Insulator Defect Detection via a Residual Denoising Diffusion Mechanism
Abstract
:1. Introduction
- We propose an end-to-end encoder–decoder network, called IDDet, for insulator defect detection. Different from existing methods, IDDet formulates the detection task as a denoising process, where the encoder extracts key defect features from the input image and the decoder gradually recovers the true defect box from noisy bounding boxes.
- We introduce a Residual Denoising Diffusion Mechanism (RDDM) to dynamically emphasize target features during the denoising process, which not only reduces the chance of defects being masked by background interference but also improves robustness against complex non-Gaussian noise.
- Experimental results demonstrate that IDDet significantly improves detection performance in noisy environments, outperforming both traditional methods and state-of-the-art deep learning models.
2. Related Work
2.1. Insulator Defect Detection
2.1.1. Single-Stage Methods
2.1.2. Two-Stage Methods
2.2. Diffusion Model
3. Method
3.1. Architecture
3.2. Image Encoder
3.3. Diffusion Decoder
3.4. Noise Injection Module
3.5. Training
3.6. Inference
4. Experiments
4.1. Experimental Setup
4.1.1. Dataset
4.1.2. Implement Details
4.1.3. Evaluation Metrics
4.2. Backbone Network Effectiveness
4.3. Comparative Experiments
4.4. Visualization
4.5. Ablation Study
4.5.1. Noise Separation in the RDDM
4.5.2. Signal Scaling Factor in RDDM
4.5.3. Matching Between and
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Q.; Zhang, J.; Li, Y.; Zhu, C.; Wang, G. IL-YOLO: An Efficient Detection Algorithm for Insulator Defects in Complex Backgrounds of Transmission Lines. IEEE Access 2024, 12, 14532–14546. [Google Scholar] [CrossRef]
- Gonçalves, R.S.; Agostini, G.S.; Bianchi, R.A.; Homma, R.Z.; Sudbrack, D.E.T.; Trautmann, P.V.; Clasen, B.C. Inspection of power line insulators: State of the art, challenges, and open issues. In Handbook of Research on New Investigations in Artificial Life, AI, and Machine Learning; IGI Global: Hershey, PA, USA, 2022; pp. 462–491. [Google Scholar]
- Liu, J.; Hu, M.; Dong, J.; Lu, X. Summary of insulator defect detection based on deep learning. Electr. Power Syst. Res. 2023, 224, 109688. [Google Scholar] [CrossRef]
- Sadykova, D.; Pernebayeva, D.; Bagheri, M.; James, A. IN-YOLO: Real-time detection of outdoor high voltage insulators using UAV imaging. IEEE Trans. Power Deliv. 2019, 35, 1599–1601. [Google Scholar] [CrossRef]
- Zhang, Z.; Lv, G.; Zhao, G.; Zhai, Y.; Cheng, J. BS-YOLOv5s: Insulator Defect Detection with Attention Mechanism and Multi-Scale Fusion. In Proceedings of the 2023 IEEE International Conference on Image Processing (ICIP), Kuala Lumpur, Malaysia, 8–11 October 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 2365–2369. [Google Scholar]
- Zhang, H.; Sindagi, V.; Patel, V.M. Image de-raining using a conditional generative adversarial network. IEEE Trans. Circuits Syst. Video Technol. 2019, 30, 3943–3956. [Google Scholar] [CrossRef]
- Ho, J.; Jain, A.; Abbeel, P. Denoising diffusion probabilistic models. Adv. Neural Inf. Process. Syst. 2020, 33, 6840–6851. [Google Scholar]
- Sohl-Dickstein, J.; Weiss, E.; Maheswaranathan, N.; Ganguli, S. Deep unsupervised learning using nonequilibrium thermodynamics. In Proceedings of the International Conference on Machine Learning. PMLR, Lille, France, 6–11 July 2015; pp. 2256–2265. [Google Scholar]
- Song, J.; Meng, C.; Ermon, S. Denoising diffusion implicit models. arXiv 2020, arXiv:2010.02502. [Google Scholar]
- Song, Y.; Ermon, S. Generative modeling by estimating gradients of the data distribution. Adv. Neural Inf. Process. Syst. 2019, 32, 11895–11907. [Google Scholar]
- Liu, J.; Wang, Q.; Fan, H.; Wang, Y.; Tang, Y.; Qu, L. Residual denoising diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024; pp. 2773–2783. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 779–788. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A single-stage object detection framework for industrial applications. arXiv 2022, arXiv:2209.02976. [Google Scholar]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023; pp. 7464–7475. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part I 14. Springer: Berlin/Heidelberg, Germany, 2016; pp. 21–37. [Google Scholar]
- Liu, C.; Wu, Y.; Liu, J.; Sun, Z.; Xu, H. Insulator faults detection in aerial images from high-voltage transmission lines based on deep learning model. Appl. Sci. 2021, 11, 4647. [Google Scholar] [CrossRef]
- Bao, W.; Du, X.; Wang, N.; Yuan, M.; Yang, X. A defect detection method based on BC-YOLO for transmission line components in UAV remote sensing images. Remote Sens. 2022, 14, 5176. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Chen, W. Detection of glass insulators using deep neural networks based on optical imaging. Remote Sens. 2022, 14, 5153. [Google Scholar] [CrossRef]
- Han, G.; Yuan, Q.; Zhao, F.; Wang, R.; Zhao, L.; Li, S.; He, M.; Yang, S.; Qin, L. An improved algorithm for insulator and defect detection based on yolov4. Electronics 2023, 12, 933. [Google Scholar] [CrossRef]
- Huang, S.; Dong, X.; Wang, Y.; Yang, L. Detection of insulator burst position of lightweight YOLOv5. In Proceedings of the 8th International Conference on Computing and Artificial Intelligence, Tianjin, China, 18–21 March 2022; pp. 573–578. [Google Scholar]
- Yi, W.; Ma, S.; Li, R. Insulator and defect detection model based on improved YOLO-S. IEEE Access 2023, 11, 93215–93226. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [Google Scholar] [CrossRef]
- Shuang, F.; Wei, S.; Li, Y.; Gu, X.; Lu, Z. Detail R-CNN: Insulator detection based on detail feature enhancement and metric learning. IEEE Trans. Instrum. Meas. 2023, 72, 1–14. [Google Scholar] [CrossRef]
- Ou, J.; Wang, J.; Xue, J.; Wang, J.; Zhou, X.; She, L.; Fan, Y. Infrared image target detection of substation electrical equipment using an improved faster R-CNN. IEEE Trans. Power Deliv. 2022, 38, 387–396. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, X.; Peng, H.; Zheng, L.; Gao, J.; Bao, Y. Railway insulator detection based on adaptive cascaded convolutional neural network. IEEE Access 2021, 9, 115676–115686. [Google Scholar] [CrossRef]
- Legin, R.; Adam, A.; Hezaveh, Y.; Perreault-Levasseur, L. Beyond Gaussian noise: A Generalized approach to likelihood analysis with non-Gaussian noise. Astrophys. J. Lett. 2023, 949, L41. [Google Scholar] [CrossRef]
- Zhou, J.; Xiao, C.; Peng, B.; Liu, Z.; Liu, L.; Liu, Y.; Li, X. DiffDet4SAR: Diffusion-based aircraft target detection network for SAR images. IEEE Geosci. Remote. Sens. Lett. 2024, 21, 1–5. [Google Scholar] [CrossRef]
- De Ridder, V.; Dey, B.; Halder, S.; Van Waeyenberge, B. SEMI-DiffusionInst: A Diffusion Model Based Approach for Semiconductor Defect Classification and Segmentation. In Proceedings of the 2023 International Symposium ELMAR, Zadar, Croatia, 11–13 September 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 61–66. [Google Scholar]
- Liu, Y.; Zhang, H.; Gao, D. DiffYOLO: Object Detection for Anti-Noise via YOLO and Diffusion Models. arXiv 2024, arXiv:2401.01659. [Google Scholar]
- Du, N.; Gong, X.; Liu, Y. ISTD-diff: Infrared Small Target Detection via Conditional Diffusion Models. IEEE Geosci. Remote. Sens. Lett. 2024, 21, 1838–1842. [Google Scholar] [CrossRef]
- Pang, C.; Cheng, Y. Detection of River Floating Waste Based on Decoupled Diffusion Model. In Proceedings of the 2023 8th International Conference on Automation, Control and Robotics Engineering (CACRE), Guangzhou, China, 13–15 July 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 57–61. [Google Scholar]
- Zhang, H.; Chen, N.; Li, M.; Mao, S. The Crack Diffusion Model: An Innovative Diffusion-Based Method for Pavement Crack Detection. Remote Sens. 2024, 16, 986. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning. PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 10012–10022. [Google Scholar]
- Wang, W.; Xie, E.; Li, X.; Fan, D.P.; Song, K.; Liang, D.; Lu, T.; Luo, P.; Shao, L. Pvt v2: Improved baselines with pyramid vision transformer. Comput. Vis. Media 2022, 8, 415–424. [Google Scholar] [CrossRef]
- Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 213–229. [Google Scholar]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Sun, P.; Zhang, R.; Jiang, Y.; Kong, T.; Xu, C.; Zhan, W.; Tomizuka, M.; Li, L.; Yuan, Z.; Wang, C.; et al. Sparse r-cnn: End-to-end object detection with learnable proposals. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 14454–14463. [Google Scholar]
- Chen, T.; Li, L.; Saxena, S.; Hinton, G.; Fleet, D.J. A generalist framework for panoptic segmentation of images and videos. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–6 October 2023; pp. 909–919. [Google Scholar]
- Wright, L.; Demeure, N. Ranger21: A synergistic deep learning optimizer. arXiv 2021, arXiv:2106.13731. [Google Scholar]
- Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1314–1324. [Google Scholar]
- Jocher, G. ultralytics/yolov5: v3.1—Bug Fixes and Performance Improvements 2020. Available online: https://github.com/ultralytics/yolov5 (accessed on 9 April 2025).
- Zhu, X.; Lyu, S.; Wang, X.; Zhao, Q. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 2778–2788. [Google Scholar]
- Sunkara, R.; Luo, T. No more strided convolutions or pooling: A new CNN building block for low-resolution images and small objects. arXiv 2022. arXiv 2022, arXiv:2208.03641. [Google Scholar]
Model | F1-Score | FPS | |
---|---|---|---|
ResNet50 [37] | 92.7 | 90.5 | 60.8 |
ResNet101 [37] | 92.9 | 91.6 | 58.6 |
EfficientNet [38] | 93.4 | 90.2 | 60.5 |
SwinTransformer [39] | 90.1 | 92.3 | 40.9 |
PvtV2 [40] | 90.6 | 90.5 | 50.5 |
Model | F1-Score | FPS | P | R | |
---|---|---|---|---|---|
Faster R-CNN [26] | 82.8 ± 0.8• | 64.5 ± 1.0• | 14.5 ± 1.2• | 83.4 ± 0.4• | 76.0 ± 1.2• |
MobileNetv3-s [46] | 75.0 ± 0.9• | 76.1 ± 1.1• | 68.4 ± 1.9• | 79.7 ± 1.2• | 74.2 ± 2.1• |
YOLOv4-tiny [14] | 76.3 ± 1.1• | 68.2 ± 1.22• | 41.1 ± 3.9• | 81.6 ± 1.0• | 75.1 ± 0.6 |
YOLOv4 [14] | 71.5 ± 0.7• | 51.6 ± 1.2• | 17.9 ± 2.2• | 77.0 ± 1.0• | 70.6 ± 0.7• |
YOLOv5s [47] | 86.5 ± 1.2• | 88.1 ± 2.5 | 57.6 ± 2.9• | 90.5 ± 0.5• | 73.2 ± 2.0• |
YOLOv7 [16] | 78.0 ± 0.7• | 79.2 ± 1.5• | 38.8 ± 3.1• | 91.6 ± 1.2 | 70.2 ± 1.1• |
TPH-YOLOv5s [48] | 86.8 ± 1.3• | 87.4 ± 1.3• | 41.2 ± 2.1• | 90.1 ± 0.7• | 74.4 ± 1.3• |
SPD-Conv [49] | 83.5 ± 1.1• | 83.2 ± 0.9• | 81.9 ± 2.8• | 88.9 ± 0.9• | 77.3 ± 1.4• |
BS-YOLOv5s [5] | 89.8 ± 0.9• | 88.9 ± 0.9 | 66.4 ± 2.6• | 91.4 ± 0.8• | 79.2 ± 1.0 |
IDDet(Ours) | 92.3 ± 1.2 | 90.1 ± 1.0 | 60.3 ± 2.5 | 92.1 ± 0.6 | 80.6 ± 1.1 |
Index | RDDM | F1-Score | FPS | |
---|---|---|---|---|
(1) | No | 91.5 | 89.4 | 58.8 |
(2) | Yes | 92.7 | 90.5 | 60.8 |
Scale | mAP | ||||
---|---|---|---|---|---|
0.1 | 44.1 | 88.1 | 30.1 | 15.1 | 41.9 |
1.0 | 54.9 | 92.7 | 61.8 | 31.4 | 56.0 |
2.0 | 46.2 | 90.6 | 41.2 | 12.7 | 46.9 |
3.0 | 46.0 | 89.5 | 40.5 | 12.6 | 45.5 |
Eval | 100 | 300 | 500 | 1000 | |
---|---|---|---|---|---|
Train | |||||
100 | 53.9 | 53.7 | 53.7 | 53.7 | |
300 | 53.6 | 54.0 | 53.6 | 53.6 | |
500 | 54.9 | 54.9 | 54.9 | 54.9 | |
1000 | 54.9 | 54.6 | 54.7 | 54.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Song, M.; Guo, H.; Sun, Y.; Wang, X. Insulator Defect Detection via a Residual Denoising Diffusion Mechanism. Materials 2025, 18, 1738. https://doi.org/10.3390/ma18081738
Zhang L, Song M, Guo H, Sun Y, Wang X. Insulator Defect Detection via a Residual Denoising Diffusion Mechanism. Materials. 2025; 18(8):1738. https://doi.org/10.3390/ma18081738
Chicago/Turabian StyleZhang, Li, Mengyang Song, Huaping Guo, Yange Sun, and Xinxia Wang. 2025. "Insulator Defect Detection via a Residual Denoising Diffusion Mechanism" Materials 18, no. 8: 1738. https://doi.org/10.3390/ma18081738
APA StyleZhang, L., Song, M., Guo, H., Sun, Y., & Wang, X. (2025). Insulator Defect Detection via a Residual Denoising Diffusion Mechanism. Materials, 18(8), 1738. https://doi.org/10.3390/ma18081738