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Abstract: Irregular shape clustering is always a difficult problem in clustering analysis. In this paper,
by analyzing the advantages and disadvantages of existing clustering analysis algorithms, a new
neighborhood density correlation clustering (NDCC) algorithm for quickly discovering arbitrary shaped
clusters. Because the density of the center region of any cluster sample dataset is greater than that of the
edge region, the data points can be divided into core, edge, and noise data points, and then the density
correlation of the core data points in their neighborhood can be used to form a cluster. Further more,
by constructing an objective function and optimizing the parameters automatically, a locally optimal
result that is close to the globally optimal solution can be obtained. This algorithm avoids the clustering
errors caused by iso-density points between clusters. We compare this algorithm with other five clustering
algorithms and verify it on two common remote sensing image datasets. The results show that it can
cluster the same ground objects in remote sensing images into one class and distinguish different ground
objects. NDCC has strong robustness to irregular scattering dataset and can solve the clustering problem
of remote sensing image.

Keywords: irregular shape cluster; automatic parameter optimization; neighborhood connection; point
density; remote sensing clustering

1. Introduction

Cluster analysis is the most commonly used static data analysis method. Cluster analysis refers to the
process of grouping a collection of physical or abstract objects into multiple classes composed of similar
objects. The objects in the same cluster have great similarity, while objects in different clusters have great
divergence. In general, clustering methods can be divided into mean-shift, density-based, hierarchical,
spectral clustering [1], and grid-based [2] methods.

Different algorithms have different advantages and problems. Centroid-based algorithms, such as
K-means (Kmeans) [3,4], K-medoid [5,6], fuzzy c-means (FCM), Mean shift [7,8], and some improved
methods [9,10], have the advantages of simple principles, convenient implementation, and fast
convergence. Because this kind of algorithm always takes the approach of finding the centroid and
clustering the points close to the centroid, they are especially suitable for clustering. Such algorithms have
the characteristics of good clustering results and low time complexity. However, real clustering samples
usually contain a large number of clusters of arbitrary shapes. Consequently, centroid-based clustering

Algorithms 2020, 13, 309; doi:10.3390/a13120309 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://dx.doi.org/10.3390/a13120309
http://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/13/12/309?type=check_update&version=2


Algorithms 2020, 13, 309 2 of 19

algorithms, which cluster the points around a centroid into one class, lead to poor results on irregular
shape clusters and many misclassified points.

Clusters of arbitrary shapes can be easily detected by a method that is based on local data point density.
The density-based spatial clustering of applications with noise (DBSCAN) [11] has good robustness for
clusters with uniform density of any shape. However, it is not easy to select a suitable threshold. Especially
for clusters with large differences in density, the threshold selection is very difficult. Moreover, the circular
radius needs to be adjusted constantly in order to adapt to different cluster densities, and there is no
reference. At the same time, for clusters without obvious boundaries, it is easy to classify two clusters
with different classes as belonging to the same class. Because DBSCAN uses the global density threshold
MinPts, it can only find clusters that are composed of points with a density that satisfies this threshold;
that is, it is difficult to find clusters with different densities. Moreover, clustering algorithms that are based
on hierarchy, spectral features, and density also have serious difficulties with parameter selection.

In real clustering problems, there are many clusters with arbitrary shapes, and it is impossible to use
a center of mass in order to represent the nature of the data in the cluster. Moreover, not all of the data
have a real clustering center; and, in some cases, the centroid points of clusters with completely different
distributions basically coincide, so clustering data based on centroid points often leads to misjudgments.
Parameter selection that is based on the density-based algorithms is also very difficult, which often
causes poor clustering results. No matter what kind of clustering algorithm, there are difficulties in
parameter selection. Besides, methods, such as Silhouette Coefficient and sum of the squared errors,
cannot completely realize unsupervised parameter selection. Our aims are to avoid the shortcomings of
centroid- and density-based algorithms, and address the challenges of clustering datasets with clusters
having different point densities.

The neighborhood density correlation clustering (NDCC) does not use the method of calculating the
centroid within the cluster. Instead, it incorporates the idea of density clustering, but is not limited to
the density of a fixed region and does not use a certain definite distance or a certain definite density as a
measure of the differentiation between different classes. It takes the k nearest neighbor domain of each
point as the analysis object, and considers each point and its neighboring k points as the same cluster data.
By adjusting the k value, different clustering results are obtained. Although a series of parameters can be
manually set, it is difficult to find suitable parameters for clustering without sufficient prior knowledge
and multiple trials. By appropriate objective function setting and minimizing the objective function,
the NDCC can automatically adjust the parameters to get the optimal solution and automatically cluster a
sample dataset. The method can detect irregular shape clusters and automatically find the correct number
of clusters. This method does not consider the influence of iso-density points between clusters in cluster
classification. Its generalization performance and robustness are improved (iso-density points between
clusters in this paper are similar to the noise points or edge points connecting two clusters in other work.
This is because the existence of iso-density points between clusters will lead to misclassification when
using a density-based clustering algorithm to distinguish these clusters).

The contributions of this paper are as follows:

• By relying on the adaptive distance radius to distinguish core, edge, and noise points, the method
that is proposed in this paper overcomes the problem that a distance threshold is difficult to select in a
density-based clustering algorithm, eliminates the influence of some non-core points on the clustering
process, and enhances the generalization performance of the algorithm.

• Neighborhood density correlation is used instead of a real distance in order to measure the correlation
between the core points. In addition, the method clusters a certain number of neighboring core points
around a core point as a class. This approach can adapt to clustering problems with different density
clusters in the same dataset.
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• An appropriate objective function is adopted in order to minimize the distance between some
core points, achieve the local optimal clustering results, completely avoid the subjective factors
of manually set parameters, improve the efficiency and objectivity of the algorithm, and realize
unsupervised clustering.

2. Related Work

In addition to the above centralization algorithm and density-based algorithm, in order to evaluate
the effect of the algorithm proposed in this paper on data point clustering, we consulted a large number of
literatures on clustering algorithm.

The Gaussian mixture model (GMM) clustering [12,13] algorithm is equivalent to a generalization of
Kmeans and other algorithms, and it can form clusters of different sizes and shapes. The characteristics
of the data can be better described with only a few parameters. However, the amount of computation
that is needed for the GMM algorithm is large and it converges slowly. Therefore, Kmeans is usually
used to preprocess the sample set, and the initial values of the GMM is determined according to the
obtained clusters.

Hierarchical clustering (HC) methods, such as Balanced Iterative Reducing and Clustering using
Hierarchies (BIRCH) [14], Robust Clustering using linKs (ROCK) [15], and Chameleon [16], compute
the distances between samples first. They next merge the closest points into the same class each time.
Subsequently, the distance between the classes is calculated, and the nearest class is merged into a larger
class. The merging continues until a class is synthesized. HC has the advantages that the similarity of the
distance and rules are easy to define, the hierarchy of classes can be determined, and it can deal with any
shape of clusters. However, because of its high computational complexity, it is easily affected by singular
values, and different numbers of clustering levels will lead to different clustering results. However,
the purpose of clustering is to divide the data into certain categories. The number of clustering layers of
HC is difficult to select, and it is difficult to evaluate the clustering results with an objective function.

In recent years, several new clustering algorithms have been widely used in the field of data analysis.
Fop et al. [17] proposed a new clustering algorithm for mixed models and introduced a mixed version of
the Gaussian covariance graph model for sparse covariance matrix clustering. In this method, a likelihood
penalty is adopted for estimation. A penalty term on the graph structure is used in order to induce different
degrees of sparsity, and prior knowledge is introduced. A structural electromagnetic algorithm is used for
parameter estimation and graph structure estimation, and two alternative strategies that were based on a
genetic algorithm and efficient stepwise search were proposed.

OPTICS [18] ranks neighborhood points to identify the clustering structure in order of density,
and then visualizes clusters of different densities. OPTICS must be able to find clusters by looking for
”valleys” in a visualization graph created by other algorithms, so its performance is directly constrained by
these algorithms. Moreover, it cannot complete the clustering process completely unsupervised.

Moraes et al. [19] proposed a data clustering method that was based on principal curves. The k-segment
algorithm uses the extracted principal curves in order to complete the data clustering process.

Abin et al. [20] investigated learning problems for constrained clustering and proposed a supervised
learning-based method to deal with different problems in constrained clustering. Linear and non-linear
models were considered, improving the clustering accuracy.

Rodriguez et al. [21] proposed a method that clusters according to whether the center of the cluster
density is higher than its neighbors. In their method, high density and a relatively large distance between
points are used in order to complete the clustering process. Although it is simple, their approach can
better solve the problem of arbitrary shaped clusters. However, as with DBSCAN, choosing the distance
threshold parameter value is difficult. A value that is too large or too small will affect the clustering results.
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Distributed clustering based on density and hesitant fuzzy clustering methods have a certain progress.
Corizzo et al. [22] put forward a kind of DENCAST system for sensor networks, in order to be able to
solve the single objective regression and multiple regression task goal. It performs density clustering on
multiple computers, but it does not require a final merge step, which breaks through the traditional mode
of distributed clustering. Hosseini et al. [23] proposed a new dense-based soft clustering method that was
based on the Apache Spark computing model, which is mainly used for the new hesitant fuzzy weighted
similarity measurement of gene expression, especially suitable for the clustering problem of large data sets.
In recent years, the clustering problem based on deep learning network has attracted people’s attention.
Zhao et al. [24] proposed introducing a multi-task learning framework based on CNN, which combines
self-supervised learning and task of scene classification. The classification accuracy of NWPU, AID and
other four data sets reached more than 90%. Petrovska et al. [25] used a deep architecture of two streams,
while using support vector machines (SVM) to classify tandem features. The experimental results show
that this method has certain competitive advantages.

NDCC is proposed due to the existence of manual setting of hyper-parameters in existing clustering
algorithms, and it being difficult to give consideration to spherical cluster and irregular shape cluster
clustering at the same time. In this paper, seven scatter-point data sets are verified, and various
indicators obtained good results. Furthermore, the ’UCMerced-LandUse’ remote sensing dataset and
’2015 high-resolution remote sensing image of a city in southern China dataset’ are compared with other
algorithms, and the clustering accuracy rate reached approximately 90%. The algorithm flow is shown in
Figure 1. The Summary of notations is showed in the Appendix A Table A1.

 Core point neighborhood 

correlation clustering
Edge point 

convergence

Objective function 

optimize

Core point 
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The convergence value of J 

under different parameters 
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smallest was selected as the 

final clustering result

Figure 1. The process of the neighborhood density correlation clustering (NDCC) algorithm.

2.1. Core Point Judgment

If there are clusters in a given dataset, then the data points of the same kind of cluster can generally be
divided into core data points (referred to as core points) and edge data points (referred to as edge points).
An edge point is a point on the edge of the cluster, and a core point is a data point inside the cluster.
The density of data points in any direction around a core point is relatively high, whereas the density of
data points around the edge point is relatively high only in the direction toward the core point. In general,
the number of points around the core point is more than three as many as that around the edge point in
the data cluster. With this feature, the number of points within a certain radius determines whether the
point is an edge point or a core point, so that the edge points and core points of a dataset can be easily
divided. Figure 2 shows the schematic diagram of core points, edge points, and noise points.
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Figure 2. Distribution of data points with m equal to three. Within a distance radius of m in the ordered
distance matrix S, the number of neighborhood points of the red point is greater than m, so it is a core point;
the number of neighborhood points of the green point is greater than zero and less than m, so it is an edge
point; and, the number of neighborhood points of the black point is equal to 0, so it is a noise point.

The distance from each data point to other data points in the sample set is calculated in order to
constitute the distance matrix from all data point to points, and the distance matrix is sorted in ascending
order. We can obtain an ordered distance matrix S and ordered serial number matrix A (which stores the
serial number of the points of S). A quick sort method (e.g., heap or merge sort) is adopted for sorting.
In order to determine the nature of a data point, first, a circle centered on the point with a radius that
is equal to the mean of the distance to the mth point in the overall ordered distance matrix S is found
(the mean is denoted as Dm). If there is only one point inside the circle, then this point is a noise point,
and if the number of points inside the circle is more than one and less than or equal to m, then it is an edge
point (note that the number of points in the circle and the radius parameter of the circle in S are both m,
and these values should be consistent). Otherwise, if there are more than m points, then the point is a core
point (in contrast to DBSCAN and other density clustering algorithms, the radius here is set adaptively
to avoid the radius threshold selection difficulty). The cluster of core points can better reflect the shape
of the original cluster. After removing the edge points and noise points, the number of dataset points is
greatly reduced. Moreover, the factors that interfere with clustering are removed, which is more conducive
to clustering the dataset (the core points’ ordered serial number matrix A′ takes the form of A and the
number of neighborhood points of the i-th point xi in the dataset is defined as Ni(xi)). The determination
formula of the core point is as follows:

Ni(xi) = {xi ∈ D | D(i, j) 6Dm} (1)

xi ∈


Ei, Ni(xi) 6 m
Ci, Ni(xi) > m
Bi, Ni(xi) = 0

(2)

Here, Ei is an edge point, Ci is a core point, D(i, j) is the distance between xi and xj, and Bi is a
noise point.
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2.2. Core Point Neighborhood Correlation Clustering

We can adopt two different strategies, compact and sparse, in order to deal with the clustering of core
points within the cluster. Different strategies will cluster sample sets into different numbers of clusters,
and different clustering results can be obtained by adjusting the clustering strategy. When a compact
strategy is adopted, a strong connection between two points is needed in order to classify them into one
class. Hence, the sample set is clustered into a large number of independent clusters. When a sparse
strategy is adopted, only a weak connection between two points is needed, and the sample set is clustered
into a small number of independent clusters. NDCC does not consider the impact of noise points for the
time being.

When neighborhood correlation clustering is adopted, as long as the appropriate strategies are
adopted, core point clusters of arbitrary density can be found and a better clustering result can be
achieved. The steps of the neighborhood correlation clustering method used in this paper are as follows.
First, take the pre-k-dimension data points in the core point ordered serial number matrix A′ as the analysis
object. The pre-k neighbor points that are closest to the core data point Ci are grouped into the same cluster.
The calculation that is used to group points is similar to the process of bacterial infection. An infection
needs a medium and, for each core Ci, the core of the k-nearest neighbor in A′ is the medium. Other points
can be absorbed into the cluster through the medium. Subsequently, the algorithm iterates through all of
the core data points until it is not possible to merge a new core data point to form a cluster. The process of
the scattered-point data aggregation class is shown in Figure 3. Among them, Figure 3a is the original
distribution of the scatter diagram, Figure 3b is the distribution of core points, and Figure 3c is the
clustering result of the scatter diagram.

(a) Raw data distributions
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(b) Core point distributions
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(c) NDCC cluster distributions
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Figure 3. Sample datasets: (a) raw data, (b) core point, and (c) NDCC cluster distributions: From left to
right the Flame, Brige, Aggregation, and Two Diamonds datasets are shown. The core points are marked
with ∗. Because the dataset has no noise points, the situation in which no noise points are set is shown.
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2.3. Edge Point Convergence

After the core point clustering is completed, the set of core point clusters can be obtained. All of
the edge points are grouped into the nearest cluster of core points according to their distance from the
core. Unlike other clustering algorithms [26] that optimize the objective function iteratively, the allocation
of cluster edge points is performed in a single step, and the allocation of edge points does not affect the
clustering distribution of the core points.

2.4. Objective Function

Although the data points of a cluster group have the same property to a certain extent, in fact,
sometimes points with relatively large distances will be grouped into one group. It has been proved
that parameter optimization is an effective method to solve the optimal clustering in many unsupervised
learning [27]. If we use the features of all points in the cluster to measure the clustering result, there will
be a large deviation that can be avoided by using a local average density evaluation model. The clustering
effect of sample data can be measured by the density compactness of local points, and the local compactness
of each point can be estimated by the sum of the distance from the data point to the adjacent points. If the
ratio of the sum of distances from each point to the k nearest-neighbor points and the number of clustering
G and Ni(xi) are small, the density compactness of local points is high. In this paper, this index is defined
as the local density compactness coefficient (LDCC). The minimum value of LDCC leads to the best
clustering results. This coefficient is used as objective function J in order to optimize parameters m and k.

Jm =
∑m

i=1 ∑k
j=1 Dij

G ∗ k
(3)

Here, G is the number of clusters and Dij is the distance from each point to k neighboring core points.
The optimal classification cluster is determined by the minimum local average density. The value

of m, k increases from 2, so that the whole clustering process goes from fine to coarse. When all of the
data points are grouped into a cluster, it suggests that, for the current values of m and k, there is no
effect in continuing to reinforce neighborhood correlation. When the dataset is clustered to one category,
the upper limit of m is equal to N and the upper limit of k is equal to N1. Thus, the combinations of N
and N1 values are uniquely determined by different datasets. At this time, the value of k is fixed and m
is continue increased to obtain different values of J. When the data points are all grouped to one cluster,
the stopping increase the m value. Subsequently, increasing the k value by step size 1 and repeating the
above process. The minimum value of J corresponds to the final values of m and k. The result can be
considered as a locally optimal clustering result that is close to the global optimum (if there are sufficient
hardware resources, it is generally possible to obtain all the solutions of the objective function J without
setting the upper limit of parameters until the objective function reaches the globally optimal solution.
However, if the values of m and k are too large, all data points will be clustered into one cluster, which
has no practical significance). On the seven data sets, the corresponding J value in the process of m and
k value growth is shown in Table 1. In the table for this article, Compound is abbreviated as Com and
Aggregation is abbreviated as Agg.
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Table 1. Different values of m and k corresponding to the value of objective function J.

m\k 1 2 3 4 5 6 7 8 9

Flame
1 NaN 95.486 NaN NaN NaN NaN NaN NaN NaN
2 NaN 44.232 10.290 3.1983 1.8581 2.0600 2.2541 2.4422 2.6205
3 NaN 44.040 17.200 1.5365 1.7507 1.9392 2.1237 2.3023 2.4707
4 NaN 31.116 1.2558 1.5135 1.7232 1.9112 2.0920 2.2683 2.4343
5 NaN 41.397 1.3853 1.4392 1.6448 1.8254 1.9999 2.1695 NaN
6 NaN 32.542 1.3901 1.4433 1.6473 1.8281 1.9993 2.1673 2.3259

Com
1 NaN NaN NaN NaN NaN NaN NaN NaN NaN
2 NaN 126.08 56.315 20.601 23.522 26.391 29.027 32.075 34.803
3 NaN 178.02 57.112 21.465 24.470 27.482 30.237 32.844 35.776
4 NaN 121.79 55.200 20.030 22.934 26.258 29.189 31.913 34.350
5 NaN 117.35 55.413 19.947 22.835 25.626 28.700 31.533 34.076
6 NaN 129.69 60.642 19.252 21.953 25.164 28.018 30.657 33.045

Agg
1 NaN 387.29 62.412 16.160 11.760 13.206 14.525 15.732 16.879
2 NaN 184.33 233.26 73.421 30.284 28.637 17.937 19.475 20.916
3 NaN 253.21 168.26 11.359 13.265 14.920 16.373 17.711 18.969
4 NaN 182.86 200.88 62.268 24.675 27.767 23.998 26.048 28.257
5 NaN 347.17 165.87 49.315 20.053 22.498 24.706 26.772 28.714
6 NaN 178.39 106.21 10.078 18.811 21.103 23.166 25.097 26.912

Jain
1 NaN 187.03 67.867 25.657 1.6562 1.9069 NaN NaN NaN
2 NaN 167.72 48.871 43.765 4.6532 9.3520 NaN NaN NaN
3 NaN 144.48 54.808 16.929 7.2830 7.5172 NaN NaN NaN
4 NaN 135.61 41.909 39.149 4.8330 NaN NaN NaN NaN
5 NaN 80.011 30.257 13.277 3.6233 2.9865 3.3977 3.7759 NaN
6 NaN 214.42 53.325 2.1711 2.8313 3.3713 NaN NaN NaN

R15
1 NaN 177.49 46.660 4.5060 5.947 6.7796 7.5406 10.863 11.691
2 NaN 103.91 38.383 17.972 9.7477 6.2142 5.3470 5.8632 6.3426
3 NaN 66.870 33.183 16.920 5.2751 6.0342 6.743 7.4357 7.7695
4 NaN 82.606 25.579 12.964 4.9973 4.7220 5.8390 6.8188 7.8437
5 NaN 60.787 24.970 8.4691 4.9771 5.8233 6.5233 7.1739 7.9340
6 NaN 67.342 26.202 6.4120 4.5052 5.2823 6.1329 7.3036 8.3255

D31
1 NaN NaN NaN NaN NaN NaN NaN NaN NaN
2 NaN 1866.6 681.63 501.13 177.65 102.19 70.809 58.494 38.216
3 NaN 969.08 863.35 381.16 139.83 71.810 53.632 58.509 42.448
4 NaN 1307.3 558.92 183.68 92.075 68.552 55.875 50.926 36.792
5 NaN 1347.0 575.20 169.27 87.900 38.450 43.441 50.049 39.394
6 NaN 1518.4 573.43 108.78 38.310 30.481 36.513 39.710 42.689

Spiral
1 NaN 124.03 1.2121 1.7720 1.4179 NaN NaN NaN NaN
2 NaN 85.887 2.0650 2.4893 3.1583 2.1054 NaN NaN NaN
3 NaN 47.485 12.410 1.6699 2.0612 2.5540 NaN NaN NaN
4 NaN 241.71 1.3481 1.9870 2.4541 3.1556 3.7281 3.3966 NaN
5 NaN 87.836 1.3304 2.0597 2.5755 3.1968 2.4343 2.8320 NaN
6 NaN 84.506 1.4340 2.1149 2.6030 3.2090 3.7147 4.2960 NaN

The bold values in Table 1 are the minimum values of the objective function J, and the corresponding parameters
m and k are the parameters of NDCC optimal clustering.
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3. Experiment

The experiment in this paper consists of two parts. The first part is to compare the algorithms that are
mentioned in this paper in the common clustering data set and show the visual effect and index difference.
The second part compares the visual effect and index difference of the algorithm on two public remote
sensing data.

3.1. Index

This paper compares the following indicators of different algorithms: Accuracy (Acc), Normalized
Mutual Information (NMI), Rand Index (RI), Adjusted Rand Index (ARI), Mirkin index (MI), and Hubert
Index (HI). The following symbols are independent, and they are not associated with the symbol in the
paper above.

3.1.1. Acc

The formula for calculating the Acc of sub-datasets is as follows:

Acc = ∑n
i=1 δ (si, map (ri))

n

where ri and si represent the obtained label and the real label corresponding to data point xi, respectively;
n represents the total number of data points and δ represents the indicator function, as follows:

δ(x, y) =

{
1 if x = y
0 otherwise

The map in the equation represents the optimal class object re-allocation, in order to ensure
correct statistics.

3.1.2. NMI

Mutual information is a useful measure in information theory. It can be regarded as the information
that is contained in a random variable regarding another random variable, or the uncertainty reduced
by a random variable due to the knowledge of another random variable. The formula of NMI can be
derived, as follows: Suppose tthat he (X, Y) are two random variables with the same number of elements.
The joint distribution of (X, Y) is P(x, y) and their marginal distributions are P(x) and P(y). Furthermore,
MI(x, y) is the mutual information and it is the relative entropy of joint distribution P(x, y) and product
distribution P(x)(y). Therefore, we have

MI(X, Y) =
N

∑
i=1

N

∑
j=1

P(x, y) log
(

P(x, y)
P(x)P(y)

)
(4)

Here, P(x) is the probability distribution function of X and P(y) is the probability distribution

function of Y. The joint probability distribution P(x, y) =
|xi
⋂

yj |
N while using the abovementioned formula

can be expressed, as follows:

NMI(X, Y) =
2MI(X, Y)

H(x) + H(y)
(5)
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The distribution of H(X) and H(Y) is the entropy of information for the random variable X and Y.

H(X) = −
N

∑
i=1

P(xi) log(P(xi)); H(Y) = −
N

∑
j=1

P(yj) log
(

P(yj)
)

(6)

3.1.3. RI, ARI, MI, HI and JC

Let the clustering result be C = {C1, C2, · · · , Cm}, and the known partition be P = {P1, P2, · · · , Pm},
Rand Index (RI) [28], and Jacarrd Index (J I) [28]. Subsequently, we have the following:

RI =
a + d

a + b + c + d
(7)

J I =
a

a + b + c
(8)

where, a indicates that the two data objects belong to the same cluster in C and the same group in P;
b indicates that the two points belong to a cluster in C, but to different groups in P. c indicates that the
two points do not belong to the same cluster in C, while P belongs to the same group of d, which in
turn indicates that the two points do not belong to the same cluster in C and are in different groups in P.
The higher the evaluation value of these two indexes, the closer the clustering result is to the real partition
result, and the better the clustering effect.

For the ARI, it is assumed that the distribution of the model is random, which is, the division of P
and C is random. Consequently, the number of data points of each category and cluster is fixed.

ARI =
RI − E(RI)

max(RI)− E(RI)
(9)

E(RI) refers to the mean value of each cluster RI and max(RI) to the maximum value of each
cluster RI.

Acc is a simple and transparent evaluation measure and NMI can be information-theoretically
interpreted. The RI and ARI penalize both false positive and false negative decisions during clustering.
The formulas for MI and HI are available in Lawrence Hubert’s paper [28]. While the larger of these
index, including Acc, NMI, RI, ARI, J I, and HI represent the better clustering. Smaller MI represents
better clustering, and MI is used as a reverse index to evaluate the performance of the algorithm.

3.2. Effect Evaluation of Scattered-Point Data Clustering

Six different algorithms are used to complete the clustering experiment on seven two-dimensional
public datasets include Flame [29], Jain [30], Spiral [31], Aggregation [32], Compound [33], D31 [31],
and R15 [31]. NDCC adopted the completely unsupervised objective function LDCC convergence method
that was proposed by us to complete the clustering, and the other algorithms used manual parameter
tuning in order to achieve better clustering effect as far as possible. From the experimental results, NDCC
can complete clustering in a better way without intervention, and the effect is better than other algorithms.
The indexes comparison are shown in Table 2 and the display effect of clustering is shown in Figure 4.
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Figure 4. Clustering effects of various algorithms on seven different datasets. Shown from top to bottom
are results for FCM, Kmeans, DBSCAN, HC1: shortest-distance HC, HC2: weighted average HC, GMM,
and NDCC on (a) Flame, (b) Jain, (c) Spiral, (d) Aggregation, (e) Compound, (f) D31, and (g) R15.

Table 2. Indexes and Time (s) of various algorithms on seven datasets. HC1: shortest-distance HC, HC2:
weighted HC.

Algorithms Index Flame Com Agg Jain R15 D31 Spiral

NDCC

NMI
ARI
RI
MI
HI

0.82351
0.91766
0.95903
0.04097
0.91806

0.92465
0.91539
0.92554
0.07445
0.85108

0.98415
0.99198
0.99728
0.00271
0.99457

1.00000
1.00000
1.00000
0.00000
1.00000

0.99165
0.98981
0.99868
0.00131
0.99737

0.92821
0.84395
0.98946
0.01054
0.97892

1.00000
1.00000
1.00000
0.00000
1.00000

Time 0.13370 0.19083 0.53052 0.19714 0.16911 0.89410 0.12913

Kmeans

NMI
ARI
RI
MI
HI

0.39153
0.43119
0.71552
0.28448
0.43103

0.76214
0.52155
0.83216
0.16784
0.66431

0.79032
0.62437
0.88502
0.11498
0.77005

0.38651
0.30035
0.65009
0.34991
0.30018

0.83125
0.64740
0.94638
0.05362
0.89277

0.85685
0.70675
0.97907
0.02093
0.95814

−0.00352
0.00566
0.55429
0.44571
0.10858

Time 0.36484 0.42385 0.47220 0.45956 0.44716 0.91085 0.56192
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Table 2. Cont.

Algorithms Index Flame Com Agg Jain R15 D31 Spiral

DBSCAN

NMI
ARI
RI
MI
HI

0.76254
0.80492
0.90171
0.09829
0.80342

0.92354
0.96348
0.98636
0.01364
0.97272

0.89532
0.80894
0.92730
0.07270
0.85460

0.87512
0.93322
0.96786
0.03214
0.93571

0.90245
0.85614
0.98292
0.01708
0.96584

0.78925
0.33659
0.89823
0.10177
0.79647

1.00000
1.00000
1.00000
0.00000
1.00000

Time 0.07515 0.03241 0.03049 0.07944 0.12112 0.46979 0.12087

FCM

NMI
ARI
RI
MI
HI

0.42915
0.48796
0.74393
0.25607
0.48787

0.72424
0.53569
0.84275
0.15725
0.68550

0.78132
0.61123
0.88286
0.11714
0.76572

0.38125
0.30035
0.65009
0.34991
0.30018

0.99123
0.97277
0.99912
0.00188
0.99824

0.90125
0.78198
0.98562
0.01438
0.97123

−0.01231
0.00625
0.55415
0.44585
0.10829

Time 0.13276 0.14221 0.26508 0.15811 0.21768 0.63627 0.16774

GMM

NMI
ARI
RI
MI
HI

0.41242
0.31724
0.65914
0.34087
0.31827

0.83451
0.70309
0.90932
0.09068
0.81864

0.78534
0.56320
0.85984
0.14016
0.71968

−0.20412
0.00983
0.51036
0.48964
0.02073

0.93453
0.90361
0.98767
0.01233
0.97535

0.87967
0.66096
0.97505
0.02495
0.95010

0.02245
0.00707
0.52445
0.47555
0.04889

Time 0.13361 0.31808 0.34967 0.10267 0.38937 0.59863 0.12543

HC1

NMI
ARI
RI
MI
HI

0.08453
0.01275
0.54062
0.45938
0.08124

0.80645
0.74248
0.89035
0.10965
0.78071

0.90127
0.80421
0.92568
0.07432
0.85136

0.28145
0.25629
0.69094
0.30906
0.38188

0.84352
0.54246
0.90972
0.09028
0.81943

0.68356
0.17390
0.77892
0.22108
0.55785

1.00000
1.00000
1.00000
0.00000
1.00000

Time 0.07683 0.08276 0.12791 0.41091 0.10257 0.46250 0.02506

HC2

NMI
ARI
RI
MI
HI

0.39541
0.35635
0.67866
0.32134
0.35732

0.71354
0.84791
0.94049
0.08951
0.88098

0.78521
0.95488
0.98498
0.01502
0.96997

0.41568
0.36154
0.68108
0.31892
0.36216

0.98515
0.98565
0.99825
0.00175
0.99651

0.88145
0.75724
0.98397
0.01604
0.96793

0.03125
0.00269
0.55328
0.44672
0.10656

Time 0.09683 0.19276 0.32451 0.81091 0.31348 0.66857 0.13546

The underlined values are the maximum NMI, ARI, RI and HI value. The bold values is the minimum value of MI.

3.3. Evaluation of Clustering Effect of Remote Sensing Data

In the field of remote sensing, it is expensive and difficult to obtain labeled data for training. Different
ground features and different weather conditions make remote sensing images substantially different.
Thus, it is difficult to apply a supervised learning method. In contrast, an unsupervised machine learning
algorithm does not need training samples. It can cluster the data according to their natural distribution
characteristics that are based on the spectral information given by geomagnetic radiation intensity in
remote sensing images. It is a great way to group similar objects together. In this paper, we select several
effective unsupervised clustering algorithms when compared with NDCC on two datasets. These are the
labeled remote sensing dataset ’UCMerced-LandUse’ [34], and the ’2015 high-resolution remote sensing
image of a city in southern China’ [35] dataset. The evaluation of the two datasets is divided into two
steps: preprocessing and evaluation.
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Figure 5. NDCC algorithm on the ’UCMerced-LandUse’ remote sensing dataset clustering segmentation
effect display. (a) are the original image. (d) are the distribution of superpixel scatter points of different
types of ground objects in R and G channel graphs, corresponding to the segmentation of different ground
objects in (c) graph. Our algorithm finds the number of image clusters in a completely unsupervised
manner and realizes clustering segmentation.

Step 1 Preprocessing: super-pixel segmentation (the simple linear iterative clustering super-pixel
segmentation algorithm [36–38]) is adopted as a pre-processing step for remote sensing image clustering
to reduce the amount of calculation. The number of super-pixel elements in each images is kept between
1000 and 3000. Figure 5c,d show the image and scatter effect of NDCC remote sensing clustering. It can
be seen from the Figure 5d that the distribution of the super-pixel data points in remote sensing images
presents an irregular shape, no definite clustering center.

Step 2 Evaluation: the comparative experiment of seven clustering algorithms is carried out with
image super-pixel (RGB value) data points as the object.
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(a) Original image

(b) NDCC

(c) FCM

(d) Kmeans

(e) HC

(f) DBSCAN

(g) GMM

(h) Labeled ground-truth image

Figure 6. Clustering segmentation effect of six algorithms on the’UCMerced-LandUse’ remote sensing
dataset. Our algorithm accurately separates different features.

The ’UCMerced-LandUse’ remote sensing dataset is used for verifying the algorithm clustering effect.
It is a 21-class land-use-image dataset that is meant for research purposes. There are 100 images for each of
the following classes. Each image measures 256 × 256 pixels. The images are manually extracted from
larger images in the USGS National Map Urban Area Imagery collection for various urban areas around
the country. The pixel resolution of this public domain imagery is one foot. This experiment compared
the clustering effects of various algorithms cited in this paper on the dataset and verified the different
clustering effects with indexes. 80 images of 21 class of ground objects are randomly selected for cluster
comparison and repeated for 30 times. Table 3 shows the clustering effect pairs. Clustering segmentation
effect of six algorithms on the ’UCMerced-LandUse’ remote sensing dataset are shown in Figure 6.
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Table 3. Exponential performance of various methods on ’UCMerced-LandUse’ dataset. The bold data are
the maximum values. All program runs 30 times. Statistically significant maximum values in the table are
indicated with ’*’. Additionally, the mean deviation table of clustering index is shown in the following table.
The table shows that NDCC achieved good results on the dataset with labels using unsupervised methods.

Index NDCC FCM Kmeans HC DBSCAN GMM

Acc 0.901 ± 0.075 * 0.795 ± 0.125 0.810 ± 0.010 0.735 ± 0.208 0.641 ± 0.312 0.791 ± 0.143
NMI 0.923 ± 0.031 * 0.852 ± 0.172 0.825 ± 0.127 0.531 ± 0.213 0.712 ± 0.079 0.813 ± 0.142
ARI 0.867 ± 0.124 * 0.724 ± 0.201 0.781 ± 0.195 0.812 ± 0.143 0.532 ± 0.183 0.694 ± 0.215
RI 0.927 ± 0.052 * 0.885 ± 0.105 0.865 ± 0.083 0.748 ± 0.134 0.751 ± 0.182 0.742 ± 0.204
J I 0.846 ± 0.102 * 0.805 ± 0.172 0.735 ± 0.134 0.624 ± 0.117 0.593 ± 0.157 0.782 ± 0.141

The ’2015 high-resolution remote sensing image of a city in southern China’ dataset of the CCF Big
Data competition is used as the dataset for verifying the algorithm clustering effect. It included 14,999
original geological remote sensing images and ground-truth images, with a size of 256 × 256 pixels.
Because all images of the data set are not divided, in order to better verify the clustering discrimination
of the five algorithms, we randomly selected 14,000 images and divided them into 20 groups with 700
sample images each. Executing 30 times clustering in order to generate 30 groups of comparative data
of different algorithms. The clustering effect pairs are shown in Table 4. The average running times are
shown in Table 5.

Table 4. Exponential performance of various methods on ’2015 high-resolution remote sensing image of
a city in southern China’ dataset. The bold data are the maximum values. All program runs 30 times.
Statistically significant maximum values in the table are indicated with ’*’. Additionally, the mean deviation
table of clustering index is shown in the following table. The table shows that NDCC achieved good results
on the dataset with labels while using unsupervised methods.

Index NDCC FCM Kmeans HC DBSCAN GMM

Acc 0.863 ± 0.052 * 0.826 ± 0.116 0.825 ± 0.082 0.715 ± 0.092 0.697 ± 0.102 0.833 ± 0.112
NMI 0.815 ± 0.127 * 0.782 ± 0.213 0.771 ± 0.281 0.655 ± 0.172 0.549 ± 0.098 0.719 ± 0.113
ARI 0.781 ± 0.130 * 0.624 ± 0.142 0.592 ± 0.284 0.461 ± 0.297 0.464 ± 0.214 0.646 ± 0.194
RI 0.834 ± 0.128 * 0.851 ± 0.164 0.812 ± 0.134 0.715 ± 0.161 0.801 ± 0.153 0.576 ± 0.215
J I 0.855 ± 0.084 * 0.771 ± 0.213 0.759 ± 0.105 0.516 ± 0.130 0.499 ± 0.120 0.749 ± 0.171

Table 5. Comparison of runtimes for various algorithms.

NDCC DBSCAN FCM K-Means GMM HC

Mean time (s) 0.6243 0.4937 0.5434 0.6423 0.756 0.8321

Environment

CPU: AMD Ryzen2700X, eight-core processor, f 3.70 GHz
RAM: 16.0 GB
Operating system: Windows 64-bit
GPU: NVIDIA GTX1070, 8 GB GDDR5

The runtime of the PDFC algorithm is not significantly different from that of other fast clustering
algorithms.

3.4. Discussion of Experimental Results

As can be seen from Table 2, in terms of positive indicators, NMI, ARI, RI, and HI are the four
indicators, while NDCC is only in Com. The data set was slightly lower than DBSCAN, and it achieved the
maximum value of the other six data sets, which was the best result. The main reason was that when we
used DBSCAN to verify the data, we selected the optimal result after several rounds of manual adjustment.
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Besides, the Compound data set shape made it suitable for density clustering. In other data sets, despite
multiple rounds of manual tuning, other methods are still unable to surpass the clustering effect of NDCC,
which is completely adaptive without manual tuning. In terms of inverse indexes, MI indexes all obtained
minimum values, indicating that NDCC can quickly find the optimal cluster on several scatter data sets.
As can be seen from Table 4, when compared with the seven algorithms, NDCC is medium in terms of
running time. Its running speed is generally better than that of Kmeans, FCM, and GMM, and slightly
slower than that of DBSCAN and HC. However, the overall difference is order of magnitude of 10−2 s,
which basically does not affect the running speed of clustering algorithm.

By randomly extracting the images from the datasets to execute 30 times clustering with the six
algorithms, the measuring the mean value and deviation are presented in Tables 3 and 4. Through
the comparison of five indicators, NDCC showed better indicators on two large remote sensing image
datasets than the other five algorithms, and the mean deviation are not obvious when compared with
other algorithms. It can indicate that NDCC had better robustness for different images. Through this
statistical test, we can fairly verify the clustering effect comparison between NDCC and other algorithms
on remote sensing images.

4. Conclusions

In this paper, we proposed the NDCC algorithm, which is a clustering method that is based on the
local density of data points. As the experimental results in Table 3 and Figure 4 show, NDCC achieved
the best clustering results on seven datasets, such as Flame and Aggregation. Our algorithm obtained its
results without any supervision. In contrast, the other algorithms obtained relatively good results while
using manually adjusted parameters. Moreover, the algorithm is further evaluated clustering effect on
the ’UCMerced-LandUse’ remote sensing dataset and ’2015 high-resolution remote sensing image of a
city in southern China’ dataset remote sensing. The Acc and NMI, ARI, MI, HI, RI, and J I coefficients
obtained showed that the clustering effect of the proposed method is better than that of five other existing
algorithms. On the other hand, as the time complexity of the algorithm is at a general level, the calculation
time is relatively long when processing extremely large datasets (over 100,000 data points). For each data
point, we focus on the neighborhood points; hence, it is not necessary to calculate the distance between the
data points that differ overly much. We can expect NDCC to perform well in natural language processing
and text clustering [39,40].

In future work, we plan to optimize the structure of the algorithm according to the neighborhood
characteristics of the data points, omit the calculation of the distance between data points with large
differences, and reduce the time complexity of the algorithm.
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Appendix A

Table A1. Summary of notations.

S Ordered distance matrix.
A Ordered serial number matrix.
A′ The core point’s ordered serial number matrix.
Dm The mean of the distance to the m-th point in the overall ordered distance matrix S.
Dij The distance between xi and xj.
xi The i-th point.
xj The j-th point.
m The threshold used to distinguish core, edge and noise points.
Ei Edge point.
Ci Core point.
Bi Noise point.
Ni(xi) The number of neighborhood points of the i-th point.
J The objective function.
G The number of clusters.
k The number of the neighborhood core points which used to objective function evaluation.
P(x) The probability distribution function of X.
P(y) The probability distribution function of Y.
P(x, y) The Joint probability distribution of X and Y.
δ The indicator function.
Y Random variable named Y.
Xi The i-th Random variable named X.
Yj The j-th Random variable named Y.
N The number of random variables.
MI(X, Y) The relative entropy of the joint distribution P(x, y).
Acc The Clustering Accuracy.
NMI The Normalized Mutual Information.
ARI The Adjusted Rand Index.
RI The Rand Index.
MI The Mirkin Index.
HI The Hubert Index.
J I The Jacarrd Index.
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