Assessment of the Corrosion Resistance of Thermal Barrier Coatings on Internal Combustion Engine Components
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Material
- –
- The bond coat (BC) was made from Al2O3-30 (Ni20Al) powder, produced by Metco-Oerlikon under the name 410NS.
- –
- The top coat for set 1 (P1) was made from Cr3C2–25(Ni20Cr) powder, produced by Metco-Oerlikon under the name 81NS.
- –
- The top coat for set 2 (P2) was made from MgZrO3-35NiCr powder, produced by Metco-Oerlikon under the name 303NS.
- –
- The top coat for set 3 (P3) was made from ZrO2-5CaO-0.5Al2O3-0.4SiO2 powder, produced by Metco-Oerlikon under the name 201NS.
2.2. Coating Deposition
- (a)
- Three sets of valves were established, and valve stems were protected with adhesive metallic paper in order to not be affected during the thermal spray deposition process.
- (b)
- The valve plates were sandblasted for surface texturing and cleaned with isopropyl alcohol.
- (c)
- The three sets of valves were mounted separately on the turning table of the spraying system with the help of specially made holders (Figure 1a).
- (d)
- BCs were deposited on all the valve plates simultaneously, followed by the three types of top coats, respecting the spray parameters indicated by the manufacturer for each type of powder. The as-coated aspect of the samples is presented in Figure 1b.
2.3. “In Situ” Testing
2.4. Corrosion Tests
- Measuring/monitoring the open-circuit potential (OCP) over 3 h;
- Linear polarization resistance (LPR) from −30 mV (vs. OCP) to +30 mV (vs. OCP), with a scanning rate of 0.167 mV/s;
- Marking the linear polarization curves from −200 mV (vs OCP) to +200 mV (vs. OCP) and Tafel curves, with a scanning rate of 0.167 mV/s.
3. Results and Discussions
3.1. Corrosion Behavior
- Open-circuit potential (Eoc);
- Corrosion potential (Ecorr);
- Corrosion current density (icorr);
- The slope of the cathode curve (βc);
- The slope of the anodic curve (βa).
- Polarization resistance (Rp);
- Coating porosity (P);
- Efficiency during a corrosive attack (Pe).
3.1.1. Evaluation of Corrosion Resistance Before Performing the Functional Tests
3.1.2. Evaluation of Corrosion Resistance After Performing the Functional Tests
3.2. Surface Morphology of the Samples Subjected to the Corrosion Tests
- Carbon: at a large weight percent;
- Oxygen: specific to the products resulting from the oxidation of the chemical elements of the coatings, respectively, to the oxides resulting from their exposure to the high temperatures of the combustion chamber;
- Other elements specific to the combustion residues: Na, Mg, Zn and Ca.
4. Conclusions
- ▪
- Samples coated with MgZrO3-35NiCr (P2) exhibited the most electropositive values for open-circuit potential (Eoc) and corrosion potential (Ecorr), indicating superior electrochemical stability and reduced susceptibility to corrosion.
- ▪
- Samples coated with Cr3C2-25(Ni20Cr) (P1) recorded the lowest corrosion current density (icorr) and the highest polarization resistance (Rp), thus confirming their ability to effectively protect the metallic substrate.
- ▪
- The most noble electrochemical behavior post-use;
- ▪
- The most electropositive corrosion potential, indicating superior oxidation resistance;
- ▪
- The lowest corrosion current density, demonstrating minimal material degradation;
- ▪
- The highest polarization resistance, confirming the durability of the protective layer under intense thermal and chemical stress conditions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vetter, J.; Barbezat, G.; Crummenauer, J.; Avissar, J. Surface treatment selections for automotive applications. Surf. Coat. Technol. 2005, 200, 1962–1968. [Google Scholar] [CrossRef]
- Available online: https://ec.europa.eu/stories/european-green-deal/ (accessed on 26 November 2024).
- Available online: https://cop29.az/en/home (accessed on 26 November 2024).
- Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Greenhouse_gas_(GHG) (accessed on 26 November 2024).
- Somhorst, J.; Oevermann, M. Effects of thermal barrier coating porosity on combustion and heat losses in a light duty diesel engine. Int. J. Engine Res. 2024, 25, 940–958. [Google Scholar] [CrossRef]
- Saputo, J.C.; Smith, G.M.; Lee, H.; Sampath, S.; Gingrich, E.; Tess, M. Thermal Swing Evaluation of Thermal Barrier Coatings for Diesel Engine. J. Therm. Spray Technol. 2020, 29, 1943–1957. [Google Scholar] [CrossRef]
- Motoc, A.M.; Valsan, S.; Slobozeanu, A.E.; Corban, M.; Valerini, D.; Prakasam, M.; Botan, M.; Dragut, V.; Vasile, B.S.; Surdu, A.V.; et al. Design, fabrication, and characterization of new materials based on zirconia doped with mixed rare earth oxides: Review and first experimental results. Metals 2020, 10, 746. [Google Scholar] [CrossRef]
- Buyukkaya, E.; Engin, T.; Cerit, M. Effects of thermal barrier coating on gas emissions and performance of a LHR engine with different injection timings and valve adjustments. Energy Convers. Manag. 2006, 47, 1298–1310. [Google Scholar] [CrossRef]
- Iscan, B. Application of ceramic coating for improving the usage of cottonseed oil in a diesel engine. J. Energy Inst. 2016, 89, 150–157. [Google Scholar] [CrossRef]
- Woschni, G.; Spindler, W.; Kolesa, K. Heat Insulation of Combustion Chamber Walls—A Measure to Decrease the Fuel Consumption of I.C. Engines? SAE Tech. Pap. 1987, 96, 269–279. [Google Scholar] [CrossRef]
- Miroslaw, W. Potential of Porous-Media Combustion Technology as Applied to Internal Combustion Engines. J. Thermodyn. 2010, 2010, 789262. [Google Scholar] [CrossRef]
- Sroka, Z.J. Some aspects of thermal load and operating indexes after downsizing for internal combustion engine. J. Therm. Anal. Calorim. 2012, 110, 51–58. [Google Scholar] [CrossRef]
- Chicet, D.; Tufescu, A.; Paulin, C.; Panțuru, M.; Munteanu, C. The Simulation of Point Contact Stress State for APS Coatings. IOP Conf. Ser. Mater. Sci. Eng. 2017, 209, 012044. [Google Scholar] [CrossRef]
- Panţuru, M.; Chicet, D.L.; Munteanu, C.; Istrate, B.; Avram, P. Microstructural aspects at coating-substrate interface for some thermal sprayed layers on valve discs. IOP Conf. Ser. Mater. Sci. Eng. 2018, 444, 0320098. [Google Scholar] [CrossRef]
- Panţuru, M.; Chicet, D.; Paulin, C.; Alexandru, A.; Munteanu, C. Wear aspects of internal combustion engine valves. IOP Conf. Ser.-Mater. Sci. Eng. 2016, 147, 012036. [Google Scholar] [CrossRef]
- Panțuru, M.; Cârlescu, V.; Chicet, D.; Răileanu, L.; Munteanu, C. Evaluation of adhesion—Cohesion of some TBCs used for internal combustion engine valves using scratch method. UPB Sci. Bull. Ser. B Chem. Mater. Sci. 2019, 81, 215–224. [Google Scholar]
- Gingrich, E.; Tess, M.; Korivi, V.; Schihl, P.; Saputo, J.; Smith, G.M.; Sampath, S.; Ghandhi, J. The impact of piston thermal barrier coating roughness on high-load diesel operation. Int. J. Engine Res. 2019, 22, 146808741989348. [Google Scholar] [CrossRef]
- Dhomne, S.; Mahalle, A.M. Thermal barrier coating materials for SI engine. J. Mater. Res. Technol. 2019, 8, 1532–1537. [Google Scholar] [CrossRef]
- Zhao, Y.; Feng, H.; Lou, W.; Li, L.; Wang, Q.; Ding, G.; Zhang, C. Intelligent temperature measuring thermal spray multilayer thermal barrier coatings based on embedded thin film thermocouples. J. Colloid Interface Sci. 2025, 680, 1042–1052. [Google Scholar] [CrossRef]
- Pakseresht, A.H.; Javadi, A.H.; Ghasali, E.; Shahbazkhan, A.; Shakhesi, S. Evaluation of hot corrosion behavior of plasma sprayed thermal barrier coatings with graded intermediate layer and double ceramic top layer. Surf. Coat. Technol. 2016, 288, 36–45. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Z.; Ding, K.; Dai, H. Failure analysis and reliability assessment of a type of aero-engine combustion chamber thermal barrier coatings. Case Stud. Therm. Eng. 2024, 53, 103886. [Google Scholar] [CrossRef]
- Liu, D.; Mu, R.; He, L.; Li, S.; Yang, W. Failure behaviour of EB-PVD YSZ thermal barrier coatings under simulated aero-engine operating conditions. Surf. Coat. Technol. 2023, 474, 130027. [Google Scholar] [CrossRef]
- Baiamonte, L.; Marra, F.; Gazzola, S.; Giovanetto, P.; Bartuli, C.; Valente, T.; Pulci, G. Thermal sprayed coatings for hot corrosion protection of exhaust valves in naval diesel engines. Surf. Coat. Technol. 2016, 295, 78–87. [Google Scholar] [CrossRef]
- Suh, H.K.; Lee, C.S. A review on atomization and exhaust emissions of a biodiesel-fueled compression ignition engine. Renew. Sustain. Energy Rev. 2016, 58, 1601–1620. [Google Scholar] [CrossRef]
- Ekström, M.; Thibblin, A.; Tjernberg, A.; Blomqvist, C.; Jonsson, S. Evaluation of internal thermal barrier coatings for exhaust manifolds. Surf. Coat. Technol. 2015, 272, 198–212. [Google Scholar] [CrossRef]
- Panțuru, M.; Chicet, D.; Mocănița, O.; Benchea, M.; Munteanu, C. Morphology and mechanical characteristics of some TBCs used for internal combustion valves. Mater. Res. Proc. 2018, 8, 192–199. [Google Scholar] [CrossRef]
- Paparao, J.; Pandey, K.K.; Murugan, S. Experimental studies on the effect of TBC piston in a dual-fueled diesel engine. Fuel 2021, 306, 121700. [Google Scholar] [CrossRef]
- Yan, Z.; Gainey, B.; Lawler, B. A parametric modeling study of thermal barrier coatings in low-temperature combustion engines. Appl. Therm. Eng. 2022, 200, 117687. [Google Scholar] [CrossRef]
- Li, T.; Caton, J.A.; Jacobs, T.J. Energy distributions in a diesel engine using low heat rejection (LHR) concepts. Energy Convers. Manag. 2016, 130, 14–24. [Google Scholar] [CrossRef]
- Paik, Y.; Sahu, C.R.; Pandey, K.K.; Barik, S.K.; Murugan, S.; Debasish, D. Effect of Thermal Barrier Coating on Performance and Emissions of a DI Diesel Engine; SAE Technical Papers; SAE International: Warrendale, PA, USA, 2020; SAE 2019-32-0526. [Google Scholar] [CrossRef]
- Garud, V.; Bhoite, S.; Patil, S.; Ghadage, S.; Gaikwad, N.; Kute, D.; Sivakumar, G. Performance and Combustion Characteristics of Thermal Barrier Coated (YSZ) Low Heat Rejection Diesel Engine. Mater. Today Proc. 2017, 4, 188–194. [Google Scholar] [CrossRef]
- Dong, H.; Liang, X.; Bai, J.; Lan, L.; Wang, X.; Zou, H.; Wang, Y.; Tian, W.; Mao, J.; Zhang, X. The relationship between the film hole distribution and thermal cycle performance of TBCs by APS and HVOF. Surf. Coat. Technol. 2023, 467, 129694. [Google Scholar] [CrossRef]
- Bogdan, M.; Peter, I. A Comprehensive Understanding of Thermal Barrier Coatings (TBCs): Applications, Materials, Coating Design and Failure Mechanisms. Metals 2024, 14, 575. [Google Scholar] [CrossRef]
- Ma, T.; Chen, D.; Wang, H.; Yao, M. Influence of thermal barrier coating on partially premixed combustion in internal combustion engine. Fuel 2021, 303, 121259. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, B.; He, Q.; Liu, M.; Liang, L. Fabrication and characterization of thermal barrier coatings for internal combustion engines via suspension plasma spray with high solid loading. Surf. Coat. Technol. 2024, 479, 130523. [Google Scholar] [CrossRef]
- Nayak, H.; Varun, K.R.; Shamkuwar, S.; Kumar, R.S.; Sudarshan, T.A.; Malge, A.; Vijay, M.; Prasad, C.D. Thermal cycle behaviour of plasma sprayed thermal barrier coatings on cast iron substrate for the application of liner of internal combustion engine. Results Surf. Interfaces 2024, 17, 100297. [Google Scholar] [CrossRef]
- Yao, M.; Ma, T.; Wang, H.; Zheng, Z.; Liu, H.; Zhang, Y. A theoretical study on the effects of thermal barrier coating on diesel engine combustion and emission characteristics. Energy 2018, 162, 744–752. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, T.; Liu, L.; Yao, M. Numerical investigation of the effect of thermal barrier coating on combustion and emissions in a diesel engine. Appl. Therm. Eng. 2021, 186, 116497. [Google Scholar] [CrossRef]
- Zheng, Z.; Chen, P.; Zhang, F.; Yao, M.; Wang, H.; Liu, H. Experimental study on the effect of the thermal barrier coated (TBC) piston on combustion of gasoline compression ignition (GCI). Appl. Therm. Eng. 2022, 217, 119068. [Google Scholar] [CrossRef]
- Khan, S.N.; Usman, A.; Afzal, M.S.; Tanveer, M.; Liwicki, M.; Almqvist, A.; Park, C.W. Numerical investigation of thermomechanical behavior of Yttrium barium zirconate-coated aluminum alloy piston in an internal combustion engine. Appl. Therm. Eng. 2024, 236, 121603. [Google Scholar] [CrossRef]
- Jiang, B.; Qian, Z.; Wang, C.; Fei, C.; Zhu, S.; Shu, Z.; Du, Y.; Wang, X. Simulation analysis of La2Ce2O7 thermal barrier coating in marine internal combustion engine. Case Stud. Therm. Eng. 2024, 64, 105564. [Google Scholar] [CrossRef]
- Koutsakis, G.; Begley, M.R.; Hutchinson, J.W.; Ghandhi, J.B. Fracture-based transient thermo-mechanical analysis of reciprocating engine thermal barrier coatings. Eng. Fract. Mech. 2022, 270, 108568. [Google Scholar] [CrossRef]
- Syamkumar, K.; Babu, N.; Govindarajan, S.; Arya, S.B. Hot corrosion behaviour of mullite thermal barrier coatings for marine diesel engines. Ceram. Int. 2024, 50, 2808–2818. [Google Scholar] [CrossRef]
- Gainey, B.; Vedpathak, K.; Jordan, E.; Sellnau, M.; Filipi, Z.; Lawler, B. On convection vive in mixing-controlled combustion with thermal barrier coatings. Appl. Therm. Eng. 2024, 247, 122991. [Google Scholar] [CrossRef]
- Narendranathan, S.K.; Pandiyarajan, R.; Purushothaman, P.; Sabarish, S. Influence of modified operating parameters and thermal barrier coating on diesel engine performance using punnai oil mixture. J. Eng. Res. 2023; in press. [Google Scholar] [CrossRef]
- Cihan, O.; Temizer, I.; Gök, M.G.; Karabaş, M. Investigation of the effect of rare earth doped La2Zr2O7 based thermal barrier coating on performance and combustion characteristics of DI diesel engine. Surf. Coat. Technol. 2020, 403, 126437. [Google Scholar] [CrossRef]
- de Goes, W.U.; Markocsan, N.; Gupta, M. Thermal Swing Evaluation of Thermal Spray Coatings for Internal Combustion Engines. Coatings 2022, 12, 830. [Google Scholar] [CrossRef]
- Cerit, M.; Coban, M. Temperature and thermal stress analyses of a ceramic-coated aluminum alloy piston used in a diesel engine. Int. J. Therm. Sci. 2014, 77, 11–18. [Google Scholar] [CrossRef]
- Durat, M.; Kapsiz, M.; Nart, E.; Ficici, F.; Parlak, A. The effects of coating materials in spark ignition engine design. Mater. Des. 2012, 36, 540–545. [Google Scholar] [CrossRef]
- Moridi, A.; Azadi, M.; Farrahi, G.H. Thermo-mechanical stress analysis of thermal barrier coating system considering thickness and roughness effects. Surf. Coat. Technol. 2014, 243, 91–99. [Google Scholar] [CrossRef]
- Sharma, J.K.; Raj, R.; Kumar, S.; Jain, R.K.; Pandey, M. Finite element modelling of Lanthanum Cerate (La2Ce2O7) coated piston used in a diesel engine. Case Stud. Therm. Eng. 2021, 25, 100865. [Google Scholar] [CrossRef]
- Gautam, S.S.; Singh, R.; Vibhuti ASSangwan, G.; Mahanta, T.K.; Gobinath, N.; Feroskhan, M. Thermal barrier coatings for internal combustion engines: A review. Mat. Today Proc. 2022, 51, 1554–1560. [Google Scholar] [CrossRef]
- Hazar, H. Cotton methyl ester usage in a diesel engine equipped with insulated combustion chamber. Appl. Energy 2010, 87, 134–140. [Google Scholar] [CrossRef]
- Karthikayan, S.; Ganesan, S.; Vasanthakumar, P.; Sankaranarayanan, G.; Dinakar, M. Innovative Research Trends in the Application of Thermal Barrier Metal Coating in Internal Combustion Engines. Mater. Today Proc. 2017, 4, 9004–9012. [Google Scholar] [CrossRef]
- Torkashvand, K.; Poursaeidi, E.; Mohammadi, M. Effect of TGO thickness on the thermal barrier coatings life under thermal shock and thermal cycle loading. Ceram. Int. 2018, 44, 9283–9293. [Google Scholar] [CrossRef]
- Osorio, J.D.; Toro, A.; Hernández-Ortiz, J.P. Thermal Barrier Coatings for Gas Turbine Applications: Failure Mechanisms and Key Microstructural Features. Dyna 2012, 79, 149–158. [Google Scholar]
- Available online: https://mymetco-europe.oerlikon.com/en-us/product/metco410ns (accessed on 21 October 2024).
- Available online: https://mymetco-europe.oerlikon.com/en-us/product/metco81ns (accessed on 21 October 2024).
- Available online: https://mymetco-europe.oerlikon.com/en-us/category/metco303ns1 (accessed on 21 October 2024).
- Available online: https://mymetco-europe.oerlikon.com/en-us/product/metco201ns (accessed on 21 October 2024).
- Panțuru, M.; Chicet, D.; Lupescu, Ş.; Istrate, B.; Munteanu, C. Applications of ceramic coatings as TBCs on the internal combustion engine valves. Acta Tech. Napoc. Ser. Appl. Math. Mech. Eng. 2018, 61, 137–142. Available online: https://atna-mam.utcluj.ro/index.php/Acta/article/download/971/911 (accessed on 15 July 2024).
- ASTM G5-94; Standard Reference Test Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements. ASTM International: West Conshohocken, PA, USA, 2011. Available online: https://www.astm.org/g0005-94r11e01.html (accessed on 6 March 2025).
- Nazir, M.H.; Khan, Z.A.; Saeed, A.; Stokes, K. A predictive model for life assessment of automotive exhaust mufflers subject to internal corrosion failure due to exhaust gas condensation. Eng. Fail. Anal. 2016, 63, 43–60. [Google Scholar] [CrossRef]
- ASTM G59-97; Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements. ASTM International: West Conshohocken, PA, USA, 2014. Available online: https://www.astm.org/g0059-97r14.html (accessed on 6 March 2025).
- Cotrut, C.M.; Braic, V.; Balaceanu, M.; Titorencu, I.; Braic, M.; Parau, A.C. Corrosion resistance, mechanical properties and biocompatibility of Hf-containing ZrCN coatings. Thin Solid Film. 2013, 538, 48–55. [Google Scholar] [CrossRef]
- Elsener, B.; Rota, A.; Bohni, H. Impedance study on the corrosion of PVD and CVD titanium nitride coatings. Mater. Sci. Forum. 1989, 44–45, 28–38. [Google Scholar] [CrossRef]
- Forsberg, P.; Elo, R.; Jacobson, S. The importance of oil and particle flow for exhaust valve wear—An experimental study. Tribol. Int. 2014, 69, 176–183. [Google Scholar] [CrossRef]
- Elo, R.; Jacobson, S. Formation and breakdown of oil residue tribofilms protecting the valves of diesel engines. Wear 2015, 330–331, 193–198. [Google Scholar] [CrossRef]
- Elo, R.; Heinrichs, J.; Jacobson, S. Wear protective capacity of tribofilms formed on combustion engine valves with different surface textures. Wear 2017, 376–377, 1429–1436. [Google Scholar] [CrossRef]
- Taymaz, I. An experimental study of energy balance in low heat rejection diesel Engine. Energy 2006, 31, 364–371. [Google Scholar] [CrossRef]
- Panțuru, M.; Chicet, D.; Paulin, C.; Lupescu, S.; Munteanu, C. Microstructural aspects of TBC`s deposited on internal combustion engine valve materials. Mater. Sci. Forum 2017, 907, 151–156. [Google Scholar] [CrossRef]
Material (Layer Type) | Spray Method | Component Type/Substrate | Fuel/Testing Procedure | Ref. |
---|---|---|---|---|
NiCoCrAlY (BC) 8YSZ (TC) Ni95Al5 (sealing) Al2O3 (sealing) | HVAF APS APS SPS | The piston of a single-cylinder light-duty diesel engine/AlSi12 | Diesel fuel/CFD simulations | [5] |
NiCrAl (BC) 8YSZ (TC) | APS APS | Piston surface from AVL 530 single-cylinder research engine with a custom head designed for high-output diesel engine operation | F-24 (kerosene-based jet fuel)/engine operation | [17] |
NiCoCrAIY (BC) 8YSZ (TC) | APS APS | Flame tube liner panel of the V2500 aircraft engine/Hastelloy X | Heating (furnace, 1000, 1100, 1200 and 1300 °C)–rapid cooling (air, 20 °C) cycles | [21] |
Metallic powder (BC) YSZ (TC) YSZ+CeO2 (TC) | VPS APS APS | Piston top crown/aluminum alloy | D100 + HHO 1; Opt.JME20 + HHO/dual-fuel operation | [27] |
NiCrAlY (BC) 7YSZ (TC) | HVOF APS | Floating tile surface of the combustion chamber flame tube of aero-engines/nickel-based alloy K417 | Heating (furnace, 1150 °C)–cooling (water, 20 °C) cycles | [32] |
YSZ (TC) MgZrO3 (TC) | - Spray atomization model | In-cylinder combustion simulation/steel | Gasoline; diesel/in-cylinder flow process simulation using Kiva3v software | [34] |
NiCoCrAlY (BC) GCSZ 2 (TC) | HVOF SPS | Sample plates/ductile iron QT450–10 | Heating (furnace, 1000 °C)–cooling (water, 20 °C) cycles | [35] |
Ni-Fe-Al (BC1) Al2O3-Ni-Al (BC2) 8YSZ (50%wt) + Al2O3 (50%wt) (TC) | APS APS APS | Sample plates/ductile iron QT450–10 | Heating (furnace, 1000 °C)–cooling (air, 20 °C) cycles | [36] |
La2Zr2O7 (TC) | - | Different coating areas of the combustion chamber of diesel engines | Diesel fuel/KIVA-3V CFD software package default model simulations | [37,38] |
MgZrO3 (TC) | APS | Top surface and combustion chamber of the piston/aluminum alloy | Gasoline fuel/single-cylinder CI engine operation | [39] |
NiCrAl (BC) YBZ 3 (TC) YPSZ 3 (TC) YSZ 3 (TC) MSZ 3 (TC) LC 3 (TC) | - | Piston surface/Al-Si alloy | Numerical analysis of the steady-state thermo-mechanical behavior of a diesel engine piston | [40] |
NiCrAlY (BC) 8YSZ (TC2) YPSZ (TC1) Mullite (TC1) MgZrO3 (TC1) La2Ce2O7 (TC1) La2Zr2O7 (TC1) | - | Piston surface/Al-Si alloy | Finite element numerical simulation study of thermal insulation capabilities of double-layer ceramic multi-layer thermal barrier | [41] |
YSZ (TC) Cordierite–YSZ (TC) | Piston surface/4140-grade steel | Unsteady heat flux model/fracture-based thermo-mechanics model simulations for reciprocating internal combustion engine | [42] | |
NiCrAlY (BC) Mullite (TC) | HVOF APS | Mild steel plates | Hot corrosion test at 700 °C (40 wt% Na2SO4 + 60 wt% V2O5 salt paste) for 300 h | [43] |
GZO 4 (TC) | APS | Piston surface/aluminum alloy | Gasoline fuel/single-cylinder research engine operation | [44] |
NiCr (BC) 40% Al2O3 + 30% TiO + 30% Mo (TC) | Electroplating APS | The inner surface of the head of the cylinder and the piston crown of a diesel engine/aluminum alloy | Punnai oil–diesel mixtures/diesel engine operation | [45] |
MetcoAmdry997 (BC) CYSZ 5 (interlayer) La2Zr2O7 (TC) La1.4Yb0.6Zr2O7 (TC) La1.4Dy0.6Zr2O7 (TC) La1.4Nd0.6Zr2O7(TC) | HVOF APS APS APS APS APS | Surfaces of combustion chamber parts (cylinder head, piston and valve) | Single-cylinder, air-cooled, four-stroke and direct-injection diesel engine operation | [46] |
Amdry365-4 (BC 1,2) AMDRY386 (BC 3) APSPoly/YSZ 6 (TC) APSPoly/GZO 6 (TC) SPS GZO 6 (TC) | APS HVAF APS APS SPS | Sample plates/low-carbon steel; Hastelloy-X | Thermal Swing Test for thermal properties (short exposure to a flame produced with an HVAF torch) evaluated via Laser Flash Analysis (LFA) | [47] |
NiCrAl (BC) MgZrO3 (TC) | APS APS | Diesel engine piston crown/aluminum alloy (silica, copper, chromium, magnesium, etc.) | ANSYS thermal stress analyses/MWM TBRHS 518-V16 direct-injection diesel engine simulation | [48] |
NiCrAl (BC) Mg-PSZ (TC) YPSZ (TC) | APS APS APS | Piston top surface/AlSi | Temperature gradient simulation on the piston surface near the crevice volume of the spark ignition engine using the finite element method (FEM) | [49] |
NiCrAlY (BC) 8YSZ (TC) | APS APS | Sample plates/A356.0-T7 (7.03% Si, 0.35% Mg, 0.26% Fe, 0.17% Cu, 0.01% Mn, 0.01% Ti and bal. Al) | Flame heating (325 °C, 525 °C and 580 °C) + quenching (40 °C, water) and FE (ABAQUS) simulation of stress distribution under various thermo-mechanical loadings | [50] |
NiCrAl (BC) La2Ce2O7 (TC) | APS APS | Piston surface/aluminum alloy | Steady-state thermal analysis using ANSYS R15.0/MWM TBRHS 518-V16 direct-injection diesel engine model | [51] |
No. | Material Type/State | Encoding |
---|---|---|
1. | Set 1/initial state | P1i |
2. | Set 1/worn | P1u |
3. | Set 2/initial state | P2i |
4. | Set 2/worn | P2u |
5. | Set 3/initial state | P3i |
6. | Set 3/worn | P3u |
7. | Valve base material/initial state | Ri |
8. | Valve base material/worn | Ru |
No. | Sample | Eoc (mV) | Ecorr (mV) | icorr (µA/cm2) | |βc| (mV/Decade) | βa (mV/Decade) | Rp (kΩ × cm2) | P (%) | Pe (%) |
---|---|---|---|---|---|---|---|---|---|
1. | P1i | −515 | −487 | 8.751 | 485.15 | 285.36 | 8.927 | 1.99 | 99.20 |
2. | P1u | −549 | −540 | 21.47 | 544.76 | 477.68 | 5.154 | - | - |
3. | P2i | −463 | −442 | 13.536 | 348.25 | 183.66 | 3.862 | 4.41 | 98.77 |
4. | P2u | −564 | −547 | 37.36 | 920.77 | 295.03 | 2.6 | - | - |
5. | P3i | −555 | −554 | 114.582 | 641.83 | 337.38 | 0.839 | 22.66 | 89.60 |
6. | P3u | −448 | −511 | 2.717 | 668.19 | 305.58 | 33.554 | - | - |
7. | Ri | −580 | −580 | 1102 | 955.59 | 1030 | 0.195 | - | - |
8. | Ru | −568 | −569 | 481.594 | 748.31 | 608.55 | 0.303 | - | - |
Samples | Chemical Elements (wt%) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | O | Na | Mg | Zn | Al | Si | P | S | Ca | Cr | Mn | Ni | |
P1i-1 | 19.07 | 1.44 | 1.87 | 1.35 | 1.83 | 50.86 | 23.58 | ||||||
P1i-2 | 19.37 | 2.92 | 5.24 | 0.79 | 1.52 | 25.64 | 44.53 | ||||||
P1i-3 | 21.11 | 0.95 | 1.43 | 1.14 | 1.32 | 41.9 | 32.16 | ||||||
P1u-1 | 56.83 | 21.97 | 0.78 | 0.19 | 1.88 | 1.75 | 2 | 0.97 | 2.15 | 3.14 | 5.76 | 0.28 | 2.31 |
P1u-2 | 61.32 | 16.43 | 1.2 | 0.35 | 4.01 | 0.89 | 1.37 | 2.49 | 3.19 | 5.34 | 1.52 | 0.55 | 1.35 |
P1u-3 | 63.2 | 25.86 | 0.48 | 0.08 | 0.85 | 0.86 | 2.01 | 0.59 | 1.89 | 1.91 | 1.23 | 0.31 | 0.74 |
Samples | Chemical Elements (wt%) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | O | Na | Mg | Zn | Al | Si | Zr | S | Ca | Cr | Ni | Fe | |
P2i-1 | 24.62 | 0.34 | 1.42 | 0.48 | 0.48 | 1.8 | 4.28 | 0.36 | 0.33 | 32.95 | 33.43 | ||
P2i-2 | 23.42 | 0.42 | 0.42 | 0.33 | 0.33 | 0.4 | 1.25 | 0.32 | 0.35 | 44.45 | 28.63 | ||
P2i-3 | 24.36 | 0.17 | 0.38 | 0.3 | 0.3 | 0.74 | 1.34 | 0.26 | 0.46 | 32.21 | 39.78 | ||
P2u-1 | 52.39 | 19.65 | 1.48 | 0.46 | 1.89 | 1.09 | 2.76 | 4.35 | 1.62 | 1.61 | 3.26 | 5.00 | 4.42 |
Samples | Chemical Elements (wt%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | O | Na | Mg | Zn | Al | Zr | Cl | Ca | Ti | Ni | Fe | |
P3i-1 | 27.71 | 4.68 | 59.33 | 2.66 | 0.68 | 3.60 | 1.34 | |||||
P3i-2 | 31.78 | 24.21 | 21.40 | 16.13 | 0.95 | 0.47 | 3.77 | 1.29 | ||||
P3u-1 | 51.95 | 21.72 | 1.75 | 0.25 | 3.85 | 0.91 | 7.45 | 0.11 | 4.17 | 0.58 | 7.26 |
Samples | Chemical Elements (wt%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
C | O | Zn | Al | Si | P | S | Cr | Fe | Cu | |
Ri | 5.85 | 0.47 | 0.34 | 0.38 | 33.2 | 56.99 | 0.65 | |||
Ru | 23.22 | 20.39 | 0.21 | 0.22 | 6.79 | 1.38 | 0.59 | 19.31 | 27.24 | 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chicet, D.L.; Juhasz, J.; Cotruț, C.M.; Istrate, B.; Munteanu, C. Assessment of the Corrosion Resistance of Thermal Barrier Coatings on Internal Combustion Engine Components. Materials 2025, 18, 1227. https://doi.org/10.3390/ma18061227
Chicet DL, Juhasz J, Cotruț CM, Istrate B, Munteanu C. Assessment of the Corrosion Resistance of Thermal Barrier Coatings on Internal Combustion Engine Components. Materials. 2025; 18(6):1227. https://doi.org/10.3390/ma18061227
Chicago/Turabian StyleChicet, Daniela Lucia, Jozsef Juhasz, Cosmin Mihai Cotruț, Bogdan Istrate, and Corneliu Munteanu. 2025. "Assessment of the Corrosion Resistance of Thermal Barrier Coatings on Internal Combustion Engine Components" Materials 18, no. 6: 1227. https://doi.org/10.3390/ma18061227
APA StyleChicet, D. L., Juhasz, J., Cotruț, C. M., Istrate, B., & Munteanu, C. (2025). Assessment of the Corrosion Resistance of Thermal Barrier Coatings on Internal Combustion Engine Components. Materials, 18(6), 1227. https://doi.org/10.3390/ma18061227