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Abstract: The various biases affecting RNA mutations during evolution is the subject of intense
research, leaving the extent of the role of random mutations undefined. To remedy this lacuna, using
the codon table, the number of codons representing each amino acid was correlated with the amino
acid frequencies in different branches of the evolutionary tree. The correlations were seen to increase
as evolution progressed. Furthermore, the number of RNA mutations that resulted in a given amino
acid mutation were found to be correlated with several widely used amino acid similarity tables
(used in sequence alignments). These correlations were seen to increase when the observed codon
usage was factored in.
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1. Introduction

It is a fundamental tenet of evolutionary biology that evolution is driven by mutations
in the carrier of the genetic code, the DNA, and, consequently, the RNA. While a simplistic
view of Darwinian evolution would assume all mutations to be equally probable, the
current work in this field is dominated by characterizing various biases in the mutation
rates. A recent paper reviewed the research on these biases indicated that biases are
categorized as mutation bias, i.e., the difference in the rate of changes at the RNA level
(e.g., C–G bias [1]), and composition bias, i.e., the difference in the fitness of the mutated
structure, showing bias at the protein level, and showed that they act synergistically [2].
Another recent work [3] emphasized the non-randomness of mutations.

The aim of this paper is to divert the attention from the various biases, and instead
attempts to quantify the randomness of the mutations observed during evolution. For this
purpose, the results of the mutations will be examined at the protein level. In support of
the protein-centric view of mutation, it should be noted that while mutations at the RNA
level are interesting biochemical problems, the biological significance of the mutations
manifests itself at the protein level.

It has been recognized that if evolution were driven by unbiased random mutations,
then the amino acid (AA) frequencies in proteins should fully correlate with the number of
codons that code each AA; a correlation was indeed found, but it was not very strong [4].
The number of codons were also found negatively correlated with the AA size and were
correlated with the AAs hydrostatic pressure asymmetry index [5]. This paper will examine
the codon multiplicity–AA frequency correlation according to families of organisms.

One important use of sequence alignment algorithms is for the detection of the evo-
lutionary relations of proteins. Sequence alignments are based on so-called substitution
matrices that measure the similarity of various AAs; in the evolutionary context they should
measure the likelihood of one AA to be mutated into another one. The more the RNA
mutation are unbiasedly random, the more these substitution matrices should be correlated
with the likelihood of AA mutations resulting from unbiased random RNA mutations.
To get at these correlations, the codons representing each AA will be used to derive the
unbiased likelihood of AA mutations resulting from single or double nucleotide changes
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followed by the calculation of the correlation between the mutation likelihoods derived
from the codon table and various AA substitution matrices. The larger the correlation, the
larger the role of randomness in the AA mutations.

2. Materials and Methods

The AA frequencies were obtained for fungi, protozoa, invertebrate, vertebrate (mam-
mals), vertebrate (non-mammals), and plants from the work of Gaur [6]; Tables 1 and
2 of [6] show the AA frequencies for membrane and non-membrane proteins, respec-
tively. The codon table used is from Wikipedia, using the AA coding established for
the majority of organisms, with the understanding that there are some organisms where
different coding is used. The codon usage frequencies cfreq(i,j,k) were obtained from
the GenScript (GenScript Inc., Piscataway, NJ, USA) website (https://www.genscript.
com/tools/codon-frequency-table, accessed on 16 September 2021), which provides usage
frequencies for a number of organisms, including homo sapiens. The list of AA sub-
stitution matrices is described in [7] and was downloaded from the AAindex database
(http://www.genome.jp/dbget-bin/www_bfind?aaindex, accessed on 16 September 2021).

The number of single (M = 2) or double (M = 1) RNA mutations, possibly weighted,
that change AA a to AA b, m(a,b), is obtained as follows

m(a, b) =
4
∑

i,j,k=1
δ(a, aa(i, j, k))

∗
4
∑

i′ ,j′ ,k′=1
δ(δ(i, i′) + δ(j, j′) + δ(k, k′), M)δ(b, aa(i′, j′, k′))

∗W(i, j, k, i′, j′, k′)

where δ(i,j) is the Kroenecker delta; aa(i,j,k) is the amino acid number (≤20) coded by the
nucleotides i, j, and k; and W(i,j,k,i′,j′,k’) is a weight depending on the codons (i,j,k) and
(i′,j′,k′) involved.

All of the calculations described in this paper were performed by the program codon.f,
available at the URL https://mezeim01.u.hpc.mssm.edu/codon (accessed on 16 Septem-
ber 2021).

3. Results
3.1. Correlation between Codon Multiplicities and AA Propensities

The Pearson correlations (r) between the codon multiplicities and propensities of
the AAs (shown in Table 1) were calculated for protozoa, invertebrates, fungi, plants,
vertebrates (non-mammals), and vertebrates (mammals); the calculations were performed
separately for the membrane and non-membrane proteins. In addition, all correlations
were also calculated using only the 11 AAs that were found to be proximal to each other
in [4]; for this subset, the correlations were stronger. With the observation in mind that in
the evolutionary tree both fungi and plants are on a separate branch of the branch formed
by protozoa, invertebrates, and vertebrates, we can conclude that the correlations increased
as evolution progressed.

3.2. The Number of RNA Mutations per AA Mutation

Tables 2 and 3 show for each pair of AAs, the number of single and double RNA mu-
tations, respectively, that result in the AA mutation. First, these data reflect the observation
that single mutations are likely to result in small chemical changes [8,9]. While it is not
surprising that not all of the 20 × 19/2 = 180 AA mutations can be achieved by a single
RNA mutation, it is important to notice that a significant number of AA mutations cannot
be achieved even by double nucleotide changes.

https://www.genscript.com/tools/codon-frequency-table
https://www.genscript.com/tools/codon-frequency-table
http://www.genome.jp/dbget-bin/www_bfind?aaindex
https://mezeim01.u.hpc.mssm.edu/codon
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Table 1. Pearson correlation r between amino acid frequencies and codon multiplicities.

All 20 Top 11

Membrane Non-
Membrane Membrane Non-

Membrane

Vertebrates
(mammals) 0.87 0.81 0.97 0.98

Vertebrates
(non-

mammals)
0.76 0.73 0.93 0.97

Plants 0.72 0.71 0.88 0.81

Fungi 0.67 0.75 0.86 0.94

Invertebrates 0.52 0.52 0.82 0.88

Protozoa 0.50 0.23 0.78 0.70
Legend: membrane and non-membrane: correlations calculated for all membrane proteins and all non-membrane
proteins, respectively; All 20 and Top 11: correlations calculated for all 20 AAs and for the top 11 AAs in the
ranking of [4], respectively.

Table 2. Number of single mutations that result in each AA mutation.

Amino Acid Amino Acid
Code Number of Single Mutations

GLY G 12

ALA A 4 12

VAL V 4 4 12

LEU L 0 0 6 18

ILE I 0 0 3 4 6

SER S 2 4 0 2 2 14

THR T 0 4 0 0 3 6 12

ASP D 2 2 2 0 0 0 0 2

GLU E 2 2 2 0 0 0 0 4 2

ASN N 0 0 0 0 2 2 2 2 0 2

GLN Q 0 0 0 2 0 0 0 0 2 0 2

LYS K 0 0 0 0 1 0 2 0 2 4 2 2

HIS H 0 0 0 2 0 0 0 2 0 2 4 0 2

ARG R 6 0 0 4 1 6 2 0 0 0 2 2 2 18

PHE F 0 0 2 6 2 2 0 0 0 0 0 0 0 0 2

TYR Y 0 0 0 0 0 2 0 2 0 2 0 0 2 0 2 2

TRP W 1 0 0 1 0 1 0 0 0 0 0 0 0 2 0 0 0

CYS C 2 0 0 0 0 4 0 0 0 0 0 0 0 2 2 2 2 2

MET M 0 0 1 2 3 0 1 0 0 0 0 1 0 1 0 0 0 0 0

PRO P 0 4 0 4 0 4 4 0 0 0 2 0 2 4 0 0 0 0 0 12

STP 1 0 0 3 0 3 0 0 2 0 2 2 0 2 0 4 2 2 0 0 4

G A V L I S T D E N Q K H R F Y W C M P STP
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Table 3. Number of double mutations that result in each AA mutation.

Amino Acid Amino Acid
Code Number of Double Mutations

GLY G 0

ALA A 12 0

VAL V 12 12 0

LEU L 6 6 18 12

ILE I 3 3 9 14 0

SER S 10 14 6 12 7 4

THR T 4 12 4 6 9 18 0

ASP D 6 6 6 2 2 4 2 0

GLU E 6 6 6 4 1 2 2 0 0

ASN N 2 2 2 2 4 4 6 2 4 0

GLN Q 2 2 2 8 1 2 2 4 2 4 0

LYS K 2 2 2 4 5 6 6 4 2 0 2 0

HIS H 2 2 2 6 2 4 2 2 4 2 0 4 0

ARG R 18 6 6 18 8 12 10 2 4 6 8 4 6 12

PHE F 2 2 6 6 4 8 2 2 0 2 0 0 2 2 0

TYR Y 2 2 2 6 2 8 2 2 4 2 4 4 2 2 2 0

TRP W 3 1 1 2 0 5 1 0 1 0 1 1 0 4 2 2 0

CYS C 6 2 2 6 2 8 2 2 0 2 0 0 2 10 2 2 0 0

MET M 1 1 3 4 0 3 3 0 1 2 1 1 0 2 2 0 1 0 0

PRO P 4 12 4 14 3 14 12 2 2 2 2 2 6 14 2 2 1 2 1 0

STP 5 3 3 6 2 11 3 4 3 4 3 5 4 8 6 2 1 4 1 3 2

G A V L I S T D E N Q K H R F Y W C M P STP

3.3. Correlation between the Number of RNA Mutations and AA Substitution Matrices

The larger the role of random mutations in the genetic evolution, the more the number
of mutations per AA substitution should correlate with the AA similarity measures. The
observation suggests the examination of the correlation between the number of RNA
mutations that can change a given AA into another one and the corresponding elements of
the various substitution matrices used in the AA sequence alignments.

For the calculation of these correlations, 98 substitution matrices were downloaded
from the AAindex database [7]. The list of matrices involves several variants of the two
widely used matrix types: PAM [10–13] and BLOSUM [14]. PAM stands for “point ac-
cepted mutation”, the matrices are based on scoring all amino acid positions in the related
sequences; the different versions are based on different timeframes for the mutations. BLO-
SUM stands for “BLOcks SUbstitution Matrix”, and the matrices are based on substitutions
and conserved positions in blocks; the closer the compared sequences are, the higher the
number version of the matrix that is supposed to be used. It is important to note that these
substitution matrices were developed from data at the AA level without considering the
requisite RNA mutations. Several of the rest were designed for specific situations. Most,
but not all, were symmetric.

Table 4 shows the Pearson correlations between the matrix of the number of muta-
tions, both unweighted and weighted (with the codon usage frequency from the human
genome), as shown in Tables 2 and 3, respectively, and the PAM and BLOSUM matrices; the
correlations with the full set of 98 substitution matrices are provided in the Supplementary
Materials. For the matrices that were not symmetric, the correlations were calculated for
the lower triangular matrix. In addition, the correlation calculations were also performed
using only AA mutations that could be achieved with only one or two RNA mutations.
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Table 4. Correlation between PAM or BLOSUM matrices and the number of mutation paths.

All AA Mutations Included AA Mutations Requiring Two/Three RNA Mutations
Excluded

Single Mutations Double Mutations Single Mutations Double Mutations

Code 1 Corr_n 2 Corr_w 2 Corr_n Corr_w Corr_n Corr_w Corr_n Corr_w

ALTS910101 3 0.508 0.540 0.080 −0.091 0.389 0.364 0.360 0.172

BENS940101 4 0.488 0.626 0.073 −0.075 0.306 0.507 0.378 0.250

BENS940102 5 0.469 0.577 0.051 −0.090 0.333 0.486 0.346 0.230

BENS940103 6 0.447 0.518 −.007 −0.114 0.363 0.462 0.270 0.221

DAYM780301 7 0.449 0.480 0.055 0.085 0.338 0.326 0.307 0.167

JOND920103 8 0.476 0.596 0.057 −0.096 0.318 0.486 0.376 0.237

JOND940101 9 0.404 0.591 −0.043 −0.111 0.169 0.444 0.216 0.243

DAYM780302 10 0.562 0.565 0.071 −0.104 0.481 0.350 0.339 0.247

HENS920101 11 0.487 0.491 −0.093 −0.224 0.420 0.407 0.222 0.125

HENS920102 12 0.506 0.518 −0.072 −0.206 0.440 0.450 0.235 0.139

HENS920103 13 0.521 0.532 −0.061 −0.205 0.441 0.447 0.252 0.139

HENS920104 14 0.483 0.498 −0.103 −0.214 0.413 0.401 0.114 0.187
1 Code: the AAindex database identifier; 2 Corr_n, Corr_w: number of mutation paths calculated with W = 1 and W = cfreq(i,j,k)
× cfreq(i′,j′,k′), respectively; 3 PAM-120 [11]; 4 PAM-log-odds_6.4–8.7 [12]; 5 PAM-log-odds_22–29 [12]; 6 PAM-log-odds_74–100 [12];
7 PAM-250-log-odds [10]; 8 PAM-250_PET91 [13]; 9 PAM-250_TM [13]; 10 PAM-40–log-odds [10]; 11 BLOSUM45 [14]; 12 BLOSUM62 [14];
13 BLOSUM80 [14]; 14 BLOSUM50 [14].

4. Discussion

The variation in the number of codons coding for a given amino acid suggested a
number of ways to quantify the role of random mutations in genetic evolution. In particular,
the work of Mittal and Jayaram was refined to study the correlation between the number of
codons and the propensity of the corresponding AAs to calculate it for different branches
of the evolutionary tree and the correlations between the number of mutations changing
each AA to other AAs with the corresponding substitution matrices used in sequence
alignments. Significant correlations were indeed found, confirming that random mutations
indeed form one contribution to genetic evolution, but are not enough to account for it
completely. At the same time, the results confirmed the existence of significant biases, as
referred to in the Introduction.

The interesting observation from the present calculations is the increase of correlation
moving up in the evolutionary tree; this observation also holds for the subset of 11 AAs
defined by Mittal and Jayaram. If one accepts the role of randomness of mutations, then
this observation provides experimental support for the idea of Darwinian evolution (not
that it lacks other, more convincing support). If one accepts Darwinian evolution, then this
observation provides experimental support and a measure of the role of random mutations
in the evolution.

The correlations found also raise an intriguing question. It has been shown recently
that a significant contribution to the foldability of an AA sequence is its adherence to the
non-uniform distribution of AAs [15]. This leads to the following question: was there, at
the early stages of genetic evolution, a mechanism that biased the establishment of the
codon table to use more codons for the more frequent AAs? It is not impossible, as it
has already been suggested, that the establishment of the genetic code was influenced by
the chemistry of the AAs [16], as it has been found to be likely that the genetic code was
established at a later stage of evolution [17].

The fact that the codon table as finalized during evolution ended up with a number of
AA mutations that can only be achieved with three RNA mutation can be considered an
imperfection. It could have been the result of either too fast evolution (like an optimization
process using simulated annealing that was not run slow enough) or of competing require-
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ments (like minimizing the number of RNA mutations, which would result in a drastic
AA switch).

In the study examining the correlations between the number of RNA mutations per
AA mutations and the substitution matrices, the results were different for AA mutations
that required single and those that required double RNA mutations. For single RNA
mutations, the results showed significant correlations, both when using all matrix elements
and when excluding the matrix elements that correspond to AA mutations that cannot be
achieved with a single RNA mutation, although the correlations were weaker for the latter.
Furthermore, it is gratifying that the correlations increased when the experimental codon
usage probabilities were taken into account. The increased correlations provide additional
confirmation for the role of random mutations.

For the double RNA mutations, however, the results were different. When using all
matrix elements and without using frequency weighting, the correlations were small, but
at least positive, but they become negative when the usage frequencies were factored in.
Omitting the “forbidden” AA mutations, contrary to the single RNA mutation case, the
correlations increased, but remained small. This suggests that when an alignment indicates
AA mutations requiring more than one RNA mutation, it is unlikely to be the result of just
a pair of mutations.

One explanation for the low or even negative correlations, using the assumption of
random double mutations, could be that such AA changes are the result of insertions
and/or frame shifts; this could also explain the occurrence of AA mutations requiring three
RNA mutations (which is even more unlikely). The incorporation of this idea could be
an alignment algorithm that is done simultaneously at the RNA and the AA level, which
could verify the presence of a frame shift.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.339
0/a14090270/s1: the correlations of the mutation numbers with the full set of 98 substitution matrices.
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