Influence of Carbon Nanotube Addition on Microstructure and Microwave Heating Performance of Polycarbosilane-Based Silicon Carbide
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eom, J.H.; Kim, Y.W.; Raju, S. Processing and properties of macroporous silicon carbide ceramics: A review. J. Asian. Ceram. Soc. 2013, 1, 220–242. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, S.; Li, X.; Hong, C.; Zhang, X. Synthesis, properties, and multifarious applications of SiC nanoparticles: A review. Ceram. Int. 2022, 48, 8882–8913. [Google Scholar] [CrossRef]
- He, R.; Zhou, N.; Zhang, K.; Zhang, X.; Zhang, L.; Wang, W.; Feng, D. Progress and challenges towards additive manufacturing of SiC ceramic. J. Adv. Ceram. 2012, 10, 637–674. [Google Scholar] [CrossRef]
- Yajima, S.; Hayashi, J.; Omori, M.M. Continuous silicon carbide fiber of high tensile strength. Chem. Lett. 1975, 4, 931–934. [Google Scholar] [CrossRef]
- Yajima, S.; Okamura, K.; Hayashi, J. Structural analysis in continuous silicon carbide fiber of high tensile strength. Chem. Lett. 1975, 4, 1209–1212. [Google Scholar] [CrossRef]
- Eswara Prasad, N.; Wanhill, R.J.H. Aerospace Materials and Material Technologies: Vol. 1: Aerospace Materials; Springer: Boston, MA, USA, 2017; p. 371. [Google Scholar]
- Sauder, S. Ceramic Matrix Composites: Nuclear Applications, Ceramic Matrix Composites: Materials, Modeling and Technology; Wiley: New York, NY, USA, 2014; p. 609. [Google Scholar]
- Joo, Y.J.; Cho, K.Y. Microwave-assisted heating behavior of amorphous SiC fibers derived from polycarbosilane. Mater. Res. Express. 2021, 8, 035603. [Google Scholar] [CrossRef]
- Khishigbayar, K.E.; Joo, Y.J.; Cho, K.Y. Microwave-assisted heating of electrospun SiC fiber mats. J. Korean Ceram. Soc. 2017, 54, 499–505. [Google Scholar] [CrossRef]
- Li, H.; Zhang, L.; Cheng, L.; Wang, Y.; Yu, Z.; Huang, M.; Tu, H.; Xia, H. Effect of the polycarbosilane structure on its final ceramic yield. J. Eur. Ceram. Soc. 2008, 28, 887–891. [Google Scholar]
- Taki, T.; Ohamura, K.; Sato, M. A study of the oxidation curing mechanism of polycarbosilane fibre by solid-state high-resolution nuclear magnetic resonance. J. Mater. Sci. 1989, 24, 1263–1267. [Google Scholar] [CrossRef]
- Narisawa, M.; Shimoda, M.; Okamura, K.; Sugimoto, M.; Seguchi, T. Reaction mechanism of the pyrolysis of polycarbosilane and polycarbosilazane as ceramic precursors. Bull. Chem. Soc. Jpn. 1995, 68, 1098–1104. [Google Scholar] [CrossRef]
- Hwang, C.H.; Beak, J.H.; Kim, S.I.; Park, S.Y.; Kim, S.Y. Investigation of the heating characteristics of microwave silicon carbide heaters under mechanochemical iodine curing process conditions. J. Korea. Cryst. Growth. Cryst. Technol. 2024, 34, 156–162. [Google Scholar]
- Hwang, C.H.; Beak, J.H.; Kim, S.I.; Kim, S.Y. Effect of Pyrolysis Temperature on Microwave Heating Properties of Oxidation-Cured Polycarbosilane Powder. Crystals 2024, 14, 1080. [Google Scholar] [CrossRef]
- De Volder, M.F.; Tawfick, S.H.; Baughman, R.H.; Hart, A.J. Carbon nanotubes: Present and future commercial applications. Science 2013, 339, 535–539. [Google Scholar]
- Chou, T.W.; Gao, L.; Thostenson, E.T.; Zhang, Z.; Byun, J.H. An assessment of the science and technology of carbon nanotube-based fibers and composites. Compos. Sci. Technol. 2010, 70, 1–19. [Google Scholar]
- Hong, J.S.; Cho, K.Y.; Shin, D.G.; Kim, J.I.; Rju, D.H. Iodine diffusion during iodine-vapor curing and its effects on the morphology of polycarbosilane/silicon carbide fibers. J. Appl. Polym. Sci. 2015, 132, 42687. [Google Scholar] [CrossRef]
- Hasegawa, Y. New curing method for polycarbosilane with unsaturated hydrocarbons and application to thermally stable SiC fibre. Compos. Sci. Technol. 1994, 51, 161–166. [Google Scholar]
- Hong, J.S.; Cho, K.Y.; Shin, D.G.; Kim, J.I.; Oh, S.T.; Riu, D.H. Low-temperature chemical vapour curing using iodine for fabrication of continuous silicon carbide fibres from low-molecular-weight polycarbosilane. J. Mater. Chem. A 2014, 2, 2781–2793. [Google Scholar]
- Verdingovas, V.; Müller, L.; Jellesen, M.S.; Grumsen, F.B.; Ambat, R. Effect of iodine on the corrosion of Au–Al wire bonds. Corros. Sci. 2015, 97, 161–171. [Google Scholar]
- Rose, N.R.; Bonita, R.; Burek, C.L. Iodine: An environmental trigger of thyroiditis. Autoimmin. Rev. 2002, 1, 97–103. [Google Scholar]
- Boldyreva, E. Mechanochemistry of inorganic and organic systems: What is similar, what is different? Chem. Soc. Rev. 2013, 42, 7719–7738. [Google Scholar]
- Ke, C.; Liu, T.; Zhang, Y.; Xiong, Q. Energy absorption performances of silicon carbide particles during microwave heating process. Chem. Eng. Process. 2022, 172, 108796. [Google Scholar] [CrossRef]
- Shen, Z.; Chen, J.; Li, B.; Li, G.; Zhang, Z.; Hou, X. Recent progress in SiC nanowires as electromagnetic microwaves absorbing materials. J. Alloy. Compd. 2020, 815, 15238. [Google Scholar] [CrossRef]
- Sugawara, H.; Kashimura, K.; Hayashi, M.; Ishihara, S.; Mitani, T.; Shinohara, N. Behavior of microwave-heated silicon carbide particles at frequencies of 2.0–13.5 GHz. Appl. Phys. Lett. 2014, 105, 034103. [Google Scholar] [CrossRef]
- Arora, N.; Sharma, N.N. Arc discharge synthesis of carbon nanotubes: Comprehensive review. Diam. Relat. Mater. 2014, 50, 135–150. [Google Scholar] [CrossRef]
- Yu, M.; Grasso, S.; Mckinnon, R.; Saunders, T.; Reece, M.J. Review of flash sintering: Materials, mechanisms and modelling. Adv. Appl. Ceram. 2017, 116, 24–60. [Google Scholar] [CrossRef]
- Biesuz, M.; Sglavo, V.M. Flash sintering of ceramics. J. Eur. Ceram. Soc. 2019, 39, 115–143. [Google Scholar] [CrossRef]
- Cologna, M.; Rashkova, B.; Raj, R. Flash sintering of nanograin zirconia in <5 s at 850 °C. J. Am. Ceram. Soc. 2010, 93, 3556–3559. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, C.-H.; Beak, J.-H.; Kim, S.-Y. Influence of Carbon Nanotube Addition on Microstructure and Microwave Heating Performance of Polycarbosilane-Based Silicon Carbide. Materials 2025, 18, 1454. https://doi.org/10.3390/ma18071454
Hwang C-H, Beak J-H, Kim S-Y. Influence of Carbon Nanotube Addition on Microstructure and Microwave Heating Performance of Polycarbosilane-Based Silicon Carbide. Materials. 2025; 18(7):1454. https://doi.org/10.3390/ma18071454
Chicago/Turabian StyleHwang, Chang-Hun, Jong-Ha Beak, and Se-Yun Kim. 2025. "Influence of Carbon Nanotube Addition on Microstructure and Microwave Heating Performance of Polycarbosilane-Based Silicon Carbide" Materials 18, no. 7: 1454. https://doi.org/10.3390/ma18071454
APA StyleHwang, C.-H., Beak, J.-H., & Kim, S.-Y. (2025). Influence of Carbon Nanotube Addition on Microstructure and Microwave Heating Performance of Polycarbosilane-Based Silicon Carbide. Materials, 18(7), 1454. https://doi.org/10.3390/ma18071454