Antennas and Propagation Society International Symposium. In Proceedings of the Transmitting Waves of Progress to the Next Millennium. 2000 Digest. Held in Conjunction with: USNC/URSI National Radio Science Meeting, Salt Lake City, UT, USA, 16–21 July 2000; Volume 4, pp. 1856–1859. [Google Scholar]
- Antenna Toolbox—The MathWorks, Inc. Available online: https://www.mathworks.com/help/antenna/ (accessed on 15 January 2023).
- Skvorcov, A.V. Delaunay Triangulation and Its Application; Tomsk University Press: Tomsk, Russia, 2002; p. 128. (In Russian) [Google Scholar]
- Kamen, Y.; Shirman, L. Triangle rendering using adaptive subdivision. IEEE Comput. Graph. Appl. 1998, 18, 95–103. [Google Scholar] [CrossRef]
- Makarov, S. MoM antenna simulations with Matlab: RWG basis functions. IEEE Antennas Propag. Mag. 2001, 43, 100–107. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory: Analysis and Design, 3rd ed.; John Wiley & Sons: New York, NY, USA, 2005; p. 1097. [Google Scholar]
- Open Cascade—Software Development Company. Available online: https://www.opencascade.com/ (accessed on 15 January 2023).
- The Computational Geometry Algorithms Library. Available online: https://www.cgal.org/ (accessed on 15 January 2023).
- Eigen. Available online: https://eigen.tuxfamily.org/index.php?title=Main_Page (accessed on 15 January 2023).
- The Visualization Toolkit. Available online: https://vtk.org/ (accessed on 15 January 2023).
- Fourie, A.P.C.; Nitch, D.C.; Givati, O. A complex-body structure interpolation and gridding program (SIG) for NEC. IEEE Antennas Propag. Mag. 1994, 36, 85–89. [Google Scholar] [CrossRef]
- Tkinter: Python Interface to Tcl/Tk—Python 3.11.2 Documentation. Available online: https://docs.python.org/3/library/tkinter.html (accessed on 15 January 2023).
- PathWave EM Design (EMPro). Available online: https://www.keysight.com/us/en/products/software/pathwave-design-software/pathwave-em-design-software.html (accessed on 15 January 2023).
- Alhaj Hasan, A.; Klyukin, D.V.; Kvasnikov, A.A.; Komnatnov, M.E.; Kuksenko, S.P. On Wire-Grid Representation for Modeling Symmetrical Antenna Elements. Symmetry 2022, 14, 1354. [Google Scholar] [CrossRef]
- Papas, C.H.; King, R. Radiation from wide-angle conical antennas fed by a coaxial line. Proc. IRE 1951, 39, 49–51. [Google Scholar] [CrossRef]
- Samaddar, S.N.; Mokole, E.L. Biconical antennas with unequal cone angles. IEEE Trans. Antennas Propag. 1998, 46, 181–193. [Google Scholar] [CrossRef] [Green Version]
- Mittra, R. Developments in Antenna Analysis and Design: Volume 2; SciTech Publishing: London, UK, 2019; p. 412. [Google Scholar]
Code | Value | 1 GHz | 3 GHz | 5 GHz |
---|---|---|---|---|
Wire-Grid | Maximum gain | 2.2 | 3.53 | 3.2 |
Triangle-Grid | Maximum gain | 2.28 | 3.57 | 3.47 |
EMPro | Maximum gain | 2.15 | 3.74 | 3.37 |
Wire-Grid | RD | * −2% | 6% | 5% |
Triangle-Grid | RD | −6% | 5% | −3% |
Code | Frequency (GHz) | Impedance (Ohm) | Memory (GB) | Time (ms) | N | Cond (Z) |
---|---|---|---|---|---|---|
Wire-Grid | 1 | 113.0 − j37.2 | * ≈0.21 | 254 | 861 | 9.48 × 104 |
3 | 87.6 − j60.5 | ≈0.18 | 154 | 689 | 1.16 × 104 | |
5 | 154.8 − j21.0 | ≈0.16 | 95 | 517 | 4.40 × 103 | |
Triangle-Grid | 1 | 175.8 − j38.2 | ≈0.15 | 388 | 577 | 1.96 × 104 |
3 | 153.5 − j7.7 | ≈0.45 | 12,187 | 3579 | 8.17 × 103 | |
5 | 209.5 + j19.4 | ≈1.71 | 97,043 | 10,145 | 5.09 × 104 | |
EMPro | 1 | 170.9 − j30.1 | ≈0.04 | 6000 | 38,808 | - ** |
3 | 154.1 − j43.7 | ≈0.13 | 29,000 | 164,604 | - | |
5 | 143.6 + j88.1 | ≈0.27 | 91,000 | 322,080 | - |
Code | Frequency (GHz) | RD Impedance (%) | RD Memory (%) | RD Time (%) |
---|---|---|---|---|
Wire-Grid | 1 | 31.44 | * −425 | 95.77 |
3 | 33.53 | −38.46 | 99.47 | |
5 | 7.27 | 40.74 | 99.90 | |
Triangle-Grid | 1 | −3.67 | −275 | 93.53 |
3 | 4.05 | −246.15 | 57.98 | |
5 | −24.89 | −533.33 | −6.64 |
Code | Value | 1 GHz | 1.5 GHz | 2 GHz |
---|---|---|---|---|
Wire-Grid | Maximum gain | 3.07 | 3.72 | 4.09 |
Triangle-Grid | Maximum gain | 2.88 | 3.6 | 3.98 |
EMPro | Maximum gain | 2.89 | 3.66 | 4.03 |
Wire-Grid | RD | * −6% | −2% | −1% |
Triangle-Grid | RD | 0% | 2% | 1% |
Code | Frequency (GHz) | Impedance (Ohm) | Memory (GB) | Time (ms) | N | Cond (Z) |
---|---|---|---|---|---|---|
Wire-Grid | 1 | 156.0 + j15.4 | * ≈3.15 | 28,372 | 8015 | 3.02 × 1012 |
1.5 | 194.3 − j8.6 | ≈3.15 | 26,972 | 8015 | 3.03 × 1012 | |
2 | 203.3 − j63.4 | ≈3.15 | 34,313 | 8015 | 3.06 × 1012 | |
Triangle-Grid | 1 | 207.1 − j1.4 | ≈0.15 | 1920 | 1279 | 1.79 × 104 |
1.5 | 214.4 + j6.6 | ≈0.27 | 10,502 | 3145 | 9.36 × 103 | |
2 | 201.6 − j6.4 | ≈0.54 | 28,401 | 5171 | 1.85 × 104 | |
EMPro | 1 | 183.3 + j6.2 | ≈1.21 | 71,000 | 325,584 | - ** |
1.5 | 182.7 + j21.8 | ≈1.21 | 96,000 | 543,864 | - | |
2 | 184.4 + j24.7 | ≈1.21 | 112,000 | 825,440 | - |
Code | Frequency (GHz) | RD Impedance (%) | RD Memory (%) | RD Time (%) |
---|---|---|---|---|
Wire-Grid | 1 | 14.53 | * −160.33 | 60.04 |
1.5 | −5.70 | −160.33 | 71.90 | |
2 | −14.46 | −160.33 | 69.36 | |
Triangle-Grid | 1 | −12.92 | 87.60 | 97.30 |
1.5 | −16.58 | 77.69 | 89.06 | |
2 | −8.41 | 55.37 | 74.64 |
Code | Value | 0.5 GHz | 1 GHz | 1.5 GHz | |
---|---|---|---|---|---|
Wire-Grid | Maximum gain | 1.72 | 2.47 | E | H |
1.56 | 1.5 | ||||
Triangle-Grid | Maximum gain | 1.7 | 2.15 | 1.71 | 1.49 |
EMPro | Maximum gain | 1.76 | 2.53 | 1.65 | 1.39 |
Wire-Grid | RD | 2% | 2% | 5% | * −8% |
Triangle-Grid | RD | 3% | 15% | −4% | −7% |
Code | Frequency (GHz) | Impedance (Ohm) | Memory (GB) | Time (ms) | N | Cond (Z) |
---|---|---|---|---|---|---|
Wire-Grid | 0.5 | 127.4 + j120.1 | * ≈1.47 | 10,723 | 5427 | 1.21 × 109 |
1 | 228.5 − j52.5 | ≈1.47 | 10,824 | 5427 | 2.43 × 108 | |
1.5 | 158.1 + j54.8 | ≈1.47 | 10,970 | 5427 | 8.37 × 107 | |
Triangle-Grid | 0.5 | 131.3 + j120.8 | ≈0.12 | 473 | 671 | 2.56 × 105 |
1 | 229.0 − j71.4 | ≈0.21 | 5699 | 2489 | 2.08 × 105 | |
1.5 | 173.5 + j38.8 | ≈0.54 | 24,039 | 5197 | 3.97 × 106 | |
EMPro | 0.5 | 127.5 + j122.1 | ≈0.08 | 12,000 | 94,068 | - ** |
1 | 214.7 − j71.9 | ≈0.21 | 34,000 | 224,640 | - | |
1.5 | 160.4 + j43.6 | ≈0.30 | 53,000 | 366,336 | - |
Code | Frequency (GHz) | RD Impedance (%) | RD Memory (%) | RD Time (%) |
---|---|---|---|---|
Wire-Grid | 1 | 0.82 | * −1738 | 10.64 |
1.5 | −3.55 | −600 | 68.20 | |
2 | −0.67 | −390 | 79.30 | |
Triangle-Grid | 1 | −1.07 | −50 | 96.06 |
1.5 | −5.94 | 0 | 83.23 | |
2 | −6.96 | −80 | 54.64 |
Code | Frequency (GHz) | Impedance (Ohm) | Memory (GB) | Time (ms) | N | Cond (Z) |
---|---|---|---|---|---|---|
Wire-Grid (λ/20) | 0.1 | 192.31 − j58.89 | * ≈0.18 | 91 | 513 | 2.17 × 106 |
0.5 | 102.02 + j33.36 | ≈0.59 | 1579 | 2177 | 5.74 × 105 | |
1 | 88.28 + 56.82j | ≈1.19 | 7002 | 4353 | 1.60 × 105 | |
Wire-Grid (λ/40) | 0.1 | 28.01 + j25.59 | ≈0.22 | 317 | 897 | 3.15 × 105 |
0.5 | 90.44 + j48.18 | ≈1.89 | 8004 | 4353 | 9.56 × 106 | |
1 | 84.62 + j71.55 | ≈3.91 | 36,214 | 8705 | 6.43 × 105 | |
Triangle-Grid | 0.1 | 23.72 + j22.09 | ≈0.11 | 133 | 341 | 5.26 × 1019 |
0.5 | 93.44 − j1.58 | ≈0.36 | 13,531 | 3897 | 2.32 × 1021 | |
1 | 91.50 + j16.46 | ≈2.77 | 171,449 | 13,199 | 1.28 × 1018 | |
Analytically | 0.1 | 40.40 + j28.32 | - ** | - | - | - |
0.5 | 101.80 − j9.38 | - | - | - | - | |
1 | 88.64 + j16.68 | - | - | - | - |
Code | Frequency (GHz) | RD Impedance (%) |
---|---|---|
Wire-Grid (λ/20) | 0.1 | * −308 |
0.5 | * −5 | |
1 | −16.4 | |
Wire-Grid (λ/40) | 0.1 | 23.10 |
0.5 | * −0.24 | |
1 | −22.85 | |
Triangle-Grid | 0.1 | 34.31 |
0.5 | 8.59 | |
1 | −3.07 |
Code | Memory (GB) | Time (ms) | N | Cond (Z) |
---|---|---|---|---|
Wire-Grid (λ/40) | * ≈29.90 | 466,309 | 25,760 | 1.44 × 106 |
Wire-Grid (λ/15) | ≈6.13 | 68,233 | 11,483 | 3.30 × 105 |
Triangle-Grid (λ/15) | ≈3.63 | 232,867 | 15,148 | 2.03 × 1017 |
RD (%) | −69 | 71 | 24 |
Geometric Parameter | ap | bp | a | b | ar | br | l | lr |
---|---|---|---|---|---|---|---|---|
Nominal value (mm) | 80.00 | 60.00 | 23.00 | 10.00 | 23.00 | 10.00 | 150.00 | 10.00 |
Tolerance (mm) | ±0.30 | ±0.30 | ±0.05 | ±0.05 | – | – | ±0.50 | – |
Sample | ap | bp | a | b | l |
---|---|---|---|---|---|
1 | 80.00 | 60.00 | 23.00 | 10.00 | 150.00 |
2 | 79.70 | 60.00 | 23.00 | 10.00 | 150.00 |
3 | 80.30 | 60.00 | 23.00 | 10.00 | 150.00 |
4 | 80.00 | 59.70 | 23.00 | 10.00 | 150.00 |
5 | 80.00 | 60.30 | 23.00 | 10.00 | 150.00 |
6 | 80.00 | 60.00 | 22.95 | 10.00 | 150.00 |
7 | 80.00 | 60.00 | 23.05 | 10.00 | 150.00 |
8 | 80.00 | 60.00 | 23.00 | 9.95 | 150.00 |
9 | 80.00 | 60.00 | 23.00 | 10.05 | 150.00 |
10 | 80.00 | 60.00 | 23.00 | 10.00 | 149.50 |
11 | 80.00 | 60.00 | 23.00 | 10.00 | 150.50 |
Parameter | ME | Dispersion | Standard Deviation | Standard Deviation, % | Confidence Interval |
---|---|---|---|---|---|
BW (°), E plane | 25 | 0.0 | 0.0 | 0.0 | 0.0 |
BW (°), H plane | 35 | 0.0 | 0.0 | 0.0 | 0.0 |
SLLmax (dB) | −12.64 | 0.0078 | 0.0082 | 0.65 | 0.049 |
Parameter | ME | Dispersion | Standard Deviation | Standard Deviation, % | Confidence Interval |
---|---|---|---|---|---|
BW (°), E plane | 26 | 0.0 | 0.0 | 0.0 | 0.0 |
BW (°), H plane | 28 | 0.0 | 0.0 | 0.0 | 0.0 |
SLLmax (dB) | −11.63 | 0.0062 | 0.23 | 2.01 | 0.137 |
Method | Implementation Complexity | Speed | Memory | Computing | Antennas Types | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wire | Microstrip | Reflector | Aperture | Conformal | Broadband | Array | Lens | Radomes | Placement | ||||||
MoM | Wire-Grid | Easy | Fast | Very low | Current and charge density | * 1 | −1 | 1 | 0 | 0 | 1 | 0 | 0 | −1 | −1 |
Triangle-Grid | Medium | Medium | Medium | Current and charge density | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | |
FDTD | Medium | Fast | Low | Electrical and magnetic fields | 0 | 1 | 0 | 0 | −1 | 1 | 1 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhaj Hasan, A.; Kvasnikov, A.A.; Klyukin, D.V.; Ivanov, A.A.; Demakov, A.V.; Mochalov, D.M.; Kuksenko, S.P. On Modeling Antennas Using MoM-Based Algorithms: Wire-Grid versus Surface Triangulation. Algorithms 2023, 16, 200. https://doi.org/10.3390/a16040200
Alhaj Hasan A, Kvasnikov AA, Klyukin DV, Ivanov AA, Demakov AV, Mochalov DM, Kuksenko SP. On Modeling Antennas Using MoM-Based Algorithms: Wire-Grid versus Surface Triangulation. Algorithms. 2023; 16(4):200. https://doi.org/10.3390/a16040200
Chicago/Turabian StyleAlhaj Hasan, Adnan, Aleksey A. Kvasnikov, Dmitriy V. Klyukin, Anton A. Ivanov, Alexander V. Demakov, Dmitry M. Mochalov, and Sergei P. Kuksenko. 2023. "On Modeling Antennas Using MoM-Based Algorithms: Wire-Grid versus Surface Triangulation" Algorithms 16, no. 4: 200. https://doi.org/10.3390/a16040200
APA StyleAlhaj Hasan, A., Kvasnikov, A. A., Klyukin, D. V., Ivanov, A. A., Demakov, A. V., Mochalov, D. M., & Kuksenko, S. P. (2023). On Modeling Antennas Using MoM-Based Algorithms: Wire-Grid versus Surface Triangulation. Algorithms, 16(4), 200. https://doi.org/10.3390/a16040200