Ampoule Synthesis of Na-Doped Complex Bromide Cs2AgBiBr6 with Double Perovskite Structure
Abstract
:1. Introduction
2. Experimental Section
2.1. Synthesis Technique
2.2. Analysis Methods
3. Results and Discussion
3.1. Samples of General Composition Cs2NaBiBr6
3.2. Samples of General Composition Cs2Ag1−xNaxBiBr6
3.3. Samples of General Composition Cs2−2xNaxAgBiBr6
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, H.; Cai, T.; Dube, L.; Chen, O. Synthesis of double perovskite and quadruple perovskite nanocrystals through post-synthetic transformation reactions. Chem. Sci. 2022, 13, 4874–4883. [Google Scholar] [CrossRef] [PubMed]
- Ji, F.; Boschloo, G.; Wang, F.; Gao, F. Challenges and Progress in Lead-Free Halide Double Perovskite Solar Cells. Solar RRL 2023, 7, 2201112. [Google Scholar] [CrossRef]
- Ghosh, S.; Shankar, H.; Kar, P. Recent developments of lead-free halide double perovskites: A new superstar in the optoelectronic field. Mater. Adv. 2022, 3, 3742–3765. [Google Scholar] [CrossRef]
- Obada, D.O.; Akinpelu, S.B.; Abolade, S.A.; Okafor, E.; Ukpong, A.M.; Kumar, S.R.; Akande, A. Lead-Free Double Perovskites: A Review of the Structural, Optoelectronic, Mechanical, and Thermoelectric Properties Derived from First-Principles Calculations, and Materials Design Applicable for Pedagogical Purposes. Crystals 2024, 14, 86. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Sun, Q.; Wang, H.; Liu, F. Lead-Free Halide Perovskite Cs2AgBiBr6/Bismuthene Composites for Improved CH4 Production in Photocatalytic CO2 Reduction. ACS Appl. Energy Mater. 2022, 5, 12856–12864. [Google Scholar]
- Lei, H.W.; Hardy, D.; Gao, F. Lead-Free Double Perovskite Cs2AgBiBr6: Fundamentals, Applications, and Perspectives. Adv. Funct. Mater. 2021, 31, 2105898. [Google Scholar] [CrossRef]
- Yan, J.; Li, H.; Aldamasy, M.H.; Frasca, C.; Abate, A.; Zhao, K.; Hu, Y. Advances in the Synthesis of Halide Perovskite Single Crystals for Optoelectronic Applications. Chem. Mater. 2023, 35, 2683–2712. [Google Scholar] [CrossRef]
- Kamilov, R.K.; Yuldoshev, J.Z.; Knotko, A.V.; Grigorieva, A.V. Phase Equilibria in Ternary System CsBr-AgBr-InBr3. Materials 2023, 16, 559. [Google Scholar] [CrossRef]
- Kamilov, R.K.; Yuldoshev, J.Z.; Knotko, A.V.; Grigorieva, A.V. In Search of a Double Perovskite in the Phase Triangle of Bromides CsBr-CuBr-InBr3. Materials 2023, 16, 3744. [Google Scholar] [CrossRef]
- Lee, S.; Choi, Y.; Cho, J. Melt synthesis of halide perovskites: Structural control and applications. Cryst. Growth Des. 2023, 23, 1456–1464. [Google Scholar]
- Tan, Z.; Wei, J.; Liu, S. High-frequency heating for perovskite synthesis: A breakthrough in rapid production. Adv. Mater. Interfaces 2024, 11, 2201567. [Google Scholar]
- Smith, J.; Brown, T. Advances in Lead-Free Perovskite Materials. J. Mater. Chem. A 2021, 9, 13456–13472. [Google Scholar]
- Zhang, Z.; Sun, Q.; Lu, Y.; Lu, F.; Mu, X.; Wei, S.-H.; Sui, M. Hydrogenated Cs2AgBiBr6 for significantly improved efficiency of lead-free inorganic double perovskite solar cell. Nat. Commun. 2022, 13, 3397. [Google Scholar] [CrossRef] [PubMed]
- Ji, F.; Huang, Y.; Wang, F.; Kobera, F.L.; Xie, F.; Klarbring, J.; Abbrent, S.; Brus, J.; Yin, C.; Simak, S.I. Near-Infrared Light-Responsive Cu-Doped Cs2AgBiBr6. Adv. Funct. Mater. 2020, 30, 2005521. [Google Scholar] [CrossRef]
- Li, Z.; Kavanagh, S.R.; Napari, M.; Palgrave, R.G.; Abdi-Jalebi, M.; Andaji-Garmaroudi, Z.; Davies, D.W.; Laitinen, M.; Julin, J.; Isaacs, M.A.; et al. Bandgap lowering in mixed alloys of Cs2Ag(SbxBi1−x)Br6 double perovskite thin films. J. Mater. Chem. A 2020, 8, 21780–21788. [Google Scholar] [CrossRef]
- Greul, E.; Petrus, M.L.; Binek, A.; Docampo, P.; Bein, T. Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applications. J. Mater. Chem. A 2017, 5, 19972–19981. [Google Scholar] [CrossRef]
- Dakshinamurthy, A.C.; Sudakar, C. Photoinduced degradation of thermally stable Cs2AgBiBr6 double perovskites by micro-Raman studies. Mater. Adv. 2022, 3, 5813–5817. [Google Scholar] [CrossRef]
- Babaei, M. Investigation of the properties of lead-free Cs2NaBiX6 (X = I and Br) double perovskites using density functional theory (DFT). Opt. Quantum Electron. 2024, 56, 1449. [Google Scholar] [CrossRef]
- Pistor, P.; Meyns, M.; Guc, M.; Wang, H.-C.; Marques, M.A.-L.; Alcobé, X.; Cabot, A.; Izquierdo-Roca, V. Advanced Raman spectroscopy of Cs2AgBiBr6 double perovskites and identification of Cs3Bi2Br9 secondary phases. Scr. Mater. 2020, 184, 24–29. [Google Scholar] [CrossRef]
- Li, Z.; Sun, Y.; Zhao, H. Enhanced optical properties of lead-free double perovskite Cs2AgBiBr6 nanocrystals by doping of Na ions. Solid State Commun. 2023, 373–374, 115288. [Google Scholar] [CrossRef]
- Wu, Y.; Meng, Y.; Hu, Q.; Shen, S.; Zhang, C.; Bian, A.; Dai, J. A-Site Ion Doping in Cs2AgBiBr6 Double Perovskite Films for Improved Optical and Photodetector Performance. Crystals 2024, 14, 1068. [Google Scholar] [CrossRef]
- Zhong, J.; Liu, Y.; Li, W.; Zhao, C.; Mai, W. Reducing current fluctuation of Cs3Bi2Br9 perovskite photodetectors for diffuse reflection imaging with wide dynamic range. Sci. Bull. 2020, 65, 1371–1379. [Google Scholar]
- Elattar, A.; Kobera, L.; Kangsabanik, J.; Suzuki, H.; Abbrent, S.; Nishikawa, T.; Thygesen, K.S.; Brus, J.; Hayashi, Y. Structure modulation for bandgap engineered vacancy-ordered Cs3Bi2Br9 perovskite structures through copper alloying. J. Mater. Chem. C 2022, 10, 12863–12872. [Google Scholar] [CrossRef]
- Aragon, A.G.; Wiggins, T.E.; Ma, X.; Geyer, S.M. Lead-free Cs3Bi2Br9 and Cs3Bi2−xSbxBr9 nanocrystals as photocatalysts with enhanced activity for the degradation of rhodamine in aqueous environments. J. Photochem. Photobiol. A Chem. 2023, 436, 114391. [Google Scholar] [CrossRef]
- Messaoudi, I.S.; Zaoui, A.; Ferhat, M. Band-gap and phonon distribution in alkali halides. Phys. Status Solidi B 2014, 252, 490–495. [Google Scholar] [CrossRef]
- Mitzi, D.B. (Ed.) Lead-Free Halide Perovskites: Properties and Applications; Springer: Berlin/Heidelberg, Germany, 2020; 310p. [Google Scholar]
- Gao, M.; Zhang, C.; Lian, L.; Guo, J.; Xia, Y.; Pan, F.; Su, X.; Zhang, J.; Li, H.; Zhang, D. Controlled synthesis and photostability of blue emitting Cs3Bi2Br9 perovskite nanocrystals by employing weak polar solvents at room temperature. J. Mater. Chem. C 2019, 7, 3688–3695. [Google Scholar] [CrossRef]
- Deng, F.; Zhang, J.; Wu, S.; Liu, C.; Xing, F.; Xu, J.; Di, Y.; Yu, L.; Dong, L.; Gan, Z. Growth and Optical Properties of Lead-Free Cs3Bi2Br9 Perovskite Microplatelets. Phys. Status Solidi B 2022, 259, 2100593. [Google Scholar] [CrossRef]
- Saparov, B.; Hong, F.; Meng, W.; Wang, J.; Mitzi, D.B.; Yan, Y. Cs2NaBiBr6: Optical and electronic properties of a lead-free double perovskite. J. Mater. Chem. C 2017, 5, 4452–4458. [Google Scholar]
- Becker, T.; Stolarczyk, J.K. (Eds.) Halide Perovskites: Photovoltaics, Light Emission, and Beyond; Wiley: Hoboken, NJ, USA, 2021; 450p. [Google Scholar]
- Schade, L.; Wright, A.D.; Johnson, R.D.; Dollmann, M.; Wenger, B.; Nayak, P.K.; Prabhakaran, D.; Herz, L.M.; Nicholas, R.; Snaith, H.J.; et al. Structural and Optical Properties of Cs2AgBiBr6 Double Perovskite. ACS Energy Lett. 2019, 4, 299–305. [Google Scholar] [CrossRef]
- Wang, C.; Ding, Y.; Liu, B.; Roeffaers, M.B.J. Crystal structure engineering of metal halide perovskites for photocatalytic organic synthesis. Chem. Commun. 2023, 59, 3122–3125. [Google Scholar] [CrossRef]
- Tang, Y.; Liang, M.; Chang, B.; Sun, H.; Zheng, K.; Pullerits, T.; Chi, Q. Lead-free double halide perovskite Cs3BiBr6 with well-defined crystal structure and high thermal stability for optoelectronics. J. Mater. Chem. C 2019, 7, 3369–3374. [Google Scholar] [CrossRef]
- Cao, F.; Li, Z.; Liu, X.; Shi, Z.; Fang, X. Air Induced Formation of Cs3Bi2Br9/Cs3BiBr6 Bulk Heterojunction and Its Dual-band Photodetection Abilities for Light Communication. Adv. Funct. Mater. 2022, 32, 2206151. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nosirova, N.K.; Kamilov, R.K.; Ibrohimov, M.M.; Lepnev, L.S.; Astafurov, M.O.; Knotko, A.V.; Grigorieva, A.V. Ampoule Synthesis of Na-Doped Complex Bromide Cs2AgBiBr6 with Double Perovskite Structure. Materials 2025, 18, 1197. https://doi.org/10.3390/ma18061197
Nosirova NK, Kamilov RK, Ibrohimov MM, Lepnev LS, Astafurov MO, Knotko AV, Grigorieva AV. Ampoule Synthesis of Na-Doped Complex Bromide Cs2AgBiBr6 with Double Perovskite Structure. Materials. 2025; 18(6):1197. https://doi.org/10.3390/ma18061197
Chicago/Turabian StyleNosirova, Nigina K., Rustam K. Kamilov, Maqsudjon M. Ibrohimov, Leonid S. Lepnev, Mikhail O. Astafurov, Alexander V. Knotko, and Anastasia V. Grigorieva. 2025. "Ampoule Synthesis of Na-Doped Complex Bromide Cs2AgBiBr6 with Double Perovskite Structure" Materials 18, no. 6: 1197. https://doi.org/10.3390/ma18061197
APA StyleNosirova, N. K., Kamilov, R. K., Ibrohimov, M. M., Lepnev, L. S., Astafurov, M. O., Knotko, A. V., & Grigorieva, A. V. (2025). Ampoule Synthesis of Na-Doped Complex Bromide Cs2AgBiBr6 with Double Perovskite Structure. Materials, 18(6), 1197. https://doi.org/10.3390/ma18061197