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Abstract: In 2020 Dombi and Jónás (Acta Polytechnica Hungarica 17:1, 2020) introduced a new
four parameter probability distribution which they named the pliant probability distribution family.
One of the special members of this family is the so-called omega probability distribution. This paper
deals with one of the important characteristic “saturation” of these new cumulative functions to the
horizontal asymptote with respect to Hausdorff metric. We obtain upper and lower estimates for
the value of the Hausdorff distance. A simple dynamic software module using CAS Mathematica
and Wolfram Cloud Open Access is developed. Numerical examples are given to illustrate the
applicability of obtained results.

Keywords: omega distribution; pliant distribution; heaviside function; Hausdorff distance; upper and
lower bounds

1. Introduction

This paper deals with the asymptotic behavior of the Hausdorff distance between Heaviside
function and some novel distribution functions. The study can be very useful for specialists that
are working in several scientific fields like insurance, financial mathematics, analysis, approximation
of data sets in various modeling problems and others. Application of the Hausdorff metrics in
different approximation problems is topic for many science works (for example see articles [1–8],
some monographs [9–18] and references there in).

Definition 1. The shifted Heaviside step function is defined by

ht0(t) =


0 if t < t0,
[0, 1] if t = t0,
1 if t > t0.

The theory of Hausdorff approximations is due to Bulgarian mathematician Blagovest Sendov.
His work and achievements are connected to the approximation of functions with respect to
Hausdorff distance.

Definition 2. [19] The Hausdorff distance (the H-distance) ρ( f , g) between two interval functions f , g on
Ω ⊆ R, is the distance between their completed graphs F( f ) and F(g) considered as closed subsets of Ω×R.
More precisely,

ρ( f , g) = max{ sup
A∈F( f )

inf
B∈F(g)

‖A− B‖, sup
B∈F(g)

inf
A∈F( f )

‖A− B‖},

wherein ‖‖̇ is any norm in R2, e.g., the maximum norm ‖(t, x)‖ = max{|t|, |x|}; hence the distance between
points A = (tA, xA), B = (tB, xB) in R2 is ‖A− B‖ = max(|tA − tB|, |xA − xB|).
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In 2019 Dombi et al. [20] (see also [21]) suggested an auxiliary function that is called the
omega function.

Definition 3. The omega function ω
(α,β)
m (x) is given by

ω
(α,β)
m (x) =

(
mβ + xβ

mβ − xβ

) αmβ

2

, (1)

where α, m ∈ R, m > 0, β ∈ Bγ, x ∈
(m

2
(γ− 1), m

)
, γ ∈ {−1, 1} with the domain set

Bγ = {b− 1
2 (γ+1) : b ∈ R+, γ ∈ {−1, 1}}.

The authors presented some main properties of the omega function as domain, differentiability,
monotonicity, limits and convexity. One of the important properties is that the omega function ω

(α,β)
m

(α, β, m ∈ R, β, m > 0) and the exponential function f (x) = eαxβ
(α, β ∈ R, β > 0) may be derived from a

common differential equation. Once more it is shown that omega function is asymptotically identical with
the exponential function (for more details see ([20] Theorem 1) and ([21] Proposition 1)). Some probability
distributions are founded on this auxiliary function as the omega probability distribution (see [20]) and the
pliant probability distribution family (see [21,22]). Hence, some probability distributions, which formulas
include exponential terms, also can be approximated using this function, for example, the well-known
Weibull, Exponential and Logistic probability distributions.

In this paper, we study the asymptotic behavior of the Hausdorff distance between Heaviside
function and the pliant probability distribution function. We study the omega distribution function.
We develop a self-intelligent dynamic software module using the obtained results. Several numerical
examples are presented.

2. The Pliant Probability Distribution Family

In 2020 based on omega function Dombi and Jónás [21] proposed new four-parameter probability
distribution function called the pliant probability distribution function (see also ([22] Chapter 3)).

Definition 4. The pliant probability distribution function Fp(x; α, β, γ, m) (pliant CDF) is defined by

Fp(x; α, β, γ, m) =


0 if x ≤ m

2 (γ− 1),

(1− γω
(−α,β)
m (x))γ if x ∈ (m

2 (γ− 1), m),
1 if x ≥ m,

(2)

where ω
(−α,β)
m is defined by (1) and α, m ∈ R, α > 0, m > 0, β ∈ Bγ, γ ∈ {−1, 1}.

According to its properties, this new probability distribution can be applied in many fields
of science and in a wide range of modeling problems. The pliant probability distribution is a
generalization of the epsilon probability distribution (see [23]). In 2020 Árva noted that the omega
probability distribution (see [20]) can be derived from the pliant probability distribution function after
reparametrization or by utilizing its asymptotic properties (see ([24] Lemma 2)).

In 2020 Kyurkchiev [25] considered the asymptotic behavior of Hausdorff distance between
the shifted Heaviside function and the so-called epsilon probability distribution. Once more he
proved a precise bound for the values of Hausdorff distance. He noted that once may formulate
the corresponding approximation problem for the omega probability distribution. This is the main
purpose of Section 3 of this work.

This section is dedicated to the behavior of the CDF function of the pliant probability distribution
and more precisely “saturation to the horizontal asymptote a = 1 in the Hausdorff sense”.
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Let α, β, m > 0, γ ∈ {−1, 1} and t ∈ (m
2 (γ− 1), m). For the function Fp(x; α, β, γ, m) given in (2)

we have

Fp(t0; α, β, γ, m) =
1
2

with t0 = m
(

1− z
1 + z

)β−1

, z =

(
1
γ
− 2−1/γ

γ

)2(αmβ)
−1

. (3)

Then the Hausdorff distance d between Fp(x; α, β, γ, m) and the Heaviside function ht0(t) satisfies
the following nonlinear equation

Fp(t0 + d; α, β, γ, m) = 1− d.

In the next theorem, we prove upper and lower estimates for the Hausdorff approximation d.

Theorem 1. Let

Ap = 1 +
1
4

αβγmβ−1(1− 2−1/γ)2−
γ−1

γ

(
1− z2

z

)(
1− z
1 + z

)β−1

(4)

and 2.1Ap > e1.05 with z defined by (3). Then for the Hausdorff distance d between shifted Heaviside function
ht0(t) and the Pliant CDF function Fp(t; α, β, γ, m) defined by (2) the following inequalities hold true:

dl =
1

2.1Ap
< d <

ln (2.1Ap)

2.1Ap
= dr.

Proof. Let us consider the function

H(d) = Fp(t0 + d; α, β, γ, m)− 1 + d,

where the pliant CDF function Fp(t; α, β, γ, m) is defined by (2). It is easy to show that H′(d) > 0, so the
function H(d) is increasing. We examine the following approximation of H(d) as we use the function

G(d) = −1
2
+ Apd,

where Ap is given by (4). Indeed from Taylor expansion, we get G(d)− H(d) = O(d2). This means
that G(d) approximates H(d) with d→ 0 as O(d2) (see Figure 1). More over G′(d) > 0 and function
G(d) is also increasing. Let the following condition 2.1Ap > e1.05 holds. Then it is easy to show that

G(dl) = −
1
2
+ Ap

1
2.1Ap

< 0 and G(dr) = −
1
2
+ Ap

ln (2.1Ap)

2.1Ap
> −1

2
+

1.05
2.1

= 0.

This completes the proof.

0.5 1.0 1.5 2.0 2.5 3.0 3.5

1

2

3

4

5

H(d)

G(d)

Figure 1. Functions H(d) and G(d) for α = 0.65, β = 1.97, γ = 1, m = 12.5.
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A simple dynamic programming module implemented within the programming environment
CAS Wolfram Mathematica and Wolfram Cloud Open Access is developed (see Figure 2). Some of the
possibilities of the proposed module are:

• computation of the Hausdorff distance between the Heaviside step function and the Pliant
probability distribution function under dynamical user-defined values for parameters α, β, γ, m;

• automatic check of the conditions from Theorem 1 and computation upper and lower estimates
that can be used as confidence bounds;

• tools for dynamical visualization of obtained results;
• web (cloud) version of the module that requires only a browser and internet connection.

Figure 2. A simple module for the computation and visualization of the Hausdorff distance between
the Heaviside step function and the Pliant probability distribution function.

Let us consider an example with real data. In [26] Proschan gives the numbers of operating hours
between successive failure times of air conditioning systems in Boeing airplanes:

1, 1, 2, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 7, 7, 7, 9, 9, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 14, 14, 14, 14, 14, 14, 14, 14,

15, 15, 15, 16, 16, 16, 18, 18, 18, 18, 18, 18, 20, 20, 21, 21, 22, 22, 22, 23, 23, 23, 24, 24, 25, 26, 26, 27, 27, 29,

29, 29, 29, 30, 31, 31, 32, 33, 33, 34, 34, 34, 35, 35, 36, 36, 37, 39, 39, 41, 42, 43, 44, 44, 44, 46, 46, 47, 47, 48,

49, 50, 50, 51, 52, 54, 54, 55, 56, 56, 57, 57, 57, 58, 59, 59, 59, 60, 61, 61, 62, 62, 62, 63, 65, 66, 67, 67, 68, 70,

70, 71, 71, 72, 74, 76, 77, 79, 79, 80, 82, 84, 85, 87, 88, 90, 90, 91, 95, 97, 97, 98, 100, 100, 101, 102, 102, 104,

104, 104, 106, 111, 118, 118, 120, 120, 130, 130, 130, 134, 139, 141, 142, 152, 153, 156, 163, 169, 176, 181,

182, 184, 186, 188, 191, 194, 197, 201, 206, 208, 208, 209, 210, 216, 220, 225, 230, 230, 239, 246, 246, 254,

261, 270, 283, 310, 320, 326, 359, 386, 413, 438, 447, 487, 493, 502, 603.
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In [27] Okorie and Nadarajah analyzed this data set. Applying the method of maximum likelihood,
they received that this data set can be approximated with the pliant probability distribution with
parameters α = 4.292, β = 0.836, γ = 1 and m = 0.989. In Figure 2 we present the results that we
obtain with our programming module for approximation the Heaviside step function and the pliant
probability distribution function Fp(t; α, β, γ, m) with corresponding parameters. Namely, we obtain
the values of Hausdorff distance d = 0.190542, its upper and lower estimates dl = 0.130864 and
dr = 0.266125, respectively. We also get the graphical visualization of the results. It is easy to see that
the presented software module can be used from specialists when they make a choice for a model
for approximation of cumulative data in various modeling problems. Moreover, upper and lower
estimations from Theorem 1 can be used as “confidence bounds”.

In Dombi and Jónás [21] showed in detail that the Pliant probability distribution can approximate
well several other functions (see also ([22] Chapter 3)). In Table 1 are presented some of the special cases.

Table 1. Some approximations by the Pliant CDF.

Distribution Parameters and
Domain of the Pliant
Probability

Approximated CDF

Weibull α > 0, β > 0, γ = 1,
m > 0, x ∈ (0, m)

FW(x; α, β) =

{
0 if x ≤ 0
1− e−αxβ

if x ≥ 0

Exponential α > 0, β = 1, γ = 1,
m > 0, x ∈ (0, m)

Fexp(x; α) =

{
0 if x ≤ 0
1− e−αx if x ≥ 0

Logistic α > 0, β = 1, γ = −1,
m > 0, x ∈ (−m, m)

FL(x; α) =
1

1 + e−αx

Standard Normal α = 2
√

2/π, β = 1,
γ = −1, m > 0,
x ∈ (−m, m)

Φ(x) =
1√
2π

∫ x

−∞
e(−t2/2)dt

Let us consider some computational examples. The obtained results are presented in Table 2.
In these examples for different values of parameters α, β, γ, m we calculate the Hausdorff distance
between the Heaviside step function ht0(t) and the Pliant probability distribution Fp(x; α, β, γ, m).
Graphical results are presented in Figure 3 and it can be seen that the “saturation” is faster. In the
last column of Table 2 we show which classical probability distribution can be considered as a
approximation of the Pliant probability distribution function.

Table 2. Some examples for Pliant probability function Fp(x; α, β, γ, m).

α β γ m d Figure 3 Approximation Distribution

1.13 2.14 1 3.97 0.261553 (a) Weibull
7.87 4.68 1 3.51 0.145400 (b) Weibull
1.16 1 1 2.32 0.327034 (c) Exponential
0.76 1 1 1.12 0.269252 (d) Exponential
5.76 1 −1 1.12 0.218460 (e) Logistic
0.23 1 −1 2.58 0.472546 (f) Logistic

2
√

2/π 1 −1 2.71 0.359576 (g) Standard Normal
2
√

2/π 1 −1 0.98 0.355597 (h) Standard Normal
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Figure 3. The Pliant probability distribution function Fp(t; α, β, γ, m) for different values of parameters
and corresponding Hausdorff distance d.

3. Omega Probability Distribution

Using the omega function Dombi et al. [20] defined the so-called Omega probability distribution.
In the next definition, we give the corresponding CDF function.

Definition 5. The Omega probability cumulative distribution function F(x; α, β, m) (omega CDF) is defined by

F(x; α, β, m) =


0 if x ≤ 0,

1−ω
(−α,β)
m (x) if 0 < x < m,

1 if x ≥ m,
(5)

where ω
(−α,β)
m is defined by (1) and α, β, m ∈ R, β, m > 0, x ∈ (0, m).



Algorithms 2020, 13, 324 7 of 10

In this section, we investigate the omega probability distribution in Hausdorff sense as a
continuation of the work of Kyurkchiev [25] and as a corollary of the pliant probability distribution.

Let α, β, m > 0 and t ∈ (0, m). For the function F(x; α, β, m) given in (5) we have

F(t0; α, β, m) =
1
2

with t0 = m

22(αmβ)
−1
− 1

22(αmβ)
−1

+ 1

β−1

.

Then the Hausdorff distance d between F(t; α, β, m) and the Heaviside function ht0(t) satisfies the
following nonlinear equation

F(t0 + d; α, β, m) = 1− d

or (
mβ + (t0 + d)β

mβ − (t0 + d)β

) αmβ

2

=
1
d

.

The next theorem is a corollary of Theorem 1 in the case of the omega distribution.

Theorem 2. Let

A = 1 +
1
8

αβmβ−1

42(αmβ)
−1
− 1

4(αmβ)
−1

4(αmβ)
−1

+ 1

4(αmβ)
−1
− 1

β−1

and 2.1A > e1.05. Then for the Hausdorff distance d between shifted Heaviside function ht0(t) and the Omega
CDF function F(t; α, β, m) defined by (5) the following inequalities hold true:

dl =
1

2.1A
< d <

ln (2.1A)

2.1A
= dr. (6)

In Table 3 we present several computational examples to show behavior of the Omega CDF
function F(t; α, β, m) with different values of parameters α, β and m. We use Theorem 2 for computation
of values of upper and lower estimates dl and dr. It can be seen that the proven bottom estimates for
the value of Hausdorff distance d is reliable in approximation of shifted Heaviside function ht0(t) and
the Omega CDF function F(t; α, β, m). Graphical representation in Figure 4 shows that the important
characteristic “saturation” is faster.

Table 3. Some bounds for Hausdorff distance d by (6).

α β m dl d dr Figure 4

0.87 0.98 4.51 0.330061 0.361465 0.365865 (a)
0.86 0.97 6.56 0.333677 0.365581 0.366238 (b)
0.33 1.88 3.85 0.328542 0.350978 0.365697 (c)
0.54 3.11 7.84 0.238728 0.259147 0.341961 (d)
3.01 0.39 2.13 0.067058 0.180506 0.181204 (e)
2.35 0.53 8.76 0.166522 0.254183 0.298512 (f)
2.64 3.21 4.81 0.177190 0.198820 0.306634 (g)
3.33 2.89 7.46 0.174810 0.198154 0.304879 (h)
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Figure 4. The Omega function F(t; α, β, m) for different values of parameters and corresponding
Hausdorff distance d.

4. Conclusions

Comparatively, the new four-parameter the Pliant probability distribution function can be
considered as a generalization of the Epsilon and the Omega distribution. Moreover, it can be viewed
as an alternative to some classical probability distributions like Weibull, Exponential, Logistic and
Standard Normal distributions. The versatility properties of this probability function lay in the basics
of application in different fields of science and modeling problems. The main task in this work is
connected to the approximation of the Heaviside function by the Pliant CDF function about the
Hausdorff metric. Besides, we present an investigation for the Omega probability distribution. In the
presented article we prove upper and lower estimates for the searching Hausdorff approximation
that in practice can be used as a possible additional criterion in the exploration of the characteristic
“saturation”. For the purpose of this work, a simple dynamic software module is developed and some
numerical examples are presented. An example with real data of operating hours between successive
failure times of air conditioning systems on Boeing airplanes is considered.



Algorithms 2020, 13, 324 9 of 10

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Chen, Z.; Cao, F. The approximation operators with sigmoidal functions. Comput. Math. Appl. 2009,
58, 758–765. [CrossRef]

2. Kyurkchiev, N.; Markov, S. On the hausdorff distance between the Heaviside step function and Verhulst
logistic function. J. Math. Chem. 2016, 54, 109–119. [CrossRef]

3. Kyukchiev, N.; Iliev, A.; Rahnev, A. A new class of activation functions based on the correcting amendments
of Gompertz-Makeham type. Dyn. Syst. Appl. 2019, 28, 243–257. [CrossRef]

4. Kyurkchiev, N.; Nikolov, G. Comments on some new classes of sigmoidal and activation functions.
Applications. Dyn. Syst. Appl. 2019, 28, 789–808. [CrossRef]

5. Kyurkchiev, N. Comments on the Yun’s algebraic activation function. Some extensions in the trigonometric
case. Dyn. Syst. Appl. 2019, 28, 533–543. [CrossRef]

6. Kyurkchiev, N. Some intrinsic properties of Tadmor–Tanner functions: Related problems and possible
applications. Mathematics 2020, 8, 1963. [CrossRef]

7. Markov, S.; Iliev, A.; Rahnev, A.; Kyukchiev, N. A note on the Log-logistic and transmuted Log-logistic
models. Some applications. Dyn. Syst. Appl. 2018, 27, 593–607. [CrossRef]

8. Yun, B.I. A neural network approximation based on a parametric sigmoidal function. Mathematics 2019,
7, 262. [CrossRef]

9. Iliev, A.; Kyukchiev, N.; Rahnev, A.; Terzieva, T. Some Models in the Theory of Computer Viruses Propagation;
LAP LAMBERT Academic Publishing: Saarbrucken, Germany, 2019; ISBN 978-620-0-00826-8.

10. Kyukchiev, N.; Iliev, A.; Rahnev, A. Some New Logistic Differential Models: Properties and Applications;
LAP LAMBERT Academic Publishing: Saarbrucken, Germany, 2019; ISBN 978-620-0-43442-5.

11. Kyukchiev, N.; Iliev, A.; Rahnev, A. Some Families of Sigmoid Functions: Applications to Growth Theory;
LAP LAMBERT Academic Publishing: Saarbrucken, Germany, 2019; ISBN 978-613-9-45608-6.

12. Kyukchiev, N.; Markov, S. Sigmoid Functions: Some Approximation and Modelling Aspects. Some Moduli in
Programming Environment MATHEMATICA; LAP LAMBERT Academic Publishing: Saarbrucken, Germany,
2015; ISBN 978-3-659-76045-7.

13. Kyukchiev, N.; Iliev, A.; Markov, S. Some Techniques for Recurrence Generating of Activation Functions: Some
Modeling and Approximation Aspects; LAP LAMBERT Academic Publishing: Saarbrucken, Germany, 2017;
ISBN 978-3-330-33143-3.

14. Kyukchiev, N.; Iliev, A. Extension of Gompertz-Type Equation in Modern Science: 240 Anniversary of the Birth of B.
Gompertz; LAP LAMBERT Academic Publishing: Saarbrucken, Germany, 2018; ISBN 978-613-9-90569-0.

15. Kyurkchiev, N.; Iliev, A.; Golev, A.; Rahnev, A. Some Non-Standard Models in “Debugging and Test Theory”
(Part 4); Plovdiv University Press: Plovdiv, Bulgaria, 2020; ISBN:978-619-2-02584-7

16. Kyukchiev, N. Selected Topics in Mathematical Modeling: Some New Trends. Dedicated to Academician Blagovest Sendov
(1932–2020); LAP LAMBERT Academic Publishing: Saarbrucken, Germany, 2020; ISBN 978-613-9-45608-6.

17. Pavlov, N.; Iliev, A.; Rahnev, A.; Kyukchiev, N. Some Software Reliability Models: Approximation and Modeling
Aspects; LAP LAMBERT Academic Publishing: Saarbrucken, Germany, 2018; ISBN 978-613-9-82805-0.

18. Pavlov, N.; Iliev, A.; Rahnev, A.; Kyukchiev, N. Nontrivial Models in Debugging Theory (Part 2); LAP LAMBERT
Academic Publishing: Saarbrucken, Germany, 2018; ISBN 978-613-9-87794-2.

19. Sendov, B.L. Hausdorff approximations. In Mathematics and Its Applications; Springer Science & Business
Media: Berlin/Heidelberg, Germany, 1990; Volume 50; pp. 1–367. [CrossRef]

20. Dombi, J.; Jónás, T.; Toth, Z.E.; Árva, G. The omega probability distribution and its applications in reliability
theory. Qual. Reliab. Eng. Int. 2019, 35, 600–626. [CrossRef]

21. Dombi, J.; Jónás, T. On an alternative to four notable distribution functions with applications in engineering
and the business sciences. Acta Polytech. Hung. 2020, 17, 231–252. [CrossRef]

22. Dombi, J.; Jónás, T. Advances in the theory of probabilistic and fuzzy data scientific methods with applications.
In Studies in Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2021; Volume 814, pp.1–186.
[CrossRef]

http://dx.doi.org/10.1016/j.camwa.2009.05.001
http://dx.doi.org/10.1007/s10910-015-0552-0
http://dx.doi.org/10.12732/dsa.v28i2.2
http://dx.doi.org/10.12732/dsa.v28i4.1
http://dx.doi.org/10.12732/dsa.v28i3.1
http://dx.doi.org/10.3390/math8111963
http://dx.doi.org/10.12732/dsa.v27i3.9
http://dx.doi.org/10.3390/math7030262
http://dx.doi.org/10.1007/978-94-009-0673-0
http://dx.doi.org/10.1002/qre.2425
http://dx.doi.org/10.12700/APH.17.1.2020.1.13
http://dx.doi.org/10.1007/978-3-030-51949-0


Algorithms 2020, 13, 324 10 of 10

23. Dombi, J.; Jónás, T.; Tóth, Z. The Epsilon probability distribution and its applications in reliability theory.
Acta Polytech. Hung. 2018, 15, 197–216. [CrossRef]

24. Árva, G. Application of Soft-Computing Techniques for Management Purposes. Fuzzy Likert Scales
and Describing and Predicting Empirical Failure Rate Time Series. Ph.D Thesis, Budapest University of
Technology and Economics, Budapest, Hungary, 2020; pp. 1–176.

25. Kyukchiev, N. Comments on the epsilon and omega cumulative distributions: “Saturation in the hausdorff
sense”. AIP Conf. Proc. 2020, in print.

26. Proschan, F. Theoretical explanation of observed decreasing failure rate. Technometrics 1963, 5, 375–383.
[CrossRef]

27. Okorie, I.E.; Nadarajah, S. On the omega probability distribution. Qual. Reliab. Eng. Int. 2019, 35, 2045–2050.
[CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.12700/APH.15.1.2018.1.12
http://dx.doi.org/10.1080/00401706.1963.10490105
http://dx.doi.org/10.1002/qre.2462
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Pliant Probability Distribution Family
	Omega Probability Distribution
	Conclusions
	References

