
mathematics

Article

A Neural Network Approximation Based on
a Parametric Sigmoidal Function

Beong In Yun

Department of Mathematics, Kunsan National University, Gunsan 54150, Korea; paulllyun@gmail.com

Received: 12 February 2019; Accepted: 11 March 2019; Published: 14 March 2019
����������
�������

Abstract: It is well known that feed-forward neural networks can be used for approximation to
functions based on an appropriate activation function. In this paper, employing a new sigmoidal
function with a parameter for an activation function, we consider a constructive feed-forward neural
network approximation on a closed interval. The developed approximation method takes a simple
form of a superposition of the parametric sigmoidal function. It is shown that the proposed method
is very effective in approximation of discontinuous functions as well as continuous ones. For some
examples, the availability of the presented method is demonstrated by comparing its numerical
results with those of an existing neural network approximation method. Furthermore, the efficiency
of the method in extended application to the multivariate function is also illustrated.

Keywords: feed-forward neural network; activation function; parametric sigmoidal function;
quasi-interpolation

MSC: 65D15; 92B20; 41A20

1. Introduction

Cybenko [1] and Funahashi [2] proved that any continuous function can be uniformly
approximated on a compact set I ⊂ Rn by the feed-forward neural networks (FNN) in the form of

FN(x) =
N

∑
k=0

αk σ (ωk · x + θk) , x ∈ I , (1)

where σ is called an activation function, ωk ∈ Rn are weights, θk ∈ R are thresholds, and αk ∈ R
are coefficients. It is called the universal approximation theorem. Moreover, Hornik et al. [3]
showed that any measurable function can be approximated on a compact set by the form of the
FNN. Some constructive approximation methods by the FNN were developed in the literature [4–7].
Other examples of the function approximation by the FNN can be found in the works of Cao et al. [8],
Chui and Li [9], Ferrari and Stengel [10], and Suzuki [11]. Particularly, the activation function σ is a
basic architecture of the neural networks because it imports non-linear properties into the networks.
This allows the artificial neural networks to learn from complicated non-linear mappings between
inputs in general.

In this paper, aiming efficient approximation to the data obtained from continuous or
discontinuous functions on a closed interval, we develop a feed-forward neural network approximation
method based on a sigmoidal activation function. First, in the following section, we propose a
parametric sigmoidal function σ[m] of the form (6) for an activation function. In Section 3 we construct
an approximation formula S[m]

N f (x) in (19) based on the proposed sigmoidal function σ[m]. It is shown

that S[m]
N f (x) approximates every given data with error O (δm), 0 < δ < 1, for the parameter m large

enough. This implies the so-called quasi-interpolation property of the presented FNN approximation.

Mathematics 2019, 7, 262; doi:10.3390/math7030262 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://www.mdpi.com/2227-7390/7/3/262?type=check_update&version=1
http://dx.doi.org/10.3390/math7030262
http://www.mdpi.com/journal/mathematics

Mathematics 2019, 7, 262 2 of 12

Furthermore, in order to better the interpolation errors near the end-points of the given interval,
a correction formula (27) is introduced in Section 4. The efficiency of the presented FNN approximation
is demonstrated by the numerical results for the data sets extracted from continuous and discontinuous
functions. The aforementioned efficiency means that the proposed method requires less neurons
to reach similar or lower error levels than the compared FNN approximation method using the
conventional logistic function.

In addition, an extended FNN approximation formula for two variable functions is proposed
in Section 5 with some numerical examples showing the superiority of the presented FNN
approximation method.

2. A Parametric Sigmoidal Function

The role of the activation function in the artificial neural networks is to introduce non-linearity of
the input data into the output of the neural network. One of the useful activation functions commonly
used in practice is the sigmoidal function σ having the property below.

σ(t)→
{

0 as t→ −∞

1 as t→ ∞
(2)

For example, two traditional sigmoidal functions are

(i) Heaviside function:

σH(t) =

{
0 , t < 0

1 , t > 0
(3)

(ii) Logistic function:

σL(t) =
1

1 + e−t =
1
2
{1 + tanh(t/2)} , −∞ < t < ∞ (4)

We recall the following approximation theorem shown in the literature [6].

Theorem 1. (Costarelli and Spigler [6]) For a bounded sigmoidal function σ and a function f ∈ C[a, b] let
GN f be a neural network approximation to f of the form

GN f (x) = f (x0)σ (ω(x− x−1)) +
N

∑
k=1
{ f (xk)− f (xk−1)} σ (ω(x− xk)) (5)

for x ∈ [a, b], h = (b− a)/N, and xk = a + kh (k = −1, 0, 1, · · · , N). Then for every ε > 0 there exists an
integer N > 0 and a real number ω > 0 such that

‖GN f − f ‖∞ < ε.

Sigmoidal functions have been used in various applications including the artificial neural
networks (See the literature [12–17]). In this work we employ an algebraic type sigmoidal function,
containing a parameter m > 0, as follows.

σ[m](t) =


0, t < −L

(L + t)m

(L + t)m + (L− t)m , |t| ≤ L

1, t > L

(6)

for a fixed L > 0. This function has the following properties.

Mathematics 2019, 7, 262 3 of 12

(A1) σ[m] is strictly increasing over [−L, L] and σ[m] ∈ C∞(−L, L) ∩ Cm−1(R) for an integer m ≥ 1.
In addition, referring to the literature [12], we can see that the Hausdorff distance d between the
heaviside function σH and the presented sigmoidal function σ[m] satisfies(

L + d
L− d

)m
=

1
d
− 1, 0 < d < min

{
1
2

, L
}

. (7)

That is, m = O
(

ln(1/d)
ln(1+d)

)
for d small enough.

(A2) For m large enough σ[m] has the asymptotic behavior

σ[m](t) =


O (θ(t)m) , −L ≤ t < 0

1 + O (θ(t)m) , 0 < t ≤ L
(8)

where

θ(t) =
(

L− t
L + t

)sgn(t)
, (9)

satisfying 0 ≤ θ(t) < 1 for all t ∈ [−L, L] \ {0}. In addition, for any integer m ≥ 2

dj

dxj σ[m](±L) = 0, j = 1, 2, · · · , m− 1. (10)

(A3) For every m > 0
σ[m](−t) + σ[m](t) = 1 , t ∈ R (11)

with σ[m](0) = 1
2 .

3. Constructing a Neural Network Approximation

Suppose for a real valued function f (x), a ≤ x ≤ b, a set of data

{ fk = f (xk) | k = 0, 1, 2, · · · , N}

is given, where N ≥ 2 is an integer and xk are nodes on the interval [a, b]. For simplicity, we assume
equally spaced nodes as

xk = a + k · h, h = (b− a)/N. (12)

We can observe that, for sufficiently large m, the function σ[m] with L = b− a in (6) satisfies

σ[m](t) ≈
{

0, t < 0

1, t > 0
(13)

due to the property (A2).
Moreover, noting that σ[m] is an increasing function as mentioned in (A1), we can see that

σ[m](t) <
1
N

, for all t <
(

σ[m]
)−1

(
1
N

)
= −L · (N − 1)1/m − 1

(N − 1)1/m + 1
(14)

and from the property (A3)

1− σ[m](t) <
1
N

, for all t > L · (N − 1)1/m − 1
(N − 1)1/m + 1

. (15)

Mathematics 2019, 7, 262 4 of 12

To find a lower bound of the parameter m we set L · (N−1)1/m−1
(N−1)1/m+1

= h(= L/N). Then we have the
lower bound m = m∗, satisfying this equation, as

m∗ =
log N − 1
log N+1

N−1
. (16)

That is, for every m > m∗ it follows that

σ[m](t) <
1
N

, for all t < −h (17)

and
1− σ[m](t) <

1
N

, for all t > h . (18)

The lower bound m∗ given in (16) will be used for a threshold of the parameter m in the numerical
implementation of the proposed neural network approximation later.

Referring to the above features of σ[m] in (13), (17) and (18), we propose a superposition of σ[m] to
approximate the given data { fk = f (xk) | k = 0, 1, 2, · · · , N} as follows.

S[m]
N f (x) = f0 +

N

∑
k=1

(fk − fk−1) σ[m] (x− xk) , x0 ≤ x ≤ xN , (19)

where xk = (xk−1 + xk)/2 = xk − h/2.
We can see that S[m]

N f (x) interpolates f (x) at N + 1 nodes, approximately, as implied in the

following theorem. Thus we call S[m]
N f (x) a quasi-interpolation of f (x).

Theorem 2. The FNN S[m]
N f (x) with m large enough as defined in (19) satisfies

S[m]
N f

(
xj
)
= f j + Cj f ′′

(
ξ j
)

h2 δm , 1 ≤ j ≤ N − 1 (20)

for some ξ j ∈ (xj−1, xj+1), 0 < δ < 1 and a constant Cj. Moreover,

S[m]
N f (x0) = f0 + C0 f ′ (ξ0) h δm, S[m]

N f (xN) = fN + CN f ′ (ξN) h δm,

for some ξ0 ∈ (x0, x1), ξN ∈ (xN−1, xN) and constants C0, CN .

Proof. Since σ[m] is an increasing function and it satisfies the asymptotic behaviour in (8), for each
1 ≤ j ≤ N − 1 with m large enough, we have

S[m]
N f

(
xj
)
∼ f j−1 +

(
f j − f j−1

)
σ[m]

(
h
2

)
+
(

f j+1 − f j
)

σ[m]

(
−h

2

)
= f j

{
1− σ[m]

(
−h

2

)}
+ f j−1σ[m]

(
−h

2

)
+
(

f j+1 − f j
)

σ[m]

(
−h

2

)
= f j +

{
f j−1 − 2 f j + f j+1

}
σ[m]

(
−h

2

)
.

The second equation above results from the relation σ[m]
(

h
2

)
=
{

1− σ[m]
(
− h

2

)}
based on the

property (A3). Denoting by ∆ and ∆2 the first and the second forward difference operators, respectively,
and using the function θ (t) defined in (9), we have

S[m]
N f

(
xj
)
= f j + ∆2 f j−1 O

(
θ

(
−h

2

)m)
.

Mathematics 2019, 7, 262 5 of 12

Since ∆2 f j−1 = f ′′
(
ξ j
)

h2 for some ξ j ∈ (xj−1, xj+1), setting δ = θ
(
− h

2

)
, we have the

formula (20).
On the other hand, for x = x0 and m large enough

S[m]
N f (x0) ∼ f0 + (f1 − f0) σ[m]

(
−h

2

)
= f0 + ∆ f0 O

(
θ

(
−h

2

)m)
.

Since ∆ f0 = f ′ (ξ0) h for some ξ0 ∈ (x0, x1), we have

S[m]
N f (x0) = f0 + C0 f ′ (ξ0) h δm

for a constant C0. For x = xN and m large enough

S[m]
N f (xN) ∼ fN−1 + (fN − fN−1) σ[m]

(
h
2

)
= fN−1 + (fN − fN−1)

{
1− σ[m]

(
−h

2

)}
= fN − (fN − fN−1) σ[m]

(
−h

2

)
= fN + ∆ fN−1 O

(
θ

(
−h

2

)m)
.

Since ∆ fN−1 = f ′ (ξN) h for some ξN ∈ (xN−1, xN), we have

S[m]
N f (xN) = fN + CN f ′ (ξN) h δm

for a constant CN . Thus the proof is completed.

Theorem 2 implies that, for N fixed(i.e., h fixed), approximation errors of S[m]
N f (x) at every nodes

can be accelerated by increasing the value of the parameter m.
The sum S[m]

N f (x) in (19) can be written by

S[m]
N f (x) = f0

{
1− σ[m] (x− x1)

}
+ fNσ[m] (x− xN)

+
N−1

∑
k=1

fk

{
σ[m] (x− xk)− σ[m] (x− xk+1)

}
.

(21)

Using a function ψ[m] defined as

ψ[m](t) = σ[m] (t + h/2)− σ[m] (t− h/2) , −L ≤ t ≤ L , (22)

with L = b− a, satisfying 0 ≤ ψ[m](t) ≤ 1 for all t, we may rewrite S[m]
N f (x) by

S[m]
N f (x) = f0

{
1− σ[m] (x− x1)

}
+ fNσ[m] (x− xN) +

N−1

∑
k=1

fkψ[m] (x− xk) (23)

for x0 ≤ x ≤ xN . In fact, it follows that

ψ[m] (x− xk) = σ[m] (x− xk)− σ[m] (x− xk+1) , 1 ≤ k ≤ N − 1. (24)

The formula (23) is a form of the feed-forward neural networks based on the activation function
ψ[m] with constant weights wk = 1 and thresholds xk.

Mathematics 2019, 7, 262 6 of 12

Under the assumption that m is large enough, the proposed quasi-interpolation S[m]
N f (x) in (23)

has the following properties:

(B1) Since 1 − σ[m] (x− x1) ≈ ψ[m] (x− x0) and σ[m] (x− xN) ≈ ψ[m] (x− xN) over the interval
[a, b] = [x0, xN], it follows that

S[m]
N f (x) ≈

N

∑
k=0

fkψ[m] (x− xk) , x0 ≤ x ≤ xN . (25)

(B2) For each k = 0, 1, 2, · · · , N,

ψ[m]
(
xj − xk

)
≈
{

1, j = k

0, j 6= k

and

ψ[m] (xk − xk) = ψ[m] (xk+1 − xk) = ψ[m]

(
±h

2

)
≈ 1

2
.

Graphs of the activation functions, σ
[m]
k (x) := σ[m] (x− xk) and ψ

[m]
k (x) := ψ[m] (x− xk) shown in

Figure 1 illustrate the intuition of the construction of the presented quasi-interpolation S[m]
N f (x).

In addition, Figure 2 includes the graphs of ψ
[m]
k (x) with respect to the values m = 1, 2, 4, 16,

which shows that ψ
[m]
k (x) becomes flatter near the node xk and far from the node as the parameter m

goes higher.
It is well known that the interpolants for continuous functions are guaranteed to be good if and

only if the Lebesgue constants are small [15]. Regarding the formula (25) as an interpolation with
equispaced points {xk}N

k=0, its Lebesgue function satisfies

λN(x) :=
N

∑
k=0

∣∣∣ψ[m] (x− xk)
∣∣∣ = N

∑
k=0

ψ[m] (x− xk) ≈ 1

for all x, and thus the corresponding Lebesgue constant becomes ΛN = ‖λN(x)‖∞ ≈ 1. Noting that
for the polynomial interpolation, the Lebesgue constant grows exponentially such as ΛN ∼ 2N+1

eN log N as

N → ∞, we may expect that S[m]
N f (x) will be better than the polynomial interpolation in approximation

to any continuous function, at least.

 0

 0.5

 1

x0 x1 x2 xN-1 xN

 σ1
[m]

 σ2
[m]

 σN-1
[m]

 σN
[m]

.

(a)

 0

 0.5

 1

x0 x1 x2 xN-1 xN

 ψ0
[m]

 ψ1
[m]

ψ2
[m]

ψN-1
[m]

 ψN
[m]

.

(b)

Figure 1. Graphs of the sigmoidal functions σ
[m]
k (x) in (a) and those of ψ

[m]
k (x) in (b).

Mathematics 2019, 7, 262 7 of 12

 0

 0.5

 1

xk-2 xk-1 xk xk+1 xk+2

m=16

m=4

m=2

m=1

Figure 2. Graphs of ψ
[m]
k (x) for each m = 1, 2, 4, and 16.

4. Correction Formula

In order to improve the interpolation errors near the end-points of the given interval, that is,
to make the formula (20) in Theorem 2 hold for all 0 ≤ j ≤ N, we employ two values at the points
x−1 := x0 − h = a− h and xN+1 := xN + h = b + h defined as

f−1 = 2 f0 − f1 , fN+1 = 2 fN − fN−1. (26)

Using these additional data, we define a correction formula of (23) as

S[m]
N f (x) = f−1

{
1− σ[m] (x− x0)

}
+ fN+1(x)σ[m] (x− xN+1) +

N

∑
k=0

fkψ[m] (x− xk) . (27)

To explore the availability of the proposed approximation method (27), we consider the following
examples which were employed in the literature [6].

Example 1. A smooth function on the interval [−5, 5].

f1(x) =
(

2 + cos2 x
)

sin x + 2x +
x2

8
+ 4 , −5 ≤ x ≤ 5,

Example 2. A function with jump-discontinuities.

f2(x) =



4
x2−2 , x < −2

−3 , −2 ≤ x < 0
5
2 , 0 ≤ x < 2
3x+2
x3−1 , x ≥ 2 ,

We compare the results of the presented method with those of the existing neural network
approximation method (5) using the activation function σ = σL in (4). In the literature [6], it was
proved that Theorem 1 holds if the weight ω is chosen such as

ω >
N
L

log(N − 1) , L = b− a . (28)

Mathematics 2019, 7, 262 8 of 12

In practice, we have used ω = N2/L in implementation of the existing FNN GN f (x) in (5) for the
examples above. The high level software, Mathematica(V.10) has been used as a programming tool
throughout the numerical performance for the examples.

For the smooth function f1 in Example 1, approximations of the proposed FNN S[m]
N f1(x),

with small number of neurons (N = 10) are shown in Figure 3 with respect to each parameter
m = 10, 15, 20, 30. The higher the value of m is, the more clearly S[m]

N f1(x) reveals the so-called

quasi-interpolation property as shown in Theorem 2. Moreover, Figure 4 shows errors of S[m]
N f1(x)

with m = 2N > m∗, for m∗ the lower bound of m as given in (16), compared with errors of
GN f1(x) for N = 10, 20, 30, · · · , 80. Therein the errors are defined as

∥∥∥S[m]
N f1(x)− f1

∥∥∥
∞

/‖ f1‖∞ and

‖GN f1(x)− f1‖∞/‖ f1‖∞. The figure illustrates that the presented FNN is superior to the existing FNN
GN f1(x) for continuous test function f1.

-4 -2 2 4

5

10

15

-4 -2 2 4

5

10

15

(a) m = 10 (b) m = 15

-4 -2 2 4

5

10

15

-4 -2 2 4

5

10

15

(c) m = 20 (d) m = 30

Figure 3. Approximations to f1(x) by the presented feed-forward neural networks (FNN) S[m]
N f1(x)

with N = 10 for each m = 10, 15, 20, 30.

SN
[m]
f

GNf

10 20 30 40 50 60 70 80
(N)

0.05

0.10

0.15

0.20

Errors

Figure 4. Errors of the presented FNN approximations S[m]
N f1(x) with m = 2N and the existing FNN

approximations GN f1(x) for N = 10, 20, 30, · · · , 80.

Mathematics 2019, 7, 262 9 of 12

For the discontinuous function f2 in Example 2, approximations of the proposed FNN S[m]
N f2(x),

with small number of neurons (N = 10), are shown in Figure 5 with respect to each m = 10, 20, 40, 80.
In addition, approximations of S[m]

N f2(x) for various values N = 10, 20, 40, 80, with m = 4N, are also

given in Figure 6. One can see that the results of the presented method S[m]
N f2(x) are better than those

of GN f2(x) shown in Figure 7. On the other hand, it is noted that the FNN approximations are free
from the so-called Gibbs phenomenon, generating wiggles (i.e., overshoots and undershoots) near
the jump-discontinuity, which appears inevitably in partial sum approximations composed of the
polynomial or trigonometric base functions in general.

-4 -2 2 4

-3

-2

-1

1

2

-4 -2 2 4

-3

-2

-1

1

2

(a) m = 10 (b) m = 20

-4 -2 2 4

-3

-2

-1

1

2

-4 -2 2 4

-3

-2

-1

1

2

(c) m = 40 (d) m = 80

Figure 5. Approximations to f2(x) by the presented FNN S[m]
N f2(x) with N = 10 for each

m = 10, 20, 40, 80.

-4 -2 2 4

-3

-2

-1

1

2

-4 -2 2 4

-3

-2

-1

1

2

(a) N = 10 (b) N = 20

-4 -2 2 4

-3

-2

-1

1

2

-4 -2 2 4

-3

-2

-1

1

2

(c) N = 40 (d) N = 80

Figure 6. Approximations to f2(x) by the presented FNN S[m]
N f2(x) for each N = 10, 20, 40, 80 with

m = 4N.

Mathematics 2019, 7, 262 10 of 12

-4 -2 2 4

-3

-2

-1

1

2

-4 -2 2 4

-3

-2

-1

1

2

(a) N = 10 (b) N = 20

-4 -2 2 4

-3

-2

-1

1

2

-4 -2 2 4

-3

-2

-1

1

2

(c) N = 40 (d) N = 80

Figure 7. Approximations to f2(x) by the existing FNN GN f2(x) for each N = 10, 20, 40, 80.

5. Multivariate Approximation

For simplicity we consider a function of two variables g(x, y) on a region [a, b]× [c, d] ⊂ R2,
and assume that a set of data

{
gij = g

(
xi , yj

)}
0≤i,j≤N is given for the nodes

xi = i · hx , yj = j · hy ,

where hx = (b− a)/N, hy = (d− c)/N. Set activation functions

ψ
[m]
i,j (x, y) = σ[m] (χi(x)|x− xi|) · σ[m]

(
χj(y)|y− yj|

)
(29)

for 0 ≤ i, j ≤ N, where ξk = (ξk−1 + ξk)/2,

χk(ξ) =

{
1, ξk−1 < ξ ≤ ξk

−1, otherwise
(30)

and σ[m] is the parametric sigmoidal function in (6). Then, referring to the formula (25) under the
assumption that m is large enough, we define an extended version of the FNN approximation to g as

S[m]
N g(x, y) =

N

∑
i=0

N

∑
j=0

gijψ
[m]
i,j (x, y). (31)

To testify the efficiency of the presented method (31), we choose functions of two variables below.
In the numerical implementation for the examples the software, gnuplot(V.5) was used as it is rather
fast for evaluating and graphing on two dimensional region.

Example 3.

g1(x, y) =
sin(x2 + y2 + 1)

x2 + y2 + 1
, −π ≤ x, y ≤ π . (32)

Example 4.

g2(x, y) =
x5 + y4

x2 + 1
, −2 ≤ x, y ≤ 2 . (33)

Mathematics 2019, 7, 262 11 of 12

Figure 8 shows the approximations of the presented method S[m]
N gi(x, y) to the test functions

gi(x, y), i = 1, 2, for N = 30 with m = 120. We can see that S[m]
N gi(x, y) approximates gi(x, y) properly

over the whole region, while the existing method GN gi(x, y) given in the literature [6] produces
considerable errors as shown in Figure 9.

gi(x, y)

-3
-2

-1
 0

 1
 2

 3
x-Axis

-3

-2

-1

 0

 1

 2

 3

y-Axis

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2
x-Axis

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

y-Axis

-10

-5

 0

 5

 10

 15

 20

S[m]
N gi(x, y)

-3
-2

-1
 0

 1
 2

 3
x-Axis

-3

-2

-1

 0

 1

 2

 3

y-Axis

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2
x-Axis

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

y-Axis

-10

-5

 0

 5

 10

 15

 20

(a) i = 1 (b) i = 2

Figure 8. Test functions gi(x, y)(: upper row), i = 1, 2, and their approximations by the presented FNN

S[m]
N gi(x, y)(: lower row) for N = 30 with m = 120.

gi(x, y)

-3
-2

-1
 0

 1
 2

 3
x-Axis

-3

-2

-1

 0

 1

 2

 3

y-Axis

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1.5
-1

-0.5
 0

 0.5
 1

 1.5
 2

x-Axis -1.5
-1

-0.5
 0

 0.5
 1

 1.5
 2

y-Axis

-10

-5

 0

 5

 10

 15

 20

GN gi(x, y)

-3
-2

-1
 0

 1
 2

 3
x-Axis

-3

-2

-1

 0

 1

 2

 3

y-Axis

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-1.5
-1

-0.5
 0

 0.5
 1

 1.5
 2

x-Axis -1.5
-1

-0.5
 0

 0.5
 1

 1.5
 2

y-Axis

-10
-5
 0
 5

 10
 15
 20
 25
 30
 35

(a) i = 1 (b) i = 2

Figure 9. Test functions gi(x, y)(: upper row), i = 1, 2, and their approximations by the existing FNN
approximations GN gi(x, y)(: lower row) for N = 30.

Mathematics 2019, 7, 262 12 of 12

6. Conclusions

In this work we proposed an FNN approximation method based on a new parametric sigmoidal
activation function σ[m]. It has been shown that the presented method with the parameter m large
enough has a feature of the quasi-interpolation at the given nodes. As a result, we can note that
the presented method is better than the existing FNN approximation method as demonstrated by
the numerical results for several examples of univariate continuous and discontinuous functions.
Additionally, the availability of the method in extended application to the multivariate function
was illustrated.

Funding: This research was supported by Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2017 R1A2B4007682).

Conflicts of Interest: The author declares no conflict of interest.

References

1. Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control Signal. 1989, 2, 303–314.
[CrossRef]

2. Funahashi, K.I. On the approximate realization of continuous mappings by neural networks. Neural Netw.
1989, 2, 183–192. [CrossRef]

3. Hornik, K.; Stinchcombe, M.; White, H. Universal approximation of an unknown mapping and its derivatives
using multilayer feedforward networs. Neural Netw. 1990, 3, 551–560. [CrossRef]

4. Barron, A.R. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans.
Inform. Theory 1993, 39, 930–945. [CrossRef]

5. Chen, Z.; Cao, F. The approximation operators with sigmoidal functions. Comput. Math. Appl. 2009, 58, 758–765.
[CrossRef]

6. Costarelli, D.; Spigler, R. Constructive approximation by superposition of sigmoidal functions.
Anal. Theory Appl. 2013, 29, 169–196.

7. Hahm, N.; Hong, B.I. An approximation by neural networks with a fixed weight. Compu.t Math. Appl.
2004, 47, 1897–1903. [CrossRef]

8. Cao, F.L.; Xie, T.F.; Xu, Z.B. The estimate for approximation error of neural networks: A constructive
approach. Neurocomputing 2008, 71, 626–630. [CrossRef]

9. Chui, C.K.; Li, X. Approximation by ridge functions and neural networks with one hidden layer.
J. Approx. Theory 1992, 70, 131–141. [CrossRef]

10. Ferrari, S.; Stengel, R.F. Smooth Function Approximation Using Neural Networks. IEEE Trans. Neural Netw.
2005, 16, 24–38. [CrossRef] [PubMed]

11. Suzuki, S. Constructive functions-approximation by three-layer artificial neural networks. Neural Netw.
1998, 11, 1049–1058. [CrossRef]

12. Kyurkchiev, N.; Markov, S. Sigmoidal functions: Some computational and modelling aspects.
Biomath Commun. 2014, 1. [CrossRef]

13. Markov, S. Cell growth models using reaction schemes: Batch cultivation. Biomath 2013, 2. [CrossRef]
14. Prössdorf, S.; Rathsfeld, A. On an integral equation of the first kind arising from a cruciform crack problem.

In Integral Equations and Inverse Problems; Petkov, V., Lazarov, R., Eds.; Longman: Coventry, UK, 1991;
pp. 210–219.

15. Trefethen, L.N. Approximation Theory and Approximation Practice; SIAM: Oxford, UK, 2013; pp. 107–115.
16. Yun, B.I. An extended sigmoidal transformation technique for evaluating weakly singular integrals without

splitting the integration interval. SIAM J. Sci. Comput. 2003, 25, 284–301. [CrossRef]
17. Yun, B.I. A smoothening method for the piecewise linear interpolation. J. Appl. Math. 2015, 2015, 376362.

[CrossRef]

c© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/BF02551274
http://dx.doi.org/10.1016/0893-6080(89)90003-8
http://dx.doi.org/10.1016/0893-6080(90)90005-6
http://dx.doi.org/10.1109/18.256500
http://dx.doi.org/10.1016/j.camwa.2009.05.001
http://dx.doi.org/10.1016/j.camwa.2003.06.008
http://dx.doi.org/10.1016/j.neucom.2007.07.024
http://dx.doi.org/10.1016/0021-9045(92)90081-X
http://dx.doi.org/10.1109/TNN.2004.836233
http://www.ncbi.nlm.nih.gov/pubmed/15732387
http://dx.doi.org/10.1016/S0893-6080(98)00068-9
http://dx.doi.org/10.11145/j.bmc.2015.03.081
http://dx.doi.org/10.11145/j.biomath.2013.12.301
http://dx.doi.org/10.1137/S1064827502414606
http://dx.doi.org/10.1155/2015/376362
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	A Parametric Sigmoidal Function
	Constructing a Neural Network Approximation
	Correction Formula
	Multivariate Approximation
	Conclusions
	References

