Use of the Codon Table to Quantify the Evolutionary Role of Random Mutations
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Correlation between Codon Multiplicities and AA Propensities
3.2. The Number of RNA Mutations per AA Mutation
3.3. Correlation between the Number of RNA Mutations and AA Substitution Matrices
4. Discussion
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 2001, 409, 860–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cano, A.V.; Payne, J.L.P. Mutation bias interacts with composition bias to influence adaptive evolution. PLoS Comput. Biol. 2020, 16, e1008296. [Google Scholar] [CrossRef] [PubMed]
- Caporale, L.H.; Doyle, J. In darwinian evolution, feedback from natural selection leads to biased mutations. Ann. N. Y. Acad. Sci. 2013, 1305, 18–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mittal, A.; Jayaram, B. A possible molecular metric for biological evolvability. J. Biosci. 2012, 37, 573–577. [Google Scholar] [CrossRef] [PubMed]
- Giulio, M.D. The origin of the genetic code: Theories and their relationships, a review. BioSystems 2005, 80, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Gaur, R.K. Amino acid frequency distribution among eukaryotic proteins. IIOAB J. 2014, 5, 6–11. [Google Scholar]
- Kawashima, S.; Pokrowski, P.; Pokarowska, M.; Kolinski, A.; Katayama, T.; Kanehisa, M. AAindex: Amino acid index database, progress report 2008. Nucleic Acids Res. 2008, 36, D202–D205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giulio, M.D. The extension reached by the minimization of the polarity distances during the evolution of the genetic code. J. Mol. Evol. 1989, 29, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.T.-F. Role of minimization of chemical distances between amino acids in the evolution of the genetic code. Proc. Natl. Acad. Sci. USA 1980, 77, 1083–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dayhoff, M.O.; Schwartz, R.M.; Orcutt, B.C. A model of evolutionary change in proteins. Atlas Protein Seq. Struct. 1972, 5, 89–99. [Google Scholar]
- Altschul, S.F. Amino acid substitution matrices from an information theoretic perspective. J. Mol. Biol. 1991, 219, 555–565. [Google Scholar] [CrossRef]
- Benner, S.A.; Cohen, M.A.; Gonnet, G.H. Amino acid substitution during functionally constrained divergent evolution of protein sequences. Protein Eng. 1994, 7, 1323–1332. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.T.; Taylor, W.R.; Thornton, J.M. The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 1992, 8, 275–282. [Google Scholar] [CrossRef]
- Henikoff, S.; Henikoff, J.G. Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA 1992, 89, 10915–10919. [Google Scholar] [CrossRef] [Green Version]
- Mezei, M. On predicting foldability of a protein from its sequence. Proteins 2020, 88, 355–356. [Google Scholar] [CrossRef]
- Wong, J.T.-F. A co-evolution theory of the genetic code. Proc. Nat. Acad. Sci. USA 1975, 72, 1909–1912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giulio, M.D. Reflections on the origin of the genetic code: A hypothesis. J. Theor. Biol. 1998, 191, 191–196. [Google Scholar] [CrossRef]
All 20 | Top 11 | |||
---|---|---|---|---|
Membrane | Non-Membrane | Membrane | Non-Membrane | |
Vertebrates (mammals) | 0.87 | 0.81 | 0.97 | 0.98 |
Vertebrates (non-mammals) | 0.76 | 0.73 | 0.93 | 0.97 |
Plants | 0.72 | 0.71 | 0.88 | 0.81 |
Fungi | 0.67 | 0.75 | 0.86 | 0.94 |
Invertebrates | 0.52 | 0.52 | 0.82 | 0.88 |
Protozoa | 0.50 | 0.23 | 0.78 | 0.70 |
Amino Acid | Amino Acid Code | Number of Single Mutations | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GLY | G | 12 | ||||||||||||||||||||
ALA | A | 4 | 12 | |||||||||||||||||||
VAL | V | 4 | 4 | 12 | ||||||||||||||||||
LEU | L | 0 | 0 | 6 | 18 | |||||||||||||||||
ILE | I | 0 | 0 | 3 | 4 | 6 | ||||||||||||||||
SER | S | 2 | 4 | 0 | 2 | 2 | 14 | |||||||||||||||
THR | T | 0 | 4 | 0 | 0 | 3 | 6 | 12 | ||||||||||||||
ASP | D | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | |||||||||||||
GLU | E | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 4 | 2 | ||||||||||||
ASN | N | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 2 | |||||||||||
GLN | Q | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | ||||||||||
LYS | K | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 2 | 4 | 2 | 2 | |||||||||
HIS | H | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 2 | 0 | 2 | 4 | 0 | 2 | ||||||||
ARG | R | 6 | 0 | 0 | 4 | 1 | 6 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 18 | |||||||
PHE | F | 0 | 0 | 2 | 6 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | ||||||
TYR | Y | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 0 | 2 | 0 | 2 | 2 | |||||
TRP | W | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | ||||
CYS | C | 2 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | |||
MET | M | 0 | 0 | 1 | 2 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | ||
PRO | P | 0 | 4 | 0 | 4 | 0 | 4 | 4 | 0 | 0 | 0 | 2 | 0 | 2 | 4 | 0 | 0 | 0 | 0 | 0 | 12 | |
STP | 1 | 0 | 0 | 3 | 0 | 3 | 0 | 0 | 2 | 0 | 2 | 2 | 0 | 2 | 0 | 4 | 2 | 2 | 0 | 0 | 4 | |
G | A | V | L | I | S | T | D | E | N | Q | K | H | R | F | Y | W | C | M | P | STP |
Amino Acid | Amino Acid Code | Number of Double Mutations | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GLY | G | 0 | ||||||||||||||||||||
ALA | A | 12 | 0 | |||||||||||||||||||
VAL | V | 12 | 12 | 0 | ||||||||||||||||||
LEU | L | 6 | 6 | 18 | 12 | |||||||||||||||||
ILE | I | 3 | 3 | 9 | 14 | 0 | ||||||||||||||||
SER | S | 10 | 14 | 6 | 12 | 7 | 4 | |||||||||||||||
THR | T | 4 | 12 | 4 | 6 | 9 | 18 | 0 | ||||||||||||||
ASP | D | 6 | 6 | 6 | 2 | 2 | 4 | 2 | 0 | |||||||||||||
GLU | E | 6 | 6 | 6 | 4 | 1 | 2 | 2 | 0 | 0 | ||||||||||||
ASN | N | 2 | 2 | 2 | 2 | 4 | 4 | 6 | 2 | 4 | 0 | |||||||||||
GLN | Q | 2 | 2 | 2 | 8 | 1 | 2 | 2 | 4 | 2 | 4 | 0 | ||||||||||
LYS | K | 2 | 2 | 2 | 4 | 5 | 6 | 6 | 4 | 2 | 0 | 2 | 0 | |||||||||
HIS | H | 2 | 2 | 2 | 6 | 2 | 4 | 2 | 2 | 4 | 2 | 0 | 4 | 0 | ||||||||
ARG | R | 18 | 6 | 6 | 18 | 8 | 12 | 10 | 2 | 4 | 6 | 8 | 4 | 6 | 12 | |||||||
PHE | F | 2 | 2 | 6 | 6 | 4 | 8 | 2 | 2 | 0 | 2 | 0 | 0 | 2 | 2 | 0 | ||||||
TYR | Y | 2 | 2 | 2 | 6 | 2 | 8 | 2 | 2 | 4 | 2 | 4 | 4 | 2 | 2 | 2 | 0 | |||||
TRP | W | 3 | 1 | 1 | 2 | 0 | 5 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 4 | 2 | 2 | 0 | ||||
CYS | C | 6 | 2 | 2 | 6 | 2 | 8 | 2 | 2 | 0 | 2 | 0 | 0 | 2 | 10 | 2 | 2 | 0 | 0 | |||
MET | M | 1 | 1 | 3 | 4 | 0 | 3 | 3 | 0 | 1 | 2 | 1 | 1 | 0 | 2 | 2 | 0 | 1 | 0 | 0 | ||
PRO | P | 4 | 12 | 4 | 14 | 3 | 14 | 12 | 2 | 2 | 2 | 2 | 2 | 6 | 14 | 2 | 2 | 1 | 2 | 1 | 0 | |
STP | 5 | 3 | 3 | 6 | 2 | 11 | 3 | 4 | 3 | 4 | 3 | 5 | 4 | 8 | 6 | 2 | 1 | 4 | 1 | 3 | 2 | |
G | A | V | L | I | S | T | D | E | N | Q | K | H | R | F | Y | W | C | M | P | STP |
All AA Mutations Included | AA Mutations Requiring Two/Three RNA Mutations Excluded | |||||||
---|---|---|---|---|---|---|---|---|
Single Mutations | Double Mutations | Single Mutations | Double Mutations | |||||
Code 1 | Corr_n 2 | Corr_w 2 | Corr_n | Corr_w | Corr_n | Corr_w | Corr_n | Corr_w |
ALTS910101 3 | 0.508 | 0.540 | 0.080 | −0.091 | 0.389 | 0.364 | 0.360 | 0.172 |
BENS940101 4 | 0.488 | 0.626 | 0.073 | −0.075 | 0.306 | 0.507 | 0.378 | 0.250 |
BENS940102 5 | 0.469 | 0.577 | 0.051 | −0.090 | 0.333 | 0.486 | 0.346 | 0.230 |
BENS940103 6 | 0.447 | 0.518 | −.007 | −0.114 | 0.363 | 0.462 | 0.270 | 0.221 |
DAYM780301 7 | 0.449 | 0.480 | 0.055 | 0.085 | 0.338 | 0.326 | 0.307 | 0.167 |
JOND920103 8 | 0.476 | 0.596 | 0.057 | −0.096 | 0.318 | 0.486 | 0.376 | 0.237 |
JOND940101 9 | 0.404 | 0.591 | −0.043 | −0.111 | 0.169 | 0.444 | 0.216 | 0.243 |
DAYM780302 10 | 0.562 | 0.565 | 0.071 | −0.104 | 0.481 | 0.350 | 0.339 | 0.247 |
HENS920101 11 | 0.487 | 0.491 | −0.093 | −0.224 | 0.420 | 0.407 | 0.222 | 0.125 |
HENS920102 12 | 0.506 | 0.518 | −0.072 | −0.206 | 0.440 | 0.450 | 0.235 | 0.139 |
HENS920103 13 | 0.521 | 0.532 | −0.061 | −0.205 | 0.441 | 0.447 | 0.252 | 0.139 |
HENS920104 14 | 0.483 | 0.498 | −0.103 | −0.214 | 0.413 | 0.401 | 0.114 | 0.187 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mezei, M. Use of the Codon Table to Quantify the Evolutionary Role of Random Mutations. Algorithms 2021, 14, 270. https://doi.org/10.3390/a14090270
Mezei M. Use of the Codon Table to Quantify the Evolutionary Role of Random Mutations. Algorithms. 2021; 14(9):270. https://doi.org/10.3390/a14090270
Chicago/Turabian StyleMezei, Mihaly. 2021. "Use of the Codon Table to Quantify the Evolutionary Role of Random Mutations" Algorithms 14, no. 9: 270. https://doi.org/10.3390/a14090270
APA StyleMezei, M. (2021). Use of the Codon Table to Quantify the Evolutionary Role of Random Mutations. Algorithms, 14(9), 270. https://doi.org/10.3390/a14090270