Design and Characterization of an Equibiaxial Multi-Electrode Dielectric Elastomer Actuator
Abstract
:1. Introduction
2. Material and Methods
2.1. Design and Strategy
- Without interactions
2.2. Model of Multi-Electrode DEA
- 1.
- The dielectric material is incompressible: .
- 2.
- The dielectric elastomer actuator is equibiaxially pre-stretched: .
- 3.
- The total radius R is constant and is always a sum between the radius of the disc electrode and the radial length of the ring electrode : .
2.3. Fabrication
2.4. Setups
3. Results and Discussion
3.1. Strain Optimization with Full Factorial Design
- Analytical data and model without interactions:
3.2. Comparison of Actual Design with Design Excluding Ring Electrode
3.3. Analysis of Inhomogeneous Compressive Strain
3.4. Characterization of EBDEAs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DEA | Dielectric elastomer actuator |
DOE | Design of experiments |
EBDEA | Equibiaxial planar dielectric elastomer actuator |
PDMS | Polydimethylsiloxane |
PET | Polyethylene terephthalate |
References
- Jagtap, S.; Garcia-Garcia, G.; Rahimifard, S. Optimisation of the resource efficiency of food manufacturing via the Internet of Things. Comput. Ind. 2021, 127, 103397. [Google Scholar] [CrossRef]
- Sun, Y.; Liang, X.; Yap, H.K.; Cao, J.; Ang, M.H.; Hua Yeow, R.C. Force Measurement Toward the Instability Theory of Soft Pneumatic Actuators. IEEE Robot. Autom. Lett. 2017, 2, 985–992. [Google Scholar]
- Featherstone, R.; Teh, Y.H. Improving the Speed of Shape Memory Alloy Actuators by Faster Electrical Heating. In Experimental Robotics IX: The 9th International Symposium on Experimental Robotics; Ang, M.H., Khatib, O., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 67–76. [Google Scholar]
- Gao, R.Z. Miniaturization of Soft Robotic Control Systems and Actuators for Biomedical Applications. Ph.D. Thesis, University of Waterloo, Waterloo, ON, Canada, 2023. [Google Scholar]
- Paternò, L.; Lorenzon, L. Soft robotics in wearable and implantable medical applications: Translational challenges and future outlooks. Front. Robot. AI 2023, 10, 1075634. [Google Scholar] [CrossRef] [PubMed]
- Cianchetti, M.; Laschi, C.; Menciassi, A.; Dario, P. Biomedical applications of soft robotics. Nat. Rev. Mater. 2018, 3, 143–153. [Google Scholar] [CrossRef]
- Pelrine, R.; Kornbluh, R.; Pei, Q.; Joseph, J. High-Speed Electrically Actuated Elastomers with Strain Greater Than 100%. Science 2000, 287, 836–839. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, L.; Liu, Y.; Leng, J. Review of Dielectric Elastomer Actuators and Their Applications in Soft Robots. Adv. Intell. Syst. 2021, 3, 2000282. [Google Scholar] [CrossRef]
- Griffiths, D.J. Introduction to Electrodynamics; Benjamin Cummings Inc.: San Francisco, CA, USA, 2008; pp. 351–352. [Google Scholar]
- Ahmad, D.; Sahu, S.K.; Patra, K. Fracture toughness, hysteresis and stretchability of dielectric elastomers under equibiaxial and biaxial loading. Polym. Test. 2019, 79, 106038. [Google Scholar]
- Ji, X.; Liu, X.; Cacucciolo, V.; Imboden, M.; Civet, Y.; El Haitami, A.; Cantin, S.; Perriard, Y.; Shea, H. An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators. Sci. Robot. 2019, 4, eaaz6451. [Google Scholar] [CrossRef]
- Murakami, T.; Minaminosono, A.; Wianata, A.; Okabe, H.; Shigemune, H.; Maeda, S. Characteristic Evaluation of Dielectric Elastomer Actuator Based on The Stretchable Electrode Density. In Proceedings of the 2021 IEEE 4th International Conference on Soft Robotics (RoboSoft), New Haven, CT, USA, 12–16 April 2021; pp. 563–566. [Google Scholar]
- Matysek, M.; Lotz, P.; Winterstein, T.; Schlaak, H.F. Dielectric elastomer actuators for tactile displays. In Proceedings of the Proceedings—3rd Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, World Haptics 2009, Washington, DC, USA, 18–20 March 2009; pp. 290–295. [Google Scholar]
- Holzer, S.; Konstantinidi, S.; Koenigsdorff, M.; Martinez, T.; Civet, Y.; Gerlach, G.; Perriard, Y. Fiber-Reinforced Equibiaxial Dielectric Elastomer Actuator for Out-of-Plane Displacement. Materials 2024, 17, 3672. [Google Scholar] [CrossRef]
- Gareis, M.; Maas, J. Signal conditioning for reducing total harmonic distortion in buckling dielectric elastomer loudspeakers. In Electroactive Polymer Actuators and Devices (EAPAD) XXIV; Madden, J.D., Anderson, I.A., Shea, H.R., Eds.; SPIE: Long Beach, CA, USA, 2022; p. 63. [Google Scholar]
- Benouhiba, A.; Holzer, S.; Konstantinidi, S.; Civet, Y.; Perriard, Y. The elastic frontier: Dielectric elastomer actuators in healthcare technology. Smart Mater. Struct. 2025, 34, 033001. [Google Scholar] [CrossRef]
- Chen, B.; Chen, B.; Wang, N.; Wang, N.; Zhang, X.; Zhang, X.; Chen, W. Design of dielectric elastomer actuators using topology optimization on electrodes. Smart Mater. Struct. 2020, 29, 075029. [Google Scholar] [CrossRef]
- Garnell, E.; Aksoy, B.; Rouby, C.; Shea, H.; Doaré, O. Geometric optimization of dielectric elastomer electrodes for dynamic applications. Appl. Acoust. 2021, 181, 108120. [Google Scholar] [CrossRef]
- Zhang, P.; Yan, Z.; Luo, K.; Tian, Q. Optimal Design of Electrode Topology of Dielectric Elastomer Actuators Based on the Parameterized Level Set Method. Soft Robot. 2023, 10, 106–118. [Google Scholar] [CrossRef] [PubMed]
- Rosset, S.; Shea, H.R. Flexible and stretchable electrodes for dielectric elastomer actuators. Appl. Phys. A Mater. Sci. Process. 2013, 110, 281–307. [Google Scholar] [CrossRef]
- Banet, P.; Zeggai, N.; Chavanne, J.; Nguyen, G.T.; Chikh, L.; Plesse, C.; Almanza, M.; Martinez, T.; Civet, Y.; Perriard, Y.; et al. Evaluation of dielectric elastomers to develop materials suitable for actuation. Soft Matter 2021, 17, 10786–10805. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Sun, S. In silico optimization of actuation performance in dielectric elastomer composites via integrated finite element modeling and deep learning. Theor. Appl. Mech. Lett. 2024, 14, 100490. [Google Scholar] [CrossRef]
- Cao, C.; Gao, X.; Burgess, S.; Conn, A.T. Power optimization of a conical dielectric elastomer actuator for resonant robotic systems. Extrem. Mech. Lett. 2020, 35, 100619. [Google Scholar] [CrossRef]
- Benouhiba, A.; Walter, A.; Martinez, T.; Civet, Y.; Perriard, Y. Influence of Axial Pre-stretch on Tubular Dielectric Elastomer Actuators. In Proceedings of the 2022 25th International Conference on Electrical Machines and Systems (ICEMS), Chiang Mai, Thailand, 29 November–2 December 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–4. [Google Scholar]
- Bruch, D.; Willian, T.P.; Schäfer, H.C.; Motzki, P. Performance-Optimized Dielectric Elastomer Actuator System with Scalable Scissor Linkage Transmission. Actuators 2022, 11, 160. [Google Scholar] [CrossRef]
- Li, Y.; Liu, J.; Liang, W.; Liu, Z. Towards Optimal Design of Dielectric Elastomer Actuators Using a Graph Neural Network Encoder. IEEE Robot. Autom. Lett. 2023, 8, 6339–6346. [Google Scholar] [CrossRef]
- Konstantinidi, S.; Asboth, J.; Walter, A.; Holzer, S.; Martinez, T.; Civet, Y.; Perriard, Y. An Experimental Approach for the Design of Uni-axial Fiber Reinforced Dielectric Elastomer Actuators. In Proceedings of the 2023 26th International Conference on Electrical Machines and Systems (ICEMS), Zhuhai, China, 5–8 November 2023; pp. 3790–3794. [Google Scholar]
- Fisher, R. The Arrangement of Field Experiments. J. Minist. Agric. G. B. 1926, 33, 503–513. [Google Scholar]
- Holzer, S.; Hartmann, F.; Öz, F.; Martinez, T.; Civet, Y.; Perriard, Y. Study of Potential Factors and their Interaction in Dielectric Elastomer based Cell Stretcher. In Proceedings of the 2023 26th International Conference on Electrical Machines and Systems (ICEMS), Zhuhai, China, 5–8 November 2023; pp. 2557–2562. [Google Scholar]
- Koenigsdorff, M.; Liebscher, H.; Osipov, P.; Mersch, J.; Gerlach, G. Influence of Active-to-Passive Ratio on the Deformation in Circular Dielectric Elastomer Actuators. Micromachines 2024, 15, 125. [Google Scholar] [CrossRef] [PubMed]
- Suo, Z. Theory of dielectric elastomers. Acta Mech. Solida Sin. 2010, 23, 549–578. [Google Scholar] [CrossRef]
- Holzer, S.; Walter, A.; Konstantinidi, S.; Martinez, T.; Civet, Y.; Perriard, Y. Carbon based printed electrodes for DEAs: Study of pad, inkjet, and stencil printing. In Electroactive Polymer Actuators and Devices (EAPAD) XXVI; Madden, J.D.W., Seelecke, S.S., Skov, A.L., Eds.; International Society for Optics and Photonics; SPIE: Long Beach, CA, USA, 2024; Volume 12945, p. 129450U. [Google Scholar]
- Poulin, A.; Imboden, M.; Sorba, F.; Grazioli, S.; Martin-Olmos, C.; Rosset, S.; Shea, H. An ultra-fast mechanically active cell culture substrate. Sci. Rep. 2018, 8, 9895. [Google Scholar] [CrossRef]
- Wu, Y.H.; Park, T.I.; Kwon, E.; Feng, S.; Schweder, P.; Dragunow, M.; Shim, V.; Rosset, S. Analyzing pericytes under mild traumatic brain injury using 3D cultures and dielectric elastomer actuators. Front. Neurosci. 2022, 16, 994251. [Google Scholar] [CrossRef]
DE Thickness | Electrode Ø | Pre-Stretch | E-Field | Device Measurement |
---|---|---|---|---|
[μm] | [mm] | [-] | [V μm−1] | (D.M) |
50 | 5/7 | 1.15 | 30 | 1.1 |
50 | 5/7 | 1.30 | 30 | 2.1 |
50 | 5/7 | 1.15 | 60 | 1.2 |
50 | 5/7 | 1.30 | 60 | 2.2 |
50 | 10/12 | 1.15 | 30 | 3.1 |
50 | 10/12 | 1.30 | 30 | 4.1 |
50 | 10/12 | 1.15 | 60 | 3.2 |
50 | 10/12 | 1.30 | 60 | 4.2 |
100 | 5/7 | 1.15 | 30 | 5.1 |
100 | 5/7 | 1.30 | 30 | 6.1 |
100 | 5/7 | 1.15 | 60 | 5.2 |
100 | 5/7 | 1.30 | 60 | 6.2 |
100 | 10/12 | 1.15 | 30 | 7.1 |
100 | 10/12 | 1.30 | 30 | 8.1 |
100 | 10/12 | 1.15 | 60 | 7.2 |
100 | 10/12 | 1.30 | 60 | 8.2 |
D.M | CCS | CTS | TCS | MCS | MTS | TMS |
---|---|---|---|---|---|---|
1.1 | 0.87 | 0.96 | 1.83 | 0.30 | 0.87 | 1.17 |
2.1 | 1.78 | 2.17 | 3.95 | 1.17 | 1.76 | 2.04 |
1.2 | 2.83 | 3.76 | 6.59 | 2.10 | 4.10 | 6.2 |
2.2 | 5.45 | 11.19 | 16.64 | 5.17 | 7.06 | 7.41 |
3.1 | 0.67 | 0.70 | 1.37 | 0.28 | 0.75 | 1.03 |
4.1 | 1.40 | 1.54 | 2.94 | 0.53 | 0.93 | 1.46 |
3.2 | 2.11 | 2.36 | 4.47 | 1.57 | 2.97 | 4.54 |
4.2 | 4.13 | 4.93 | 9.06 | 2.83 | 5.26 | 8.09 |
5.1 | 0.81 | 0.87 | 1.68 | 1.47 | 1.21 | 2.68 |
6.1 | 1.66 | 1.96 | 3.61 | 1.59 | 2.06 | 3.65 |
5.2 | 2.83 | 3.76 | 6.59 | 3.79 | 4.35 | 8.09 |
6.2 | 5.18 | 9.19 | 14.38 | 5.70 | 7.05 | 12.75 |
7.1 | 0.57 | 0.59 | 1.16 | 0.36 | 1.01 | 1.37 |
8.1 | 1.21 | 1.28 | 2.49 | 0.64 | 1.53 | 2.17 |
7.2 | 2.41 | 2.88 | 5.29 | 1.48 | 3.71 | 5.19 |
8.2 | 4.58 | 6.34 | 10.92 | 3.05 | 7.09 | 10.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holzer, S.; Tiwari, B.; Konstantinidi, S.; Civet, Y.; Perriard, Y. Design and Characterization of an Equibiaxial Multi-Electrode Dielectric Elastomer Actuator. Materials 2025, 18, 1693. https://doi.org/10.3390/ma18081693
Holzer S, Tiwari B, Konstantinidi S, Civet Y, Perriard Y. Design and Characterization of an Equibiaxial Multi-Electrode Dielectric Elastomer Actuator. Materials. 2025; 18(8):1693. https://doi.org/10.3390/ma18081693
Chicago/Turabian StyleHolzer, Simon, Bhawnath Tiwari, Stefania Konstantinidi, Yoan Civet, and Yves Perriard. 2025. "Design and Characterization of an Equibiaxial Multi-Electrode Dielectric Elastomer Actuator" Materials 18, no. 8: 1693. https://doi.org/10.3390/ma18081693
APA StyleHolzer, S., Tiwari, B., Konstantinidi, S., Civet, Y., & Perriard, Y. (2025). Design and Characterization of an Equibiaxial Multi-Electrode Dielectric Elastomer Actuator. Materials, 18(8), 1693. https://doi.org/10.3390/ma18081693