Unsupervised Clustering of Neighborhood Associations and Image Segmentation Applications
Abstract
:1. Introduction
- By relying on the adaptive distance radius to distinguish core, edge, and noise points, the method that is proposed in this paper overcomes the problem that a distance threshold is difficult to select in a density-based clustering algorithm, eliminates the influence of some non-core points on the clustering process, and enhances the generalization performance of the algorithm.
- Neighborhood density correlation is used instead of a real distance in order to measure the correlation between the core points. In addition, the method clusters a certain number of neighboring core points around a core point as a class. This approach can adapt to clustering problems with different density clusters in the same dataset.
- An appropriate objective function is adopted in order to minimize the distance between some core points, achieve the local optimal clustering results, completely avoid the subjective factors of manually set parameters, improve the efficiency and objectivity of the algorithm, and realize unsupervised clustering.
2. Related Work
2.1. Core Point Judgment
2.2. Core Point Neighborhood Correlation Clustering
2.3. Edge Point Convergence
2.4. Objective Function
3. Experiment
3.1. Index
3.1.1.
3.1.2.
3.1.3. , , , and
3.2. Effect Evaluation of Scattered-Point Data Clustering
3.3. Evaluation of Clustering Effect of Remote Sensing Data
3.4. Discussion of Experimental Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
S | Ordered distance matrix. |
A | Ordered serial number matrix. |
The core point’s ordered serial number matrix. | |
The mean of the distance to the m-th point in the overall ordered distance matrix S. | |
The distance between and . | |
The i-th point. | |
The j-th point. | |
m | The threshold used to distinguish core, edge and noise points. |
Edge point. | |
Core point. | |
Noise point. | |
The number of neighborhood points of the i-th point. | |
J | The objective function. |
G | The number of clusters. |
k | The number of the neighborhood core points which used to objective function evaluation. |
The probability distribution function of X. | |
The probability distribution function of Y. | |
The Joint probability distribution of X and Y. | |
The indicator function. | |
Y | Random variable named Y. |
The i-th Random variable named X. | |
The j-th Random variable named Y. | |
N | The number of random variables. |
The relative entropy of the joint distribution . | |
The Clustering Accuracy. | |
The Normalized Mutual Information. | |
The Adjusted Rand Index. | |
The Rand Index. | |
The Mirkin Index. | |
The Hubert Index. | |
The Jacarrd Index. |
References
- Borjigin, S. Non-unique cluster numbers determination methods based on stability in spectral clustering. Knowl. Inf. Syst. 2013, 36, 439–458. [Google Scholar] [CrossRef]
- Wang, W. STING: A Statistical Information Grid Approach to Spatial Data Mining. In Proceedings of the 23rd Very Large Database Conference, Athens, Greece, 25–29 August 1997. [Google Scholar]
- Jin, X.; Han, J. K-Means Clustering. In Encyclopedia of Machine Learning and Data Mining; Springer: Berlin, Germany, 2017. [Google Scholar]
- Liu, X.; Zhu, X.; Li, M.; Wang, L.; Zhu, E.; Liu, T.; Kloft, M.; Shen, D.; Yin, J.; Gao, W. Multiple Kernel k-means with Incomplete Kernels. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 42, 1191–1204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeidat, N.M.; Eick, C.F. K-me Generation. In Proceedings of the International Conference on International Conference on Artificial Intelligence, Louisville, KY, USA, 18 December 2004. [Google Scholar]
- Mohit, N.; Kumari, A.C.; Sharma, M. A novel approach to text clustering using shift k-me. Int. J. Soc. Comput. Cyber-Phys. Syst. 2019, 2, 106. [Google Scholar] [CrossRef]
- Yamasaki, R.; Tanaka, T. Properties of Mean Shift. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 42, 2273–2286. [Google Scholar] [CrossRef] [PubMed]
- Ghassabeh, Y.A.; Linder, T.; Takahara, G. On the convergence and applications of mean shift type algorithms. In Proceedings of the 2012 25th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Montreal, QC, Canada, 29 April–2 May 2012. [Google Scholar]
- Sanchez, M.A.; Castillo, O.; Castro, J.R.; Melin, P. Fuzzy granular gravitational clustering algorithm for multivariate data. Inf. Sci. 2014, 279, 498–511. [Google Scholar] [CrossRef]
- Defiyanti, S.; Jajuli, M.; Rohmawati, N. K-Me. Sci. J. Inform. 2017, 4, 27. [Google Scholar]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise; AAAI Press: Cambridge, MA, USA, 1996. [Google Scholar]
- Chacon, J.E. Mixture model modal clustering. Adv. Data Anal. Classif. 2019, 13, 379–404. [Google Scholar] [CrossRef] [Green Version]
- Jia, W.; Tan, Y.; Liu, L.; Li, J.; Zhang, H.; Zhao, K. Hierarchical prediction based on two-level Gaussian mixture model clustering for bike-sharing system. Knowl.-Based Syst. 2019, 178, 84–97. [Google Scholar] [CrossRef]
- Madan, S.; Dana, K.J. Modified balanced iterative reducing and clustering using hierarchies (m-BIRCH) for visual clustering. Pattern Anal. Appl. 2016, 19, 1023–1040. [Google Scholar] [CrossRef]
- Agarwal, P.; Alam, M.A.; Biswas, R. A Hierarchical Clustering Algorithm for Categorical Attributes. In Proceedings of the Second International Conference on Computer Engineering & Applications, Bali, Island, 26–29 March 2010. [Google Scholar]
- Karypis, G.; Han, E.H.; Kumar, V. Chameleon: Hierarchical Clustering Using Dynamic Modeling. Computer 2002, 32, 68–75. [Google Scholar] [CrossRef] [Green Version]
- Fop, M.; Murphy, T.B.; Scrucca, L. Model-based Clustering with Sparse Covariance Matrices. Stat. Comput. 2018, 29, 791–819. [Google Scholar] [CrossRef] [Green Version]
- Ankerst, M.; Breunig, M.M.; Kriegel, H.P.; Sander, J. OPTICS: Ordering Points to Identify the Clustering Structure. In Proceedings of the ACM Sigmod International Conference on Management of Data, Philadelphia, PA, USA, 1–3 June 1999. [Google Scholar]
- Moraes, E.C.C.; Ferreira, D.D.; Vitor, G.B.; Barbosa, B.H.G. Data clustering based on principal curves. Adv. Data Anal. Classif. 2019, 14, 77–96. [Google Scholar] [CrossRef]
- Abin, A.A.; Bashiri, M.A.; Beigy, H. Learning a metric when clustering data points in the presence of constraints. Adv. Data Anal. Classif. 2019, 14, 29–56. [Google Scholar] [CrossRef]
- Rodriguez, A.; Laio, A. Machine learning. Clustering by fast search and find of density peaks. Science 2014, 344, 1492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corizzo, R.; Pio, G.; Ceci, M.; Malerba, D. DENCAST: Distributed density-based clustering for multi-target regression. J. Big Data 2019, 6. [Google Scholar] [CrossRef]
- Hosseini, B.; Kiani, K. A big data driven distributed density based hesitant fuzzy clustering using Apache spark with application to gene expression microarray. Eng. Appl. Artif. Intell. 2019, 79, 100–113. [Google Scholar] [CrossRef]
- Zhao, Z.; Luo, Z.; Li, J.; Chen, C.; Piao, Y. When Self-Supervised Learning Meets Scene Classification: Remote Sensing Scene Classification Based on a Multitask Learning Framework. Remote Sens. 2020, 12, 3276. [Google Scholar] [CrossRef]
- Petrovska, B.; Zdravevski, E.; Lameski, P.; Corizzo, R.; Štajduhar, I.; Lerga, J. Deep Learning for Feature Extraction in Remote Sensing: A Case-Study of Aerial Scene Classification. Sensors 2020, 20, 3906. [Google Scholar] [CrossRef]
- Kushary, D. The EM Algorithm and Extensions. Technometrics 1997, 40, 260. [Google Scholar] [CrossRef]
- Rodriguez, M.Z.; Comin, C.H.; Casanova, D.; Bruno, O.M.; Amancio, D.R.; da Costa, F.L.; Rodrigues, F.A. Clustering algorithms: A comparative approach. PLoS ONE 2019, 14, e0210236. [Google Scholar] [CrossRef]
- Hubert, L.; Arabie, P. Comparing partitions. J. Classif. 2006, 2, 193–218. [Google Scholar] [CrossRef]
- Fu, L.; Medico, E. FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data. BMC Bioinform. 2007, 8, 3. [Google Scholar] [CrossRef]
- Jain, A.K.; Law, M.H.C. Data Clustering: A Users Dilemma. In Proceedings of the International Conference on Pattern Recognition & Machine Intelligence, Kolkata, India, 20–22 December 2005. [Google Scholar]
- Chang, H.; Yeung, D.Y. Robust path-based spectral clustering. Pattern Recognit. 2008, 41, 191–203. [Google Scholar] [CrossRef]
- Gionis, A.; Mannila, H.; Tsaparas, P. Clustering Aggregation. ACM Trans. Knowl. Discov. Data 2007, 1, 4. [Google Scholar] [CrossRef] [Green Version]
- Zahn, C. Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Trans. Comput. 1971, 100, 68–86. [Google Scholar] [CrossRef] [Green Version]
- Cheng, G.; Han, J.; Lu, X. Remote Sensing Image Scene Classification: Benchmark and State of the Art. Proc. IEEE 2017, 105, 1865–1883. [Google Scholar] [CrossRef] [Green Version]
- CCF Big Data Competition. High-Resolution Remote Sensing Images of a City in Southern China in 2015. Available online: https://drive.google.com/drive/folders/1SwfEZSc2FuI-q9CNsxU5OWjVmcZwDR0s?usp=sharing (accessed on 24 November 2020).
- Guo, Y.; Jiao, L.; Wang, S.; Wang, S.; Liu, F.; Hua, W. Fuzzy Superpixels for Polarimetric SAR Images Classification. IEEE Trans. Fuzzy Syst. 2018, 26, 2846–2860. [Google Scholar] [CrossRef]
- den Bergh, M.V.; Boix, X.; Roig, G.; de Capitani, B.; Gool, L.V. SEEDS: Superpixels Extracted via Energy-Driven Sampling. In Computer Vision–ECCV 2012; Springer: Berlin, Germany, 2012; pp. 13–26. [Google Scholar]
- Boemer, F.; Ratner, E.; Lendasse, A. Parameter-free image segmentation with SLIC. Neurocomputing 2018, 277, 228–236. [Google Scholar] [CrossRef]
- Silva, T.C.; Amancio, D.R. Word sense disambiguation via high order of learning in complex networks. EPL (Europhys. Lett.) 2012, 98, 58001. [Google Scholar] [CrossRef] [Green Version]
- Rosa, K.D.; Shah, R.; Lin, B.; Gershman, A.; Frederking, R. Topical clustering of tweets. In Proceedings of the ACM SIGIR: SWSM, Barcelona, Spain, 17–21 July 2011. [Google Scholar]
m\k | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|---|
Flame | 1 | NaN | 95.486 | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
2 | NaN | 44.232 | 10.290 | 3.1983 | 1.8581 | 2.0600 | 2.2541 | 2.4422 | 2.6205 | |
3 | NaN | 44.040 | 17.200 | 1.5365 | 1.7507 | 1.9392 | 2.1237 | 2.3023 | 2.4707 | |
4 | NaN | 31.116 | 1.2558 | 1.5135 | 1.7232 | 1.9112 | 2.0920 | 2.2683 | 2.4343 | |
5 | NaN | 41.397 | 1.3853 | 1.4392 | 1.6448 | 1.8254 | 1.9999 | 2.1695 | NaN | |
6 | NaN | 32.542 | 1.3901 | 1.4433 | 1.6473 | 1.8281 | 1.9993 | 2.1673 | 2.3259 | |
Com | 1 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
2 | NaN | 126.08 | 56.315 | 20.601 | 23.522 | 26.391 | 29.027 | 32.075 | 34.803 | |
3 | NaN | 178.02 | 57.112 | 21.465 | 24.470 | 27.482 | 30.237 | 32.844 | 35.776 | |
4 | NaN | 121.79 | 55.200 | 20.030 | 22.934 | 26.258 | 29.189 | 31.913 | 34.350 | |
5 | NaN | 117.35 | 55.413 | 19.947 | 22.835 | 25.626 | 28.700 | 31.533 | 34.076 | |
6 | NaN | 129.69 | 60.642 | 19.252 | 21.953 | 25.164 | 28.018 | 30.657 | 33.045 | |
Agg | 1 | NaN | 387.29 | 62.412 | 16.160 | 11.760 | 13.206 | 14.525 | 15.732 | 16.879 |
2 | NaN | 184.33 | 233.26 | 73.421 | 30.284 | 28.637 | 17.937 | 19.475 | 20.916 | |
3 | NaN | 253.21 | 168.26 | 11.359 | 13.265 | 14.920 | 16.373 | 17.711 | 18.969 | |
4 | NaN | 182.86 | 200.88 | 62.268 | 24.675 | 27.767 | 23.998 | 26.048 | 28.257 | |
5 | NaN | 347.17 | 165.87 | 49.315 | 20.053 | 22.498 | 24.706 | 26.772 | 28.714 | |
6 | NaN | 178.39 | 106.21 | 10.078 | 18.811 | 21.103 | 23.166 | 25.097 | 26.912 | |
Jain | 1 | NaN | 187.03 | 67.867 | 25.657 | 1.6562 | 1.9069 | NaN | NaN | NaN |
2 | NaN | 167.72 | 48.871 | 43.765 | 4.6532 | 9.3520 | NaN | NaN | NaN | |
3 | NaN | 144.48 | 54.808 | 16.929 | 7.2830 | 7.5172 | NaN | NaN | NaN | |
4 | NaN | 135.61 | 41.909 | 39.149 | 4.8330 | NaN | NaN | NaN | NaN | |
5 | NaN | 80.011 | 30.257 | 13.277 | 3.6233 | 2.9865 | 3.3977 | 3.7759 | NaN | |
6 | NaN | 214.42 | 53.325 | 2.1711 | 2.8313 | 3.3713 | NaN | NaN | NaN | |
R15 | 1 | NaN | 177.49 | 46.660 | 4.5060 | 5.947 | 6.7796 | 7.5406 | 10.863 | 11.691 |
2 | NaN | 103.91 | 38.383 | 17.972 | 9.7477 | 6.2142 | 5.3470 | 5.8632 | 6.3426 | |
3 | NaN | 66.870 | 33.183 | 16.920 | 5.2751 | 6.0342 | 6.743 | 7.4357 | 7.7695 | |
4 | NaN | 82.606 | 25.579 | 12.964 | 4.9973 | 4.7220 | 5.8390 | 6.8188 | 7.8437 | |
5 | NaN | 60.787 | 24.970 | 8.4691 | 4.9771 | 5.8233 | 6.5233 | 7.1739 | 7.9340 | |
6 | NaN | 67.342 | 26.202 | 6.4120 | 4.5052 | 5.2823 | 6.1329 | 7.3036 | 8.3255 | |
D31 | 1 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
2 | NaN | 1866.6 | 681.63 | 501.13 | 177.65 | 102.19 | 70.809 | 58.494 | 38.216 | |
3 | NaN | 969.08 | 863.35 | 381.16 | 139.83 | 71.810 | 53.632 | 58.509 | 42.448 | |
4 | NaN | 1307.3 | 558.92 | 183.68 | 92.075 | 68.552 | 55.875 | 50.926 | 36.792 | |
5 | NaN | 1347.0 | 575.20 | 169.27 | 87.900 | 38.450 | 43.441 | 50.049 | 39.394 | |
6 | NaN | 1518.4 | 573.43 | 108.78 | 38.310 | 30.481 | 36.513 | 39.710 | 42.689 | |
Spiral | 1 | NaN | 124.03 | 1.2121 | 1.7720 | 1.4179 | NaN | NaN | NaN | NaN |
2 | NaN | 85.887 | 2.0650 | 2.4893 | 3.1583 | 2.1054 | NaN | NaN | NaN | |
3 | NaN | 47.485 | 12.410 | 1.6699 | 2.0612 | 2.5540 | NaN | NaN | NaN | |
4 | NaN | 241.71 | 1.3481 | 1.9870 | 2.4541 | 3.1556 | 3.7281 | 3.3966 | NaN | |
5 | NaN | 87.836 | 1.3304 | 2.0597 | 2.5755 | 3.1968 | 2.4343 | 2.8320 | NaN | |
6 | NaN | 84.506 | 1.4340 | 2.1149 | 2.6030 | 3.2090 | 3.7147 | 4.2960 | NaN |
Algorithms | Index | Flame | Com | Agg | Jain | R15 | D31 | Spiral |
---|---|---|---|---|---|---|---|---|
NDCC | 0.82351 0.91766 0.95903 0.04097 0.91806 | 0.92465 0.91539 0.92554 0.07445 0.85108 | 0.98415 0.99198 0.99728 0.00271 0.99457 | 1.00000 1.00000 1.00000 0.00000 1.00000 | 0.99165 0.98981 0.99868 0.00131 0.99737 | 0.92821 0.84395 0.98946 0.01054 0.97892 | 1.00000 1.00000 1.00000 0.00000 1.00000 | |
Time | 0.13370 | 0.19083 | 0.53052 | 0.19714 | 0.16911 | 0.89410 | 0.12913 | |
Kmeans | 0.39153 0.43119 0.71552 0.28448 0.43103 | 0.76214 0.52155 0.83216 0.16784 0.66431 | 0.79032 0.62437 0.88502 0.11498 0.77005 | 0.38651 0.30035 0.65009 0.34991 0.30018 | 0.83125 0.64740 0.94638 0.05362 0.89277 | 0.85685 0.70675 0.97907 0.02093 0.95814 | −0.00352 0.00566 0.55429 0.44571 0.10858 | |
Time | 0.36484 | 0.42385 | 0.47220 | 0.45956 | 0.44716 | 0.91085 | 0.56192 | |
DBSCAN | 0.76254 0.80492 0.90171 0.09829 0.80342 | 0.92354 0.96348 0.98636 0.01364 0.97272 | 0.89532 0.80894 0.92730 0.07270 0.85460 | 0.87512 0.93322 0.96786 0.03214 0.93571 | 0.90245 0.85614 0.98292 0.01708 0.96584 | 0.78925 0.33659 0.89823 0.10177 0.79647 | 1.00000 1.00000 1.00000 0.00000 1.00000 | |
Time | 0.07515 | 0.03241 | 0.03049 | 0.07944 | 0.12112 | 0.46979 | 0.12087 | |
FCM | 0.42915 0.48796 0.74393 0.25607 0.48787 | 0.72424 0.53569 0.84275 0.15725 0.68550 | 0.78132 0.61123 0.88286 0.11714 0.76572 | 0.38125 0.30035 0.65009 0.34991 0.30018 | 0.99123 0.97277 0.99912 0.00188 0.99824 | 0.90125 0.78198 0.98562 0.01438 0.97123 | −0.01231 0.00625 0.55415 0.44585 0.10829 | |
Time | 0.13276 | 0.14221 | 0.26508 | 0.15811 | 0.21768 | 0.63627 | 0.16774 | |
GMM | 0.41242 0.31724 0.65914 0.34087 0.31827 | 0.83451 0.70309 0.90932 0.09068 0.81864 | 0.78534 0.56320 0.85984 0.14016 0.71968 | −0.20412 0.00983 0.51036 0.48964 0.02073 | 0.93453 0.90361 0.98767 0.01233 0.97535 | 0.87967 0.66096 0.97505 0.02495 0.95010 | 0.02245 0.00707 0.52445 0.47555 0.04889 | |
Time | 0.13361 | 0.31808 | 0.34967 | 0.10267 | 0.38937 | 0.59863 | 0.12543 | |
HC1 | 0.08453 0.01275 0.54062 0.45938 0.08124 | 0.80645 0.74248 0.89035 0.10965 0.78071 | 0.90127 0.80421 0.92568 0.07432 0.85136 | 0.28145 0.25629 0.69094 0.30906 0.38188 | 0.84352 0.54246 0.90972 0.09028 0.81943 | 0.68356 0.17390 0.77892 0.22108 0.55785 | 1.00000 1.00000 1.00000 0.00000 1.00000 | |
Time | 0.07683 | 0.08276 | 0.12791 | 0.41091 | 0.10257 | 0.46250 | 0.02506 | |
HC2 | 0.39541 0.35635 0.67866 0.32134 0.35732 | 0.71354 0.84791 0.94049 0.08951 0.88098 | 0.78521 0.95488 0.98498 0.01502 0.96997 | 0.41568 0.36154 0.68108 0.31892 0.36216 | 0.98515 0.98565 0.99825 0.00175 0.99651 | 0.88145 0.75724 0.98397 0.01604 0.96793 | 0.03125 0.00269 0.55328 0.44672 0.10656 | |
Time | 0.09683 | 0.19276 | 0.32451 | 0.81091 | 0.31348 | 0.66857 | 0.13546 |
Index | NDCC | FCM | Kmeans | HC | DBSCAN | GMM |
---|---|---|---|---|---|---|
Acc | 0.901 ± 0.075 * | 0.795 ± 0.125 | 0.810 ± 0.010 | 0.735 ± 0.208 | 0.641 ± 0.312 | 0.791 ± 0.143 |
0.923 ± 0.031 * | 0.852 ± 0.172 | 0.825 ± 0.127 | 0.531 ± 0.213 | 0.712 ± 0.079 | 0.813 ± 0.142 | |
0.867 ± 0.124 * | 0.724 ± 0.201 | 0.781 ± 0.195 | 0.812 ± 0.143 | 0.532 ± 0.183 | 0.694 ± 0.215 | |
0.927 ± 0.052 * | 0.885 ± 0.105 | 0.865 ± 0.083 | 0.748 ± 0.134 | 0.751 ± 0.182 | 0.742 ± 0.204 | |
0.846 ± 0.102 * | 0.805 ± 0.172 | 0.735 ± 0.134 | 0.624 ± 0.117 | 0.593 ± 0.157 | 0.782 ± 0.141 |
Index | NDCC | FCM | Kmeans | HC | DBSCAN | GMM |
---|---|---|---|---|---|---|
Acc | 0.863 ± 0.052 * | 0.826 ± 0.116 | 0.825 ± 0.082 | 0.715 ± 0.092 | 0.697 ± 0.102 | 0.833 ± 0.112 |
0.815 ± 0.127 * | 0.782 ± 0.213 | 0.771 ± 0.281 | 0.655 ± 0.172 | 0.549 ± 0.098 | 0.719 ± 0.113 | |
0.781 ± 0.130 * | 0.624 ± 0.142 | 0.592 ± 0.284 | 0.461 ± 0.297 | 0.464 ± 0.214 | 0.646 ± 0.194 | |
0.834 ± 0.128 * | 0.851 ± 0.164 | 0.812 ± 0.134 | 0.715 ± 0.161 | 0.801 ± 0.153 | 0.576 ± 0.215 | |
0.855 ± 0.084 * | 0.771 ± 0.213 | 0.759 ± 0.105 | 0.516 ± 0.130 | 0.499 ± 0.120 | 0.749 ± 0.171 |
NDCC | DBSCAN | FCM | K-Means | GMM | HC | |
---|---|---|---|---|---|---|
Mean time (s) | 0.6243 | 0.4937 | 0.5434 | 0.6423 | 0.756 | 0.8321 |
Environment | CPU: AMD Ryzen2700X, eight-core processor, f 3.70 GHz | |||||
RAM: 16.0 GB | ||||||
Operating system: Windows 64-bit | ||||||
GPU: NVIDIA GTX1070, 8 GB GDDR5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Li, X.; Jin, J.; Liu, Z.; Liu, W. Unsupervised Clustering of Neighborhood Associations and Image Segmentation Applications. Algorithms 2020, 13, 309. https://doi.org/10.3390/a13120309
Wang Z, Li X, Jin J, Liu Z, Liu W. Unsupervised Clustering of Neighborhood Associations and Image Segmentation Applications. Algorithms. 2020; 13(12):309. https://doi.org/10.3390/a13120309
Chicago/Turabian StyleWang, Zhenggang, Xuantong Li, Jin Jin, Zhong Liu, and Wei Liu. 2020. "Unsupervised Clustering of Neighborhood Associations and Image Segmentation Applications" Algorithms 13, no. 12: 309. https://doi.org/10.3390/a13120309
APA StyleWang, Z., Li, X., Jin, J., Liu, Z., & Liu, W. (2020). Unsupervised Clustering of Neighborhood Associations and Image Segmentation Applications. Algorithms, 13(12), 309. https://doi.org/10.3390/a13120309