Some Notes on the Omega Distribution and the Pliant Probability Distribution Family
Abstract
:1. Introduction
2. The Pliant Probability Distribution Family
- computation of the Hausdorff distance between the Heaviside step function and the Pliant probability distribution function under dynamical user-defined values for parameters , , , m;
- automatic check of the conditions from Theorem 1 and computation upper and lower estimates that can be used as confidence bounds;
- tools for dynamical visualization of obtained results;
- web (cloud) version of the module that requires only a browser and internet connection.
3. Omega Probability Distribution
4. Conclusions
Funding
Conflicts of Interest
References
- Chen, Z.; Cao, F. The approximation operators with sigmoidal functions. Comput. Math. Appl. 2009, 58, 758–765. [Google Scholar] [CrossRef] [Green Version]
- Kyurkchiev, N.; Markov, S. On the hausdorff distance between the Heaviside step function and Verhulst logistic function. J. Math. Chem. 2016, 54, 109–119. [Google Scholar] [CrossRef]
- Kyukchiev, N.; Iliev, A.; Rahnev, A. A new class of activation functions based on the correcting amendments of Gompertz-Makeham type. Dyn. Syst. Appl. 2019, 28, 243–257. [Google Scholar] [CrossRef] [Green Version]
- Kyurkchiev, N.; Nikolov, G. Comments on some new classes of sigmoidal and activation functions. Applications. Dyn. Syst. Appl. 2019, 28, 789–808. [Google Scholar] [CrossRef]
- Kyurkchiev, N. Comments on the Yun’s algebraic activation function. Some extensions in the trigonometric case. Dyn. Syst. Appl. 2019, 28, 533–543. [Google Scholar] [CrossRef]
- Kyurkchiev, N. Some intrinsic properties of Tadmor–Tanner functions: Related problems and possible applications. Mathematics 2020, 8, 1963. [Google Scholar] [CrossRef]
- Markov, S.; Iliev, A.; Rahnev, A.; Kyukchiev, N. A note on the Log-logistic and transmuted Log-logistic models. Some applications. Dyn. Syst. Appl. 2018, 27, 593–607. [Google Scholar] [CrossRef] [Green Version]
- Yun, B.I. A neural network approximation based on a parametric sigmoidal function. Mathematics 2019, 7, 262. [Google Scholar] [CrossRef] [Green Version]
- Iliev, A.; Kyukchiev, N.; Rahnev, A.; Terzieva, T. Some Models in the Theory of Computer Viruses Propagation; LAP LAMBERT Academic Publishing: Saarbrucken, Germany, 2019; ISBN 978-620-0-00826-8. [Google Scholar]
- Kyukchiev, N.; Iliev, A.; Rahnev, A. Some New Logistic Differential Models: Properties and Applications; LAP LAMBERT Academic Publishing: Saarbrucken, Germany, 2019; ISBN 978-620-0-43442-5. [Google Scholar]
- Kyukchiev, N.; Iliev, A.; Rahnev, A. Some Families of Sigmoid Functions: Applications to Growth Theory; LAP LAMBERT Academic Publishing: Saarbrucken, Germany, 2019; ISBN 978-613-9-45608-6. [Google Scholar]
- Kyukchiev, N.; Markov, S. Sigmoid Functions: Some Approximation and Modelling Aspects. Some Moduli in Programming Environment MATHEMATICA; LAP LAMBERT Academic Publishing: Saarbrucken, Germany, 2015; ISBN 978-3-659-76045-7. [Google Scholar]
- Kyukchiev, N.; Iliev, A.; Markov, S. Some Techniques for Recurrence Generating of Activation Functions: Some Modeling and Approximation Aspects; LAP LAMBERT Academic Publishing: Saarbrucken, Germany, 2017; ISBN 978-3-330-33143-3. [Google Scholar]
- Kyukchiev, N.; Iliev, A. Extension of Gompertz-Type Equation in Modern Science: 240 Anniversary of the Birth of B. Gompertz; LAP LAMBERT Academic Publishing: Saarbrucken, Germany, 2018; ISBN 978-613-9-90569-0. [Google Scholar]
- Kyurkchiev, N.; Iliev, A.; Golev, A.; Rahnev, A. Some Non-Standard Models in “Debugging and Test Theory” (Part 4); Plovdiv University Press: Plovdiv, Bulgaria, 2020; ISBN 978-619-2-02584-7. [Google Scholar]
- Kyukchiev, N. Selected Topics in Mathematical Modeling: Some New Trends. Dedicated to Academician Blagovest Sendov (1932–2020); LAP LAMBERT Academic Publishing: Saarbrucken, Germany, 2020; ISBN 978-613-9-45608-6. [Google Scholar]
- Pavlov, N.; Iliev, A.; Rahnev, A.; Kyukchiev, N. Some Software Reliability Models: Approximation and Modeling Aspects; LAP LAMBERT Academic Publishing: Saarbrucken, Germany, 2018; ISBN 978-613-9-82805-0. [Google Scholar]
- Pavlov, N.; Iliev, A.; Rahnev, A.; Kyukchiev, N. Nontrivial Models in Debugging Theory (Part 2); LAP LAMBERT Academic Publishing: Saarbrucken, Germany, 2018; ISBN 978-613-9-87794-2. [Google Scholar]
- Sendov, B.L. Hausdorff approximations. In Mathematics and Its Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1990; Volume 50, pp. 1–367. [Google Scholar] [CrossRef]
- Dombi, J.; Jónás, T.; Toth, Z.E.; Árva, G. The omega probability distribution and its applications in reliability theory. Qual. Reliab. Eng. Int. 2019, 35, 600–626. [Google Scholar] [CrossRef] [Green Version]
- Dombi, J.; Jónás, T. On an alternative to four notable distribution functions with applications in engineering and the business sciences. Acta Polytech. Hung. 2020, 17, 231–252. [Google Scholar] [CrossRef]
- Dombi, J.; Jónás, T. Advances in the theory of probabilistic and fuzzy data scientific methods with applications. In Studies in Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2021; Volume 814, pp. 1–186. [Google Scholar] [CrossRef]
- Dombi, J.; Jónás, T.; Tóth, Z. The Epsilon probability distribution and its applications in reliability theory. Acta Polytech. Hung. 2018, 15, 197–216. [Google Scholar] [CrossRef]
- Árva, G. Application of Soft-Computing Techniques for Management Purposes. Fuzzy Likert Scales and Describing and Predicting Empirical Failure Rate Time Series. Ph.D Thesis, Budapest University of Technology and Economics, Budapest, Hungary, 2020; pp. 1–176. [Google Scholar]
- Kyukchiev, N. Comments on the epsilon and omega cumulative distributions: “Saturation in the hausdorff sense”. AIP Conf. Proc. 2020. in print. [Google Scholar]
- Proschan, F. Theoretical explanation of observed decreasing failure rate. Technometrics 1963, 5, 375–383. [Google Scholar] [CrossRef]
- Okorie, I.E.; Nadarajah, S. On the omega probability distribution. Qual. Reliab. Eng. Int. 2019, 35, 2045–2050. [Google Scholar] [CrossRef]
Distribution | Parameters and Domain of the Pliant Probability | Approximated CDF |
---|---|---|
Weibull | , , , , | |
Exponential | , , , , | |
Logistic | , , , , | |
Standard Normal | , , , , |
m | d | Figure 3 | Approximation Distribution | |||
---|---|---|---|---|---|---|
1 | (a) | Weibull | ||||
1 | (b) | Weibull | ||||
1 | 1 | (c) | Exponential | |||
1 | 1 | (d) | Exponential | |||
1 | (e) | Logistic | ||||
1 | (f) | Logistic | ||||
1 | (g) | Standard Normal | ||||
1 | (h) | Standard Normal |
m | d | Figure 4 | ||||
---|---|---|---|---|---|---|
(a) | ||||||
(b) | ||||||
(c) | ||||||
(d) | ||||||
(e) | ||||||
(f) | ||||||
(g) | ||||||
(h) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasileva, M.T. Some Notes on the Omega Distribution and the Pliant Probability Distribution Family. Algorithms 2020, 13, 324. https://doi.org/10.3390/a13120324
Vasileva MT. Some Notes on the Omega Distribution and the Pliant Probability Distribution Family. Algorithms. 2020; 13(12):324. https://doi.org/10.3390/a13120324
Chicago/Turabian StyleVasileva, Maria T. 2020. "Some Notes on the Omega Distribution and the Pliant Probability Distribution Family" Algorithms 13, no. 12: 324. https://doi.org/10.3390/a13120324
APA StyleVasileva, M. T. (2020). Some Notes on the Omega Distribution and the Pliant Probability Distribution Family. Algorithms, 13(12), 324. https://doi.org/10.3390/a13120324