Incipient Plasticity of Si and GaAs: Review and Perspectives
Abstract
1. Introduction
2. Nanoindentation
2.1. Elements of the Contact Theory
2.2. Indentation of the Anisotropic Medium
2.3. Singularities on the Curve
3. Silicon and Gallium Arsenide
3.1. Structure and Phase Transformations In Silicon
3.2. Structure and Phase Transformations in Gallium Arsenide
4. Nanoindentation of Silicon and Gallium Arsenide
4.1. The Lorentz–Leipner Criterion
4.2. Silicon
4.3. Gallium Arsenide
4.4. Molecular Dynamics Simulations
5. Conclusions and Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schuh, C.A. Nanoindentation studies of materials. Mater. Today 2006, 9, 32–39. [Google Scholar] [CrossRef]
- Ruffell, S.; Bradby, J.E.; Fujisawa, N.; Williams, J.S. Identification of nanoindentation-induced phase changes in silicon by in situ electrical characterization. J. Appl. Phys. 2007, 101, 083531. [Google Scholar] [CrossRef]
- Tymiak, N.; Chrobak, D.; Gerberich, W.; Warren, O.; Nowak, R. Role of competition between slip and twinning in nanoscale deformation of sapphire. Phys. Rev. B 2009, 79, 174116. [Google Scholar] [CrossRef]
- Gerbig, Y.B.; Michaels, C.A.; Forster, A.M.; Cook, R.F. In situ observation of the indentation-induced phase transformation of silicon thin films. Phys. Rev. B 2012, 85, 104102. [Google Scholar] [CrossRef]
- Szlufarska, I. Atomistic simulations of nanoindentation. Mater. Today 2006, 9, 42–50. [Google Scholar] [CrossRef]
- Matsui, M. High temperature and high pressure equation of state of gold. J. Phys. Conf. Ser. 2010, 215, 012197. [Google Scholar] [CrossRef]
- Akahama, Y.; Nishimura, M.; Kinoshita, K.; Kawamura, H. Evidence of a fcc-hcp transition in aluminum at multimegabar pressure. Phys. Rev. Lett. 2006, 96, 045505. [Google Scholar] [CrossRef]
- Craighead, H.G. Nanoelectromechanical Systems. Science 2000, 290, 1532. [Google Scholar] [CrossRef]
- Wolf, E.L. Nanophysics and Nanotechnology: An Introduction to Modern Concepts in Nanoscience; WILEY-VCH Verlag GmbH & Co., KGaA: Weinheim, Germany, 2006. [Google Scholar]
- Sharma, H.K.; Sharma, R.K.; Saxena, R.S.; Prasad, R. A review of nanoindentation and related cathodoluminescence studies on semiconductor materials. J. Mater. Sci. Mater. Electron. 2022, 33, 21223–21245. [Google Scholar] [CrossRef]
- Johnson, K.L. Contact Mechanics; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar]
- Fung, Y.C. Foundation of Solid Mechanics; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1965. [Google Scholar]
- Popov, V.L.; Heß, M.; Willert, E. Handbook of Contact Mechanics: Exact Solutions of Axisymmetric Contact Problems; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Matter. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Pharr, G.M.; Oliver, W.C.; Brotzen, F.R. On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J. Matter. Res. 1992, 7, 613–617. [Google Scholar] [CrossRef]
- Sneddon, I.N. Boussinesq‘s problem for a rigid cone. Math. Proc. Camb. Philos. Soc. 1948, 44, 492–507. [Google Scholar] [CrossRef]
- King, R.B. Elastic analysis of some punch problems for a layered medium. Int. J. Solids Struct. 1987, 23, 1657–1664. [Google Scholar] [CrossRef]
- Jurkiewicz, K.; Pawlyta, M.; Zygadło, D.; Chrobak, D.; Duber, S.; Wrzalik, R.; Ratuszna, A.; Burian, A. Evolution of glassy carbon under heat treatment: Correlation structure–mechanical properties. J. Mater. Sci. 2018, 53, 3509–3523. [Google Scholar] [CrossRef]
- Acosta-Silva, Y.J.; Toledano-Ayala, M.; Gallardo-Hernández, S.; Godínez, L.A.; Méndez-López, A. Investigation of TiO2 deposit on SiO2 films: Synthesis, characterization, and efficiency for the photocatalytic discoloration of methylene blue in aqueous solution. Nanomaterials 2023, 13, 1403. [Google Scholar] [CrossRef]
- Wu, P.; Liu, R.; Li, W.; Zhang, W.; Wei, J.; Zhou, Q.; Wei, T.; Kardani, A.; Lin, Z.; Xiao, Y.; et al. Interface optimization by introducing Ti for strengthening graphene network/copper composites: New insight from MD simulations. Carbon 2025, 236, 120109. [Google Scholar] [CrossRef]
- Vlassak, J.J.; Nix, W.D. Indentation modulus of elastically anisotropic half spaces. Philos. Mag. A 1993, 67, 1045–1056. [Google Scholar] [CrossRef]
- Willis, J.R. Boussinesq problems for an anisotropic half-space. J. Mech. Phys. Solids 1967, 15, 331–339. [Google Scholar] [CrossRef]
- Gerbig, Y.B.; Stranick, S.J.; Morris, D.J.; Vaudin, M.D.; Cook, R.F. Effect of crystallographic orientation on phase transformations during indentation of silicon. J. Mater. Res. 2009, 24, 1172–1183. [Google Scholar] [CrossRef]
- Tian, Z.; Xue, W.; Lou, W.; Liu, M.; Feng, H.; Wang, X.; Li, S.; Wu, S. Study on anisotropic mechanical properties of single-crystal silicon at different strain rates. Micromachines 2025, 16, 744. [Google Scholar] [CrossRef]
- Zhang, H.; Jin, M.; Shen, H.; Xu, J. Influence of si doping on dislocations and mechanical properties of GaAs crystals grown by modified vertical Bridgman method. Cryst. Res. Technol. 2022, 57, 2100247. [Google Scholar] [CrossRef]
- Ohmura, T.; Wakeda, M. Fundamental Plasticity Probed by Nanoindentation Technique. Materials 2021, 14, 1879. [Google Scholar] [CrossRef] [PubMed]
- McCann, M. Nanoindentation of Gold Single Crystals. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2004. Available online: http://hdl.handle.net/10919/27170 (accessed on 24 July 2025).
- Bourret, E.D.; Tabache, M.G.; Beeman, J.W.; Elliot, A.G.; Scott, M. Silicon and indium doping of GaAs: Measurements of doping on mechanical behaviour and relation with dislocation formation. J. Cryst. Growth 1987, 85, 275–281. [Google Scholar] [CrossRef]
- Hirth, J.P.; Lothe, J. Theory of Dislocations; McGraw-Hill, Inc.: New York, NY, USA, 1968. [Google Scholar]
- Takagi, S.; Masumura, T.; Tsuchiyama, T. Elastic constants in ideal poly crystalline metals. Zair. Soc. Mater. Sci. Jpn. 2020, 69, 657–660. [Google Scholar] [CrossRef]
- Corcoran, S.G.; Colton, R.J.; Lilleodden, E.T.; Gerberich, W.W. Anomalous plastic deformation at surfaces: Nanoindentation of gold single crystals. Phys. Rev. B 1997, 55, R16057–R16060. [Google Scholar] [CrossRef]
- Tymiak, N.; Chrobak, D.; Nagao, S.; Nordlund, K.; Räisänen, J.; Gerberich, W.; Nowak, R. Comment on “Nanoindentation hardness anisotropy of alumina crystal: A molecular dynamics study”. Appl. Phys. Lett. 2009, 94, 146101. [Google Scholar] [CrossRef]
- Shimomura, O.; Minomura, S.; Sakai, N.; Asaumi, K.; Tamura, K.; Fukushima, J.; Endo, H. Pressure-induced semiconductor-metal transitions in amorphous Si and Ge. Philos. Mag. 1974, 29, 547–558. [Google Scholar] [CrossRef]
- Gerk, A.P.; Tabor, D. Indentation hardness and semiconductor–metal transition of germanium and silicon. Nature 1978, 271, 732–733. [Google Scholar] [CrossRef]
- Yonenaga, I. Atomic structures and dynamic properties of dislocations in semiconductors: Current progress and stagnation. Semicond. Sci. Technol. 2020, 35, 043001. [Google Scholar] [CrossRef]
- Nelmes, R.J.; McMahon, M.I. Structural transitionsin the group IV, III-V, and II-VI semiconductors under pressure. Semicond. Semimet. 1998, 54, 145–246. [Google Scholar] [CrossRef]
- Institute, I.P.T. Available online: http://www.ioffe.ru/SVA/NSM/Semicond/ (accessed on 24 July 2025).
- Hu, J.Z.; Merkle, L.D.; Menoni, C.S.; Spain, I.L. Crystal data for high-pressure phases of silicon. Phys. Rev. B 1986, 34, 4679–4684. [Google Scholar] [CrossRef]
- McMahon, M.J.; Nelmes, R.J.; Wright, N.G.; Allan, D.R. Pressure dependence of the Imma Phase Silicon. Phys. Rev. B 1994, 50, 739–743. [Google Scholar] [CrossRef] [PubMed]
- Durandurdu, M. Diamond to β-Sn phase transition of silicon under hydrostatic and nonhydrostatic compressions. J. Phys. Condens. Matter 2008, 20, 325232. [Google Scholar] [CrossRef]
- Mujica, A.; Rubio, A.; Munoz, A.; Needs, R.J. High-pressure phases of group-IV, III-V, and II-VI compounds. Rev. Mod. Phys. 2003, 75, 863–912. [Google Scholar] [CrossRef]
- Butler, S.L.; Partridge, J.F.; Huang, X.; Suarez-Martinez, I.; Marks, N.A.; Bradby, J.E.; McCulloch, D.G. Origin of preferred orientation in an isotropic material: High pressure synthesis of bc8-Si. Appl. Phys. Lett. 2023, 123, 231903. [Google Scholar] [CrossRef]
- Crain, J.; Ackland, G.J.; Maclean, J.R.; Piltz, R.O.; Hatton, P.D.; Pawley, G.S. Reversible pressure-induced structural transitions between metastable phases of silicon. Phys. Rev. B 1994, 50, 13043–13046. [Google Scholar] [CrossRef]
- Piltz, R.O.; Maclean, J.R.; Clark, S.J.; Ackland, G.J.; Hatton, P.D.; Crain, J. Structure and properties of silicon XII: A complex tetrahedrally bonded phase. Phys. Rev. B 1995, 52, 4072–4085. [Google Scholar] [CrossRef]
- Fan, L.; Yang, D.; Li, D.A. Review on Metastable Silicon. Materials 2021, 14, 3964. [Google Scholar] [CrossRef]
- Zhang, S.B.; Cohen, M.L. Theory of the structure of high-pressure GaAs II. Phys. Rev. B 1989, 39, 1450–1452. [Google Scholar] [CrossRef]
- Weir, S.T.; Vohra, Y.K.; Vanderborgh, C.A.; Ruoff, A.L. Structural phase transitions in GaAs to 108 GPa. Phys. Rev. B 1989, 39, 1280–1285. [Google Scholar] [CrossRef]
- Chrobak, D.; Räisänen, J.; Nowak, R. Effect of silicon on the elastic–plastic transition of GaAs crystal. Scr. Mater. 2015, 102, 31–34. [Google Scholar] [CrossRef]
- Gupta, D.C.; Kulshrestha, S. Pressure-induced phase transitions and electronic structure of GaAs. J. Phys. Condens. Matter 2008, 20, 255204. [Google Scholar] [CrossRef]
- Besson, J.M.; Itie, J.P.; Polian, A.; Weill, G.; Mansot, J.L.; Gonzalez, J. High-pressure phase transition and phase diagram of gallium arsenide. Phys. Rev. B 1991, 44, 4214–4234. [Google Scholar] [CrossRef]
- Vohra, Y.K.; Xia, H.; Ruoff, A.L. Optical reflectivity and amorphization of GaAs during decompression from megabar pressures. Appl. Phys. Lett. 1990, 57, 2666–2668. [Google Scholar] [CrossRef]
- Zhang, X.; Dai, L.; Hu, H.; Hong, M. Pressure-induced metallic phase transition in gallium arsenide up to 24.3 GPa under hydrostatic conditions. Mod. Phys. Lett. B 2021, 35, 2150460. [Google Scholar] [CrossRef]
- Leipner, H.S.; Lorenz, D.; Zeckzer, A.; Grau, P. Nanoindentation pop-in effect in semiconductors. Phys. B 2001, 308–310, 446–449. [Google Scholar] [CrossRef]
- Lorenz, D.; Zeckzer, A.; Hilpert, U.; Grau, P.; Johansen, H.; Leipner, H.S. Pop-in effect as homogeneous nucleation of dislocations during nanoindentation. Phys. Rev. B 2003, 67, 172101. [Google Scholar] [CrossRef]
- Domnich, V.; Gogotsi, Y.; Dub, S. Effect of phase transformations on the shape of the unloading curve in the nanoindentation of silicon. Appl. Phys. Lett. 2000, 19, 2214–2216. [Google Scholar] [CrossRef]
- Juliano, T.; Domnich, V.; Gogotsi, Y. Examining pressure-induced phase transformations in silicon by spherical indentation and Raman spectroscopy: A statistical study. J. Mater. Res. 2004, 76, 3099–3108. [Google Scholar] [CrossRef]
- Bradby, J.E.; Williams, J.S.; Wong-Leung, J.; Swain, M.V.; Munroe, P. Transmission electron microscopy observation of deformation microstructure under spherical indentation in silicon. Appl. Phys. Lett. 2000, 77, 3749–3751. [Google Scholar] [CrossRef]
- Bradby, J.E.; Williams, J.S.; Wong-Leung, J.; Swain, M.V.; Munroe, P. Mechanical deformation in silicon by micro-indentation. J. Mater. Res. 2001, 16, 1500–1507. [Google Scholar] [CrossRef]
- Ruffell, S.; Bradby, J.E.; Williams, J.S. High pressure crystalline phase formation during nanoindentation: Amorphous versus crystalline silicon. Appl. Phys. Lett. 2006, 89, 091919. [Google Scholar] [CrossRef]
- Fujikane, M.; Leszczynski, M.; Nagao, S.; Nakayama, T.; Yamanaka, S.; Niihara, K.; Nowak, R. Elastic-plastic transition during nanoindentation in bulk GaN crystal. J. Alloys Compd. 2008, 450, 405–411. [Google Scholar] [CrossRef]
- Halsall, M.P.; Harmer, P.; Parbrook, P.J.; Henley, S.J. Raman scattering and absorption study of the high-pressure wurtzite to rocksalt phase transition of GaN. Phys. Rev. B 2004, 69, 235207. [Google Scholar] [CrossRef]
- Kim, D.E.; Oh, S.I. Deformation pathway to high-pressure phases of silicon during nanoindentation. J. Appl. Phys. 2008, 104, 013502. [Google Scholar] [CrossRef]
- Bradby, J.E.; Williams, J.S.; Swain, M.V. In situ electrical characterization of phase transformations in Si during indentation. Phys. Rev. B 2003, 67, 085205. [Google Scholar] [CrossRef]
- Gerbig, Y.B.; Stranick, S.J.; Cook, R.F. Direct observation of phase transformation anisotropy in indented silicon studied by confocal Raman spectroscopy. Phys. Rev. B 2011, 83, 205209. [Google Scholar] [CrossRef]
- Gerbig, Y.B.; Michaels, C.A.; Bradby, J.E.; Haberl, B.; Cook, R.F. In situ spectroscopic study of the plastic deformation of amorphous silicon under nonhydrostatic conditions induced by indentation. Phys. Rev. B 2015, 92, 214110. [Google Scholar] [CrossRef]
- Gerbig, Y.B.; Michaels, C.A.; Cook, R.F. In situ observations of Berkovich indentation induced phase transitions in crystalline silicon films. Scr. Mater. 2016, 120, 19–22. [Google Scholar] [CrossRef]
- Boyer, L.L.; Kaxiras, E.; Feldman, J.L.; Broughton, J.Q.; Mehl, M.J. New low-energy crystal structure for silicon. Phys. Rev. Lett. 1991, 67, 715–718. [Google Scholar] [CrossRef]
- Wang, S.; Li, X.; Yue, S.; Zhang, M.; Zhu, B.; Zhao, P.; Zhou, M.; Zhao, H. Continuous phase transformation in monocrystalline silicon during indentation. Appl. Surf. Sci. 2025, 713, 164165. [Google Scholar] [CrossRef]
- Bradby, J.E.; Williams, J.S.; Wong-Leung, J.; Swain, M.V.; Munroe, P. Mechanical deformation of InP and GaAs by spherical indentation. Appl. Phys. Lett. 2001, 78, 3235–3237. [Google Scholar] [CrossRef]
- Bradby, J.E.; Williams, J.S.; Swain, M.V. Pop-in events induced by spherical indentation in compound semiconductors. J. Mater. Res. 2004, 19, 380–386. [Google Scholar] [CrossRef]
- Bourhis, E.L.; Patriarche, G.; Largeau, L.; Riviere, J.P. Polarity-induced changes in the nanoindentation response of GaAs. J. Mater. Res. 2004, 19, 131–136. [Google Scholar] [CrossRef]
- Bourhis, E.L.; Patriarche, G. Structure of nanoindentations in heavily n- and p-doped (001) GaAs. Acta Mater. 2008, 56, 1417–1426. [Google Scholar] [CrossRef]
- Giuliani, F.; Lloyd, S.J.; Vandeperre, L.J.; Cleeg, W.J. Deformation of GaAs under nanoindentation. In Proceedings of the EMAG’03, Oxford, UK, 3–5 September 2003; pp. 1–4. [Google Scholar]
- Largeau, L.; Patriarche, G.; Glas, F.; Bourhis, E.L. Absolute determination of the asymmetry of the in-plane deformation of GaAs (001). J. Appl. Phys. 2004, 95, 3984–3987. [Google Scholar] [CrossRef]
- Patriarche, G.; Bourhis, E.L.; Largeau, L.; Riviere, J.P. Polarity influence on the nanoindentation response of GaAs. Phys. Stat. Sol. (c) 2005, 2, 2004–2009. [Google Scholar] [CrossRef]
- Domnich, V.; Gogotsi, Y. Pressure-Induced Phase Transformations in Semiconductors Under Contact Loading; Hochheimer, H.D., Kuchta, B., Dorhout, P.K., Yarger, J.L., Eds.; Frontiers of High Pressure Research II: Application of High Pressure to Low Dimensional Novel Electronic Materials; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; pp. 291–302. [Google Scholar]
- Li, Z.C.; Liu, L.; Wu, X.; He, L.L.; Xu, Y.B. TEM observation of the phase transition in indented GaAs. Mater. Lett. 2002, 55, 200–204. [Google Scholar] [CrossRef]
- Li, Z.C.; Liu, L.; Wu, X.; He, L.L.; Xu, Y.B. Indentation induced amorphization in gallium arsenide. Mater. Sci. Eng. A 2002, 337, 21–24. [Google Scholar] [CrossRef]
- Ehrenreich, H.; Hirth, J.P. Mechanism for dislocation density reduction in GaAs crystals by indium addition. Appl. Phys. Lett. 1985, 46, 668–670. [Google Scholar] [CrossRef]
- Chrobak, D.; Nordlund, K.; Nowak, R. Nondislocation origin of GaAs nanoindentation pop-in event. Phys. Rev. Lett. 2007, 98, 045502. [Google Scholar] [CrossRef]
- Albe, K.; Nordlund, K.; Nord, J.; Kuronen, A. Modeling of compound semiconductors: Analytical bond-order potential for Ga, As, and GaAs. Phys. Rev. B 2002, 66, 035205. [Google Scholar] [CrossRef]
- Rino, J.P.; Chatterjee, A.; Ebbsjö, I.; Kalia, R.K.; Nakano, A.; Shimojo, F.; Vashishta, P. Pressure-induced structural transformation in GaAs: A molecular-dynamics study. Phys. Rev. B 2002, 65, 195206. [Google Scholar] [CrossRef]
- Nowak, R.; Chrobak, D.; Nagao, S.; Vodnick, D.; Berg, M.; Tukiainen, A.; Pessa, M. An electric current spike linked to nanoscale plasticity. Nat. Nanotechnol. 2009, 4, 287–291. [Google Scholar] [CrossRef]
- Chrobak, D.; Kim, K.H.; Kurzydłowski, K.J.; Nowak, R. Nanoindentation experiments with different loading rate distinguish the mechanism of incipient plasticity. Appl. Phys. Lett. 2013, 103, 072101. [Google Scholar] [CrossRef]
- Fujikane, M.; Yokogawa, T.; Nagao, S.; Nowak, R. Yield shear stress dependence onnanoindentation strain rate inbulk GaN crystal. Phys. Status Solidi C 2011, 8, 429–431. [Google Scholar] [CrossRef]
- Gao, X. Displacement burst and hydrogen effect during loading and holding in nanoindentation of an iron single crystal. Scr. Mater. 2005, 53, 1315–1320. [Google Scholar] [CrossRef]
- Chrobak, D.; Chrobak, A.; Nowak, R. Effect of doping on nanoindentation induced incipient plasticity in InP crystal. AIP Adv. 2019, 9, 125323. [Google Scholar] [CrossRef]
- Chrobak, D.; Trębala, M.; Chrobak, A.; Nowak, R. Origin of Nanoscale Incipient Plasticity in GaAs and InP Crystall. Crystals 2019, 9, 651. [Google Scholar] [CrossRef]
- Heermann, D.W. Computer Simulation Methods in Theoretical Physics; Springer: New York, NY, USA; Berlin/Heidelberg, Germany, 1990. [Google Scholar]
- Bulatov, V.V.; W, C. Computer Simulations of Dislocations; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Stillinger, F.H.; Weber, T.A. Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 1985, 31, 5262–5271. [Google Scholar] [CrossRef]
- Tersoff, J. New empirical model for the structural properties of silicon. Phys. Rev. Lett. 1986, 56, 632–635. [Google Scholar] [CrossRef]
- Tersoff, J. New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 1988, 37, 6991–7000. [Google Scholar] [CrossRef] [PubMed]
- Tersoff, J. Empirical interatomic potential for silicon with improved elastic properties. Phys. Rev. B 1988, 38, 9902–9905. [Google Scholar] [CrossRef] [PubMed]
- Tersoff, J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys. Rev. B 1989, 39, 5566–5568. [Google Scholar] [CrossRef]
- Kumagai, T.; Izumi, S.; Hara, S.; Sakai, S. Development of bond-order potentials that can reproduce the elastic constants and melting point of silicon for classical molecular dynamics simulation. Comput. Mater. Sci. 2007, 39, 457–464. [Google Scholar] [CrossRef]
- Erhart, P.; Albe, K. Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide. Phys. Rev. B 2005, 71, 035211. [Google Scholar] [CrossRef]
- Bazant, M.Z.; Kaxiras, E.; Justo, J.F. Environment-dependent interatomic potential for bulk silicon. Phys. Rev. B 1997, 56, 8542–8552. [Google Scholar] [CrossRef]
- Pastewka, L.; Klemenz, A.; Gumbsch, P.; Moseler, M. Screened empirical bond-order potentials for Si-C. Phys. Rev. B 2013, 87, 205410. [Google Scholar] [CrossRef]
- Michelin, J.V.; Gonçalves, L.G.; Rino, J.P. On the transferability of interaction potentials for condensed phases of silicon. J. Mol. Liq. 2019, 285, 488–499. [Google Scholar] [CrossRef]
- Bartók, A.P.; Kermode, J.; Bernstein, N.; Csányi, G. Machine Learning a General-Purpose Interatomic Potential for Silicon. Phys. Rev. X 2018, 8. [Google Scholar] [CrossRef]
- Mishin, Y. Machine-learning interatomic potentials for materials science. Acta Mater. 2021, 214, 116980. [Google Scholar] [CrossRef]
- Balamane, H.; Halicioglu, T.; Tiller, W. Comparative study of silicon empirical interatomic potentials. Phys. Rev. B 1992, 46, 2250–2279. [Google Scholar] [CrossRef]
- Godet, J.; Pizzagalli, L.; Brochard, S.; Beauchamp, P. Comparison between classical potentials and ab initio methods for silicon under large shear. J. Phys. Condens. Matter 2003, 15, 6943–6953. [Google Scholar] [CrossRef]
- Godet, J.; Pizzagalli, L.; Brochard, S.; Beauchamp, P. Theoretical study of dislocation nucleation from simple surface defects in semiconductors. Phys. Rev. B 2004, 70, 054109. [Google Scholar] [CrossRef]
- Valentini, P.; Gerberich, W.W.; Dumitrica, T. Phase-transition plasticity response in uniaxially compressed silicon nanospheres. Phys. Rev. Lett. 2007, 99, 175701. [Google Scholar] [CrossRef]
- Chrobak, D.; Tymiak, N.; Ugurlu, O.; Beaber, A.; Gerberich, W.W.; Nowak, R. Deconfinement leads to changes in the nanoscale plasticity of silicon. Nat. Nanotechnol. 2011, 6, 480–484. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Stukowski, A.; Urbassek, H.M. Interplay of dislocation-based plasticity and phase transformation during Si nanoindentation. Comput. Mater. Sci. 2016, 119, 82–89. [Google Scholar] [CrossRef]
- Sun, J.; Li, C.; Jing, H.; Aibin, M.; Liang, F. Nanoindentation Induced Deformation and Pop-in Events in a Silicon Crystal: Molecular Dynamics Simulation and Experiment. Sci. Rep. 2017, 7, 10282. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Xu, B.; Zhuo, X.; Han, J.; Yang, Z.; Jiang, J.; Ma, A.; Wu, G.; Chu, P.K. Investigation of indenter-size-dependent nanoplasticity of silicon by molecular dynamics simulation. ACS Appl. Electron. Mater. 2020, 2, 3039–3047. [Google Scholar] [CrossRef]
- Abram, R.; Chrobak, D.; Byggmästar, J.; Nordlund, K.; Nowak, R. Comprehensive structural changes in nanoscale-deformed silicon modelled with an integrated atomic potential. Materialia 2023, 28, 101761. [Google Scholar] [CrossRef]
- Malone, B.D.; Sau, J.D.; Cohen, M.L. Ab initio survey of the electronic structure of tetrahedrally bonded phases of silicon. Phys. Rev. B 2008, 78, 035210. [Google Scholar] [CrossRef]
- Wong, S.; Haberl, B.; Williams, J.S.; Bradby, J.E. Phase transformation as the single-mode mechanical deformation of silicon. Appl. Phys. Lett. 2015, 118, 252103. [Google Scholar] [CrossRef]
- Wong, S.; Haberl, B.; Williams, J.S.; Bradby, J.E. The influence of hold time on the onset of plastic deformation in silicon. J. Appl. Phys. 2015, 118, 245904. [Google Scholar] [CrossRef]
- Wong, S.; Haberl, B.; Williams, J.S.; Bradby, J.E. Phase Transformation Dependence on Initial Plastic Deformation Mode in Si via Nanoindentation. Exp. Mech. 2017, 57, 1037–1043. [Google Scholar] [CrossRef]
- Wong, S.; Haberl, B.; Johnson, B.C.; Mujica, A.; Guthrie, M.; McCallum, J.C.; Williams, J.S.; Bradby, J.E. Formation of an r8-Dominant Si Material. Phys. Rev. Lett. 2019, 122, 105701. [Google Scholar] [CrossRef]
- Mannepalli, S.; Sagade, A.A.; Mangalampalli, K.S.R.N. On the indentation-assisted phase engineered Si for solar applications. Scr. Mater. 2020, 184, 19–23. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chrobak, D. Incipient Plasticity of Si and GaAs: Review and Perspectives. Materials 2025, 18, 4011. https://doi.org/10.3390/ma18174011
Chrobak D. Incipient Plasticity of Si and GaAs: Review and Perspectives. Materials. 2025; 18(17):4011. https://doi.org/10.3390/ma18174011
Chicago/Turabian StyleChrobak, Dariusz. 2025. "Incipient Plasticity of Si and GaAs: Review and Perspectives" Materials 18, no. 17: 4011. https://doi.org/10.3390/ma18174011
APA StyleChrobak, D. (2025). Incipient Plasticity of Si and GaAs: Review and Perspectives. Materials, 18(17), 4011. https://doi.org/10.3390/ma18174011