Complex Challenges in the Textile Industry and Potential Solutions in Photocatalytic Coating Technology: A Systematic Literature Review
Abstract
1. Introduction
2. Research Methodology and Analysis Framework
3. Advances in Photocatalytic Coating Technology
3.1. Development of Coating Technologies
3.2. Recent Innovations and Future Prospects
- Development of hybrid processes combining multiple coating techniques.
- Implementation of smart control systems for enhanced process automation.
- Integration of environmentally sustainable practices.
- Enhancement of coating durability and uniformity.
- Expansion of application possibilities in various industries.
4. Research Trends in Textile Photocatalytic Coatings
4.1. Analysis Results of Selected Research
Analysis and Discussion of Research Trends
- Critical Analysis of Research Methodologies and Findings
- Methodological Rigor and Validation
- 2.
- Material Performance and Development
- 3.
- Critical Research Gaps
- 4.
- Research Quality Assessment
- 5.
- Future Research Directions
4.2. Diversifying and Optimizing Coating Materials
4.2.1. Improvements to Traditional Photocatalytic Materials
4.2.2. Development of New Photocatalytic Materials
4.3. Trends in Different Aspects of Fiber Photocatalytic Coatings
4.3.1. Coating Method Aspects
4.3.2. Functional Aspects
4.3.3. Environmental Aspects
4.3.4. Application and Performance Evaluation Aspects
4.4. Summary and Transition
5. Process Drivers and Challenges for Photocatalytic Fiber Coatings
5.1. Current Status and Technical Achievements
5.2. Critical Challenges and Technical Limitations
6. Future Prospects of Photocatalytic Fiber Coatings and Limitations of Current Technologies and Future Research Directions
6.1. Research Directions in Materials Science
6.1.1. Improving the Fundamental Performance of Fiber Photocatalytic Coatings Through Nanostructure Control
6.1.2. Materials Innovation to Enable Highly Efficient Self-Cleaning of Textile Substrates
6.1.3. Developing Fiber-Based Sustainable Antimicrobial and Air Purification Systems
6.1.4. Optimized UV Protection for Textile Materials
6.1.5. Advancing Processing Technology to Improve Industrial Environments
6.1.6. Developing the Next Generation of Fiber-Based Multifunctional Materials
6.1.7. A Comprehensive Drive Strategy for the Commercialization of Photocatalytic Textile Coatings
- Early-stage strategy (basic research and technology optimization)
- Medium-term strategy (pilot production and performance validation)
- End-stage strategy (commercialization and market entry)
6.2. Research Directions in Photocatalytic Process Technology for Textile Coatings
6.2.1. Research Directions in Atomic Layer Deposition Technology for Textiles
6.2.2. Research on Plasma Treatment Processes for Textiles
6.2.3. Innovations in Textile Surface Treatment Technology
6.2.4. Biological Synthesis Processes for Textiles
6.2.5. Researching Energy-Efficient Fiber Coating Processes
6.2.6. Researching Hybrid Coating Processes for Textiles
6.2.7. Smart-Sensing-Based Textile Coating Process Research
6.2.8. Investigating Fiber Coating Processes for Nanostructure Control
6.2.9. Environmentally Responsive Coating Process Research
Researching a Multifunctional Coating Process for Textile Customization
6.2.10. Researching Low-Cost Continuous Production Processes
6.2.11. Research on Systematizing Eco-Friendly Coating Processes
6.3. Performance Evaluation and Standardization Study of Photocatalytic Coatings for Textiles
6.3.1. Standardize Photocatalytic Activity Evaluation for Textiles
6.3.2. Evaluate the Durability and Stability of Textile Products
6.3.3. Environmental Safety Assessment of Photocatalysts for Textiles
6.3.4. Establishing a Standardization Scheme for the Textile Industry
6.3.5. Certification Scheme for Photocatalytic Products for Textiles
6.4. New Research Directions in Photocatalytic Coatings for Textiles and Dyeing Wastewater Treatment
6.4.1. Designing Textile Custom Hierarchical Nanocoatings
6.4.2. Multifunctional Composite Coating Systems for Textiles
6.4.3. Eco-Friendly Fiber Coating Systems
6.4.4. Custom Photocatalyst Design for Dye Selective Degradation
6.4.5. Advanced Technology Convergence Research
6.4.6. Green Processes and Assessments
6.4.7. Transforming Dyeing Wastewater Treatment Systems
6.4.8. Develop Industrialization Skills
7. Conclusions
- This research demonstrates that photocatalytic fiber coating technology has established considerable promise in addressing key industry challenges, particularly in environmental sustainability, multifunctional capabilities, and regulatory compliance. This technology offers significant competitive advantages for the future development of the textile industry.
- Material innovation material development has progressed substantially from traditional photocatalysts (TiO2, ZnO, and Ag) to advanced materials, including graphene-based composites, metal-organic frameworks (MOFs), and perovskite structures. These advances have markedly improved performance through composite formation and structural optimization.
- Manufacturing evolution: The manufacturing landscape has transformed through the incorporation of advanced technologies, such as plasma treatment, atomic layer deposition, and magnetron sputtering, alongside traditional coating methods. Although these developments have enhanced coating uniformity and durability, scaling to industrial production remains challenging.
- Significant progress has been made in the development of multifunctional coatings that combine self-cleaning, antibacterial effects, UV protection, and superhydrophobic properties. The increased focus on antiviral capabilities, particularly post-COVID-19, has substantially expanded their potential applications.
- Environmental considerations: While environmental sustainability has improved through eco-friendly manufacturing methods and materials, significant concerns regarding nanomaterial safety and environmental impact persist. These issues require further research and resolution.
- Current technological limitations: This research has identified several interconnected challenges that currently limit the technology’s full potential. These include activation limitations in the visible-light spectrum, ongoing issues with durability and stability, and significant challenges in scaling to mass production. Additional concerns include the balance of multiple functionalities, energy efficiency in the production processes, and substrate compatibility across various textile materials. The lack of standardized performance evaluation methods and comprehensive real-world validation further complicate the advancement of this field.
- Research and development priorities: The study indicates critical areas requiring focused research attention, particularly in developing advanced photocatalytic materials with enhanced visible-light activation capabilities. Priority should be given to improving durability through sophisticated nanostructure control and establishing economically viable mass production processes. Long-term safety evaluations and environmental impact studies remain crucial, as do the development of standardized performance metrics and comprehensive real-world testing protocols.
- Overall assessment despite existing challenges: Photocatalytic fiber coating technology shows significant promise for advancing sustainable development in the textile industry. The success in addressing the identified limitations, particularly regarding nanomaterial safety, mass production techniques, and long-term performance validation, could establish this technology as a key driver of innovation in textile manufacturing while contributing to environmental protection efforts.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- The Sustainability Challenge in the Textile Industry. Available online: https://beyondsustainability.medium.com/the-sustainability-challenge-in-the-textile-industry-c41796ba5ad3 (accessed on 16 November 2024).
- Abdel Wahab, S.S.M.; Atallah, H.A.A.; Saleh, Y.D.M.; Glal El-Den, R.E.; Hassabo, A.G. Challenges and Unsustainable Practices in the Apparel Sector. J. Text. Color. Polym. Sci. 2024. [Google Scholar] [CrossRef]
- Devi, O.R.; Devi, L.J. Water Consumption and Microfibers: The Biggest Threat. In Climate Action Through Eco-Friendly Textiles; Springer Nature Singapore: Singapore, 2024; pp. 73–90. [Google Scholar]
- Abrishami, S.; Shirali, A.; Sharples, N.; Kartal, G.E.; Macintyre, L.; Doustdar, O. Textile Recycling and Recovery: An Eco-friendly Perspective on Textile and Garment Industries Challenges. Text. Res. J. 2024, 94, 00405175241247806. [Google Scholar] [CrossRef]
- Vishwakarma, A.; Mehrotra, D.; Agrahari, R.; Kharub, M.; Gupta, S.; Jagtap, S. Breaking barriers: Paving the path to sustainable fashion–insights for a greener apparel and textile sector. J. Adv. Manag. 2024, 21, 376–397. [Google Scholar] [CrossRef]
- Rahaman, M.T.; Pranta, A.D.; Repon, M.R.; Ahmed, M.S.; Islam, T. Green Production and Consumption of Textiles and Apparel: Importance, Fabrication, Challenges and Future prospects. J. Open Innov. Technol. Mark. Complex. 2024, 10, 100280. [Google Scholar] [CrossRef]
- Ali, T.; Najam-ul-Haq, M.; Mohyuddin, A.; Musharraf, S.G.; Hussain, D. Next-generation functional nanotextiles—Prospects and challenges. Sustain. Mater. Technol. 2023, 36, e00640. [Google Scholar] [CrossRef]
- Chen, F.; Liu, X.; Li, K.; Jiang, L.; Yang, H.; Dong, B.; Xu, W. Recent Progress and Future Challenges of Functional Textiles Fabricated by Atomic Layer Deposition. Curr. Trends Fash. Technol. Text. Eng. 2017, 1, 48–52. [Google Scholar]
- Khurshid, A.; Khan, K.; Khan, S.; Cifuentes-Faura, J. Tackling sustainable development challenges: A fuzzy set examination of textile industry 4.0 and green supply chain barriers. Sustain. Dev. 2024, 32, 6819–6835. [Google Scholar] [CrossRef]
- Costa, C.; Azoia, N.; Silva, C.; Marques, E. Textile industry in a changing world: Challenges of sustainable development. U. Porto J. Eng. 2020, 6, 86–97. [Google Scholar] [CrossRef]
- Hebden, A.J.; Goswami, P. 18 Functional and smart textiles in care, treatment, and diagnosis of COVID-19. In Smart and Functional Textiles; De Gruyter: Berlin, Germany, 2023; p. 721. [Google Scholar]
- Business Research Insights, Smart Textiles Market Size, Share, Growth and Industry Analysis, by Type (Passive Smart Textiles and Fabrics, Active Smart Textiles and Fabrics, Ultra Smart Textiles and Fabrics, Smart Textiles), by Application (Military Applications, Civil Applications, Medical Applications and Others), Regional Forecast to 2031. Available online: https://www.businessresearchinsights.com/ko/market-reports/smart-textiles-market-107072 (accessed on 16 November 2024).
- Behera, S.A.; Panda, S.; Hajra, S.; Kaja, K.; Pandey, A.K.; Barranco, Á.; Jeong, S.M.; Vivekananthan, V.; Kim, H.J.; Achary, P.G.R. Current Trends on Advancement in Smart Textile Device Engineering. Adv. Sustain. Syst. 2024, 8, 2400344. [Google Scholar] [CrossRef]
- Rezaei-Arangdad, S.; Godfrey, A.B. Disruptions and Adaptations: COVID-19’s Impact on Textile Supply Chain Management. Adv. Sci. Technol. 2024, 146, 67–75. [Google Scholar]
- Lo Porto, C.; Dell’Edera, M.; De Pasquale, I.; Milella, A.; Fracassi, F.; Curri, M.L.; Comparelli, R.; Palumbo, F. Photocatalytic Investigation of Aerosol-Assisted Atmospheric Pressure Plasma Deposited Hybrid TiO2 Containing Nanocomposite Coatings. Nanomaterials 2022, 12, 3758. [Google Scholar] [CrossRef] [PubMed]
- Raditoiu, A.; Raditoiu, V.; Raduly, M.F.; Gabor, A.R.; Frone, A.N.; Grapin, M.; Anastasescu, M. Cellulose Fabrics Functionalized with Sol–Gel Photocatalytic Coatings Based on Iron (III) Phthalocyanine Tetracarboxylic Acids–TiO2–Silica Hybrids. Gels 2023, 9, 860. [Google Scholar] [CrossRef]
- Ashraf, M.; Hussain, F.; Aziz, H.; Riaz, U.; Saleem, M.H.; Javid, A.; Nosheen, A.; Ali, A.; Okla, M.K.; Saleh, I.A.S.; et al. Fabrication and characterization of novel, cost-effective graphitic carbon nitride/Fe coated textile nanocomposites for effective degradation of dyes and biohazards. Heliyon 2023, 9, e20822. [Google Scholar] [CrossRef]
- Ebrahimi, K.; Valipour, P.; Mirjalili, M.; Tayebi, H.A. Photocatalytic nanocomposite prepared by synthesis and coating of zinc stannate and graphene on cotton textile. Synth. Met. 2023, 297, 117409. [Google Scholar] [CrossRef]
- Meganathan, P.; Selvaraj, L.M.; Subbaiah, S.; Subramanian, V.; Pitchaimuthu, S.; Srinivasan, N. A synergistic self-cleaning and antibacterial studies of photocatalytic carbon nitride/polypyrrole coated cotton fabrics for smart textile application. Cellulose 2023, 30, 11211–11230. [Google Scholar] [CrossRef]
- Zhu, J.; Fang, K.; Chen, W.; Liu, K.; Sun, L.; Zhang, C. Preparation of superhydrophobic, antibacterial and photocatalytic cotton by the synergistic effect of dual nanoparticles of rGO-TiO2/QAS-SiO2. Ind. Crops Prod. 2022, 189, 115801. [Google Scholar] [CrossRef]
- Jafri, N.N.M.; Jaafar, J. Dip coating technique. In Advanced Ceramics for Photocatalytic Membranes; Elsevier: Amsterdam, The Netherlands, 2024; pp. 101–127. [Google Scholar]
- Rajath, H.G.; Byregowda, H.V. Advantages of Spin Coating Over Other Coating Techniques in the Formation of Superhydrophobic Surfaces. Int. J. Eng. Adv. Technol. 2022, 12, 22–32. [Google Scholar]
- Tena-Santafé, V.M.; Fernández, J.M.; Fernández-Acevedo, C.; Oroz-Mateo, T.; Navarro-Blasco, Í.; Álvarez, J.I. Development of Photocatalytic Coatings for Building Materials with Bi2O3-ZnO Nanoparticles. Catalysts 2023, 13, 1412. [Google Scholar] [CrossRef]
- Obregón, S.; Rodríguez-González, V. Photocatalytic TiO2 thin films and coatings prepared by sol–gel processing: A brief review. J. Sol-Gel Sci. Technol. 2022, 102, 125–141. [Google Scholar] [CrossRef]
- Roata, I.C.; Croitoru, C.; Pascu, A.; Stanciu, E.M. Photocatalytic coatings via thermal spraying: A mini-review. AIMS Mater. Sci. 2019, 6, 335–353. [Google Scholar] [CrossRef]
- Wang, Z.; Du, L.; Lan, H.; Huang, C.; Zhang, W. A novel technology of Sol precursor plasma spraying to obtain the ceramic matrix abradable sealing coating. Mater. Lett. 2019, 253, 226–229. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, H.; Wang, C.; Sun, Y.; Han, H.; Kang, J.; Dong, Y.; Wang, L. Surface acidification of BiOI/TiO2 composite enhanced efficient photocatalytic degradation of benzene. Separations 2022, 9, 315. [Google Scholar] [CrossRef]
- Tewari, K.; Thapliyal, D.; Bhargava, C.K.; Verma, S.; Mehra, A.; Rana, S.; Gautam, A.; George, D.; Arya, R.K. Innovative Coating Methods for the Industrial Applications. In Functional Coatings: Innovations and Challenges; Wiley: New Jersey, NY, USA, 2024; pp. 23–50. [Google Scholar]
- Butt, A. Thin-Film Coating Methods: A Successful Marriage of High-Quality and Cost-Effectiveness—A Brief Exploration. Coatings 2022, 12, 1115. [Google Scholar] [CrossRef]
- Prorokova, N.; Kumeeva, T.; Kholodkov, I. Formation of coatings based on titanium dioxide nanosolson polyester fibre materials. Coatings 2020, 10, 82. [Google Scholar] [CrossRef]
- Rashid, M.M.; Simončič, B.; Tomšič, B. Recent advances in TiO2-functionalized textile surfaces. Surf. Interfaces 2021, 22, 100890. [Google Scholar] [CrossRef]
- Zhu, C.; Mochizuki, A.; Shi, J.; Ishimori, M.; Koyama, S.; Ishizawa, H.; Morikawa, H. Photocatalytic self-cleaning coatings to remove oleic acid, an organic pollutant, from cotton fabrics. Cellulose 2021, 28, 8139–8152. [Google Scholar] [CrossRef]
- Özdemir, A.O.; Caglar, B.; Çubuk, O.; Coldur, F.; Kuzucu, M.; Guner, E.K.; Özdokur, K.V. Facile synthesis of TiO2-coated cotton fabric and its versatile applications in photocatalysis, pH sensor and antibacterial activities. Mater. Chem. Phys. 2022, 287, 126342. [Google Scholar] [CrossRef]
- de Paiva Teixeira, M.H.; Lourenço, L.A.; Artifon, W.; de Castro Vieira, C.J.; Gómez González, S.Y.; Hotza, D. Eco-Friendly Manufacturing of Nano-TiO2 Coated Cotton Textile with Multifunctional Properties. Fibers Polym. 2020, 21, 90–102. [Google Scholar] [CrossRef]
- Noman, M.T.; Amor, N.; Petru, M.; Mahmood, A.; Kejzlar, P. Photocatalytic behaviour of zinc oxide nanostructures on surface activation of polymeric fibres. Polymers 2021, 13, 1227. [Google Scholar] [CrossRef]
- Ivanuša, M.; Kumer, B.; Petrovčič, E.; Štular, D.; Zorc, M.; Jerman, I.; Simončič, B. Eco-friendly approach to produce durable multifunctional cotton fibres using TiO2, ZnO and Ag NPs. Nanomaterials 2022, 12, 3140. [Google Scholar] [CrossRef]
- Subramani, K.; Incharoensakdi, A. Physicochemical and photocatalytic properties of biogenic ZnO and its chitosan nanocomposites for UV-protection and antibacterial activity on coated textiles. Int. J. Biol. Macromol. 2024, 263, 130391. [Google Scholar] [CrossRef] [PubMed]
- Bușilă, M.; Mușat, V.; Dinică, R.; Tutunaru, D.; Pantazi, A.; Dorobantu, D.; Enăchescu, M. Antibacterial and photocatalytic coatings based on Cu-Doped ZnO nanoparticles into microcellulose matrix. Materials 2022, 15, 7656. [Google Scholar] [CrossRef] [PubMed]
- Pakdel, E.; Daoud, W.A.; Varley, R.J.; Wang, X. Antibacterial textile and the effect of incident light wavelength on its photocatalytic self-cleaning activity. Mater. Lett. 2022, 318, 132223. [Google Scholar] [CrossRef]
- Abualnaja, K.M.; ElAassar, M.R.; Ghareeb, R.Y.; Ibrahim, A.A.; Abdelsalam, N.R. Development of photo-induced Ag0/TiO2 nanocomposite coating for photocatalysis, self-cleaning and antimicrobial polyester fabric. J. Mater. Res. Technol. 2021, 15, 1513–1523. [Google Scholar] [CrossRef]
- Kashif, Z.; Naz, M.Y.; Maqbool, A.; Shukrullah, S.; Irfan, M.; Faraj Mursal, S.N.; Magzoub Mohamed Ali, M.A. Study of dual Z-scheme photocatalytic response of TiO2/Ag/ZnO coating on plasma-modified cotton fabric for self-cleaning application. AIP Adv. 2024, 14, 015222. [Google Scholar] [CrossRef]
- Vasiljević, J.; Jerman, I.; Simončič, B. Graphitic carbon nitride as a new sustainable photocatalyst for textile functionalization. Polymers 2021, 13, 2568. [Google Scholar] [CrossRef]
- Olak-Kucharczyk, M.; Szczepańska, G.; Kudzin, M.H.; Pisarek, M. The photocatalytical properties of RGO/TiO2 coated fabrics. Coatings 2020, 10, 1041. [Google Scholar] [CrossRef]
- Panhwar, R.; Sahito, I.A.; Khatri, A.; Sun, K.C. Improved photocatalytic activity of nonwoven fabric coated with graphene by a novel elevated temperature padding method. Mater. Chem. Phys. 2021, 262, 124294. [Google Scholar] [CrossRef]
- Wang, X.; Ma, K.; Goh, T.; Mian, M.R.; Xie, H.; Mao, H.; Farha, O.K. Photocatalytic biocidal coatings featuring Zr6Ti4-based metal–organic frameworks. J. Am. Chem. Soc. 2022, 144, 12192–12201. [Google Scholar] [CrossRef]
- Lee, D.T.; Jamir, J.D.; Peterson, G.W.; Parsons, G.N. Protective fabrics: Metal-organic framework textiles for rapid photocatalytic sulfur mustard simulant detoxification. Matter 2020, 2, 404–415. [Google Scholar] [CrossRef]
- Frazão, R.H.N.; Della Rocca, D.G.; Amorim, S.M.D.; Peralta, R.A.; Moura-Nickel, C.D.; de Noni, A., Jr.; Moreira, R.D.F.P.M. Plastic optical fibres applied on the photocatalytic degradation of phenol with Ag2MoO4 and ß-Ag2MoO4/Ag3PO4 under visible light. Environ. Technol. 2021, 42, 1271–1282. [Google Scholar] [CrossRef] [PubMed]
- Hosseini-Hosseinabad, S.M.; Minaeian, S.; Tavakoli, A.; Sabaei, M.; Zoshk, M.Y.; Laripour, R.; Chamanara, M. Development of g-C3N4/ZnO nanocomposite as a novel, highly effective and durable photocatalytic antibacterial coating for cotton fabric. Ceram. Int. 2023, 49, 12274–12284. [Google Scholar] [CrossRef]
- Meganathan, P.; Subbaiah, S.; Selvaraj, L.M.; Subramanian, V.; Pitchaimuthu, S.; Srinivasan, N. Photocatalytic self-cleaning and antibacterial activity of cotton fabric coated with polyaniline/carbon nitride composite for smart textile application. Phosphorus Sulfur Relat. Elem. 2022, 197, 244–253. [Google Scholar] [CrossRef]
- Periyasamy, A.P.; Venkataraman, M.; Kremenakova, D.; Militky, J.; Zhou, Y. Progress in sol-gel technology for the coatings of fabrics. Materials 2020, 13, 1838. [Google Scholar] [CrossRef]
- Sfameni, S.; Hadhri, M.; Rando, G.; Drommi, D.; Rosace, G.; Trovato, V.; Plutino, M.R. Inorganic finishing for textile fabrics: Recent advances in wear-resistant, UV protection and antimicrobial treatments. Inorganics 2023, 11, 19. [Google Scholar] [CrossRef]
- Landi, S., Jr.; Carneiro, J.; Parpot, P.; Soares, O.S.; Pereira, M.F.; Fonseca, A.M.; Neves, I.C. Performance of self-cleaning cotton textiles coated with TiO2, TiO2-SiO2 and TiO2-SiO2-HY in removing Rhodamine B and Reactive Red 120 dyes from aqueous solutions. Desalin. Water Treat. 2021, 223, 447–455. [Google Scholar] [CrossRef]
- Wu, Y.; Zhong, L.; Yuan, J.; Xiang, W.; Xin, X.; Liu, H.; Chang, H. Photocatalytic optical fibers for degradation of organic pollutants in wastewater: A review. Environ. Chem. Lett. 2021, 19, 1335–1346. [Google Scholar] [CrossRef]
- Pillai, O.M.; Sundaramoorthy, S. Development of photocatalytic self-cleaning textiles using tin oxide and titanium dioxide nanoparticles mixture. J. Text. Inst. 2023, 114, 674–681. [Google Scholar] [CrossRef]
- Wang, H.; Yu, H.; Wang, J.; Li, T.T.; Lin, J.H.; Lou, C.W. Superhydrophobic and Photocatalytic Self-Cleaning Cotton Fabrics Coated with SiO2–TiO2 Janus Particles and PDMS. Fibers Polym. 2024, 25, 891–900. [Google Scholar] [CrossRef]
- Akyildiz, H.I.; Diler, S.; Islam, S. Evaluation of TiO2 and ZnO atomic layer deposition coated polyamide 66 fabrics for photocatalytic activity and antibacterial applications. J. Vac. Sci. Technol. A 2021, 39, 022405. [Google Scholar] [CrossRef]
- Yuan, X.; Liang, S.; Ke, H.; Wei, Q.; Huang, Z.; Chen, D. Photocatalytic property of polyester fabrics coated with Ag/TiO2 composite films by magnetron sputtering. Vacuum 2020, 172, 109103. [Google Scholar] [CrossRef]
- Pakdel, E.; Zhao, H.; Wang, J.; Tang, B.; Varley, R.J.; Wang, X. Superhydrophobic and photocatalytic self-cleaning cotton fabric using flower-like N-doped TiO2/PDMS coating. Cellulose 2021, 28, 8807–8820. [Google Scholar] [CrossRef]
- Laksono, F.B. Optimum Calcination Temperature in Titanium Dioxide (TiO2) Photocatalyst Coating for Stain-Resistant Fabrics. Multidiscip. Innov. Res. Appl. Eng. 2024, 1, 50–58. [Google Scholar] [CrossRef]
- Görgülüer, H.; Çakıroğlu, B.; Özacar, M. Ag NPs deposited TiO2 coating material for superhydrophobic, antimicrobial and self-cleaning surface fabrication on fabric. J. Coat. Technol. Res. 2021, 18, 569–579. [Google Scholar] [CrossRef]
- Souza, D.C.; Amorim, S.M.; Cadamuro, R.D.; Fongaro, G.; Peralta, R.A.; Peralta, R.M.; Moreira, R.F. Hydrophobic cellulose-based and non-woven fabrics coated with mesoporous TiO2 and their virucidal properties under indoor light. Carbohydr. Polym. Technol. Appl. 2022, 3, 100182. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, M.; Vaish, R. Durable antibacterial cotton fabric via spray-coating of photocatalytic MoS2. Mater. Chem. Phys. 2022, 290, 126658. [Google Scholar] [CrossRef]
- Abdelghaffar, R.A.; Hamoda, D.M.; Elgohary, D.H. Surface coatings of polyester fabrics using titanium dioxide and zinc oxide for multifunctional medical applications. J. Text. Inst. 2022, 113, 2621–2633. [Google Scholar] [CrossRef]
- Alahiane, S.; Sennaoui, A.; Sakr, F.; Dinne, M.; Qourzal, S.; Assabbane, A. Synchronous role of coupled adsorption-photocatalytic degradation of Direct Red 80 with nanocrystalline TiO2-coated non-woven fibres materials in a static batch photoreactor. Groundw. Sustain. Dev. 2020, 11, 100396. [Google Scholar] [CrossRef]
- EL-Mekkawi, D.M.; Abdelwahab, N.A.; Mohamed, W.A.; Taha, N.A.; Abdel-Mottaleb, M.S.A. Solar photocatalytic treatment of industrial wastewater utilizing recycled polymeric disposals as TiO2 supports. J. Clean. Prod. 2020, 249, 119430. [Google Scholar] [CrossRef]
- El-Naggar, M.E.; Khattab, T.A.; Abdelrahman, M.S.; Aldalbahi, A.; Hatshan, M.R. Development of antimicrobial, UV blocked and photocatalytic self-cleanable cotton fibers decorated with silver nanoparticles using silver carbamate and plasma activation. Cellulose 2021, 28, 1105–1121. [Google Scholar] [CrossRef]
- Noureen, L.; Xie, Z.; Gao, Y.; Li, M.; Hussain, M.; Wang, K.; Zhu, J. Multifunctional Ag3PO4-rGO-coated textiles for clean water production by solar-driven evaporation, photocatalysis, and disinfection. ACS Appl. Mater. Interfaces 2020, 12, 6343–6350. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.; Habib, A.; Mujahid, A.; Hussain, T.; UlHasan, I.; Afzal, A. Novel perovskite-type La: TiO2/poly (acrylic acid) nanocomposite coatings for solar-driven self-cleaning textiles. Prog. Org. Coat. 2024, 186, 108034. [Google Scholar] [CrossRef]
- Lee, K.H.; Arfa, U.; Arshad, Z.; Lee, E.J.; Alshareef, M.; Alsowayigh, M.M.; Hamad, N. The comparison of metal doped TiO2 photocatalytic active fabrics under sunlight for waste water treatment applications. Catalysts 2023, 13, 1293. [Google Scholar] [CrossRef]
- Arfa, U.; Alshareef, M.; Nadeem, N.; Javid, A.; Nawab, Y.; Alshammari, K.F.; Zubair, U. Sunlight-Driven Photocatalytic Active Fabrics through Immobilization of Functionalized Doped Titania Nanoparticles. Polymers 2023, 15, 2775. [Google Scholar] [CrossRef]
- Zarezadeh, K.; Sheibani, S.; Ataie, A. Photocatalytic and antibacterial characteristics of decorated polyester textile with ceramic nanoparticles of cobalt ferrite. Ceram. Int. 2023, 49, 20104–20117. [Google Scholar] [CrossRef]
- Somogyi Škoc, M.; Macan, J.; Jakovljević, S.; Rezić, I. Synthesis and Characterization of ZnO and TiO2 Hybrid Coatings for Textile UV Anti-Aging Protection. Polymers 2024, 16, 2001. [Google Scholar] [CrossRef]
- Tomšič, B.; Bajrič, Š.; Cergonja, K.; Čepič, G.; Gerl, A.; Varga, E.L.; Simončič, B. Tailoring of multifunctional cotton fabric by embedding a TiO2+ ZnO composite into a chitosan matrix. Tekstilec 2023, 66, 134–147. [Google Scholar] [CrossRef]
- Almansba, A.; Kane, A.; Nasrallah, N.; Maachi, R.; Lamaa, L.; Peruchon, L.; Assadi, A.A. Innovative photocatalytic luminous textiles optimized towards water treatment: Performance evaluation of photoreactors. Chem. Eng. J. 2021, 416, 129195. [Google Scholar] [CrossRef]
- Simončič, B.; Glažar, D. TiO2 and ZnO as Advanced Photocatalysts for Effective Dye Degradation in Textile Wastewater. Tekstilec 2023, 66, 178–198. [Google Scholar] [CrossRef]
- Lin, S.; Songyuan, L.; Yaochong, F. Facile preparation of ZnO/TiO2 nanocomposite photocatalysts and study of their photocatalytic performance. J. Ovonic Res. 2023, 19, 739–761. [Google Scholar] [CrossRef]
- Ansari, M.; Sajjadi, S.A.; Sahebian, S.; Heidari, E.K. Photocatalytic and antibacterial activity of silver/titanium dioxide/zinc oxide nanoparticles coated on cotton fabrics. ChemistrySelect 2020, 5, 8370–8378. [Google Scholar] [CrossRef]
- Cerhan-Haink, A.; Basim, G.B. Promoting photocatalytic cleaning efficiency of textile finishing solutions with nanoboron as ap-type dopant. J. Surfactants Deterg. 2020, 23, 433–444. [Google Scholar] [CrossRef]
- Bukit, B.F.; Frida, E.; Humaidi, S.; Sinuhaji, P. Selfcleaning and antibacterial activities of textiles using nanocomposite oil palm boiler ash (OPBA), TiO2 and chitosan as coating. S. Afr. J. Chem. Eng. 2022, 41, 105–110. [Google Scholar] [CrossRef]
- Zhao, H.; Li, Z.; Lu, X.; Chen, W.; Cui, Y.; Tang, B.; Wang, X. Fabrication of PANI@ TiO2 nanocomposite and its sunlight-driven photocatalytic effect on cotton fabrics. J. Text. Inst. 2021, 112, 1850–1858. [Google Scholar] [CrossRef]
- Mollick, S.; Repon, M.R.; Haji, A.; Jalil, M.A.; Islam, T.; Khan, M.M. Progress in self-cleaning textiles: Parameters, mechanism and applications. Cellulose 2023, 30, 10633–10680. [Google Scholar] [CrossRef]
- Rashid, M.M.; Tomšič, B.; Simončič, B.; Jerman, I.; Štular, D.; Zorc, M. Sustainable and cost-effective functionalization of textile surfaces with Ag-doped TiO2/polysiloxane hybrid nanocomposite for UV protection, antibacterial and self-cleaning properties. Appl. Surf. Sci. 2022, 595, 153521. [Google Scholar] [CrossRef]
- Xu, H.; Dai, J.; Fang, K.; Guo, Y.; Chen, W.; Liu, X.; Xie, R. BiOI/PPy/cotton photocatalytic fabric for efficient organic dye contaminant degradation and self-cleaning application. Colloids Surf. A Physicochem. Eng. Asp. 2023, 674, 131862. [Google Scholar] [CrossRef]
- Fahoul, Y.; Tanji, K.; Díaz, O.M.G.; Quesada-Cabrera, R.; Naciri, Y.; El Mrabet, I.; Kherbeche, A. Development of a new CoS-Supported ZnAl2O4 catalyst for the visible photodegradation of a basic textile dye from water. Opt. Mater. 2023, 143, 114148. [Google Scholar] [CrossRef]
- Murugadoss, G.; Venkatesh, N.; Rajabathar, J.; Kandhasamy, N.; Kumar Manavalan, R. Silver Sulfide Anchored Anatase TiO2 Nanoparticles for Ultrafast Degradation of Selective Textile Dyes. ChemistrySelect 2024, 9, e202400099. [Google Scholar] [CrossRef]
- Oladipo, A.A.; Mustafa, F.S. Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes. Beilstein J. Nanotechnol. 2023, 14, 291–321. [Google Scholar] [CrossRef]
- Qin, H.; Lv, Y.; Nakane, K. In situ growth of Bi-MOF on cotton fabrics via ultrasonic synthesis strategy for recyclable photocatalytic textiles. RSC Adv. 2024, 14, 11513–11523. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yang, Y.L.; Chen, H.J.; Liu, J.; Shi, X.L.; Suo, G.; Chen, Z.G. Flexible, recoverable, and efficient photocatalysts: MoS2/TiO2 heterojunctions grown on amorphous carbon-coated carbon textiles. J. Colloid Interface Sci. 2023, 651, 284–295. [Google Scholar] [CrossRef] [PubMed]
- Pakdel, E.; Wang, J.; Kashi, S.; Sun, L.; Wang, X. Advances in photocatalytic self-cleaning, superhydrophobic and electromagnetic interference shielding textile treatments. Adv. Colloid Interface Sci. 2020, 277, 102116. [Google Scholar] [CrossRef]
- Kyжeль, B.П.; Ceмeнчeнкo, С.В.; Kopнєв, О.В.; Чepнeнкo, П.B. The newest technologies in environmentally safe polymeric coatings: Research, technologies, prospects. JMTE 2024, 19, 85–94. [Google Scholar]
- Azani, M.R.; Hassanpour, A. Nanotechnology in the fabrication of advanced paints and coatings: Dispersion and stabilization mechanisms for enhanced performance. ChemistrySelect 2024, 9, e202400844. [Google Scholar] [CrossRef]
- Sivakumar, V.L.; Manikandan, S.; Richard, T.; Veeraraghavan, V.P.; Vickram, A.S.; Saravanan, A. Recent Trends in Tribology: Advanced Surface Coatings and Lubrication Techniques. SSRG Int. J. Mech. Eng. 2023, 10, 26–34. [Google Scholar] [CrossRef]
- Joseva, J.; Robinson Smart, D.S.; Raja, C.; Ramachandran, M. Recent Developments in the Field of Thermal Barrier Coatings Solutions for Structural Repair. J. Appl. Chem. Sci. 2023, 2, 31–39. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Y.; Xie, Q.; He, Y.; Zhong, D.; Chang, H.; Zhong, N. Photocatalytic Optical Hollow Fiber with Enhanced Visible-light-driven CO2 Reduction. Small 2024, 20, 2310894. [Google Scholar] [CrossRef]
- Xu, J.; Li, X.; Hou, T.; Zhou, J.; Zhang, Z.; Yang, B. Fabrication of low-cost, self-floating, and recyclable Janus nanofibrous membrane by centrifugal spinning for photodegradation of dyes. Colloids Surf. A Physicochem. Eng. Asp. 2024, 685, 133181. [Google Scholar] [CrossRef]
- Kiwi*, J.; Rtimi, S. Photocatalytic-Mediated Self-Cleaning of Natural and Artificial Fibers Under Daylight Irradiation at Ambient Temperature. Handb. Self-Clean. Surf. Mater. Fundam. Appl. 2023, 2, 499–544. [Google Scholar]
- Feng, J.; Feng, Q.; Xin, J.; Liang, Q.; Li, X.; Chen, K.; Liu, J. Fabrication of durable self-cleaning photocatalytic coating with long-term effective natural light photocatalytic degradation performance. Chemosphere 2023, 336, 139316. [Google Scholar] [CrossRef]
- Natsathaporn, P.; Herwig, G.; Altenried, S.; Ren, Q.; Rossi, R.M.; Crespy, D.; Itel, F. Functional fiber membranes with antibacterial properties for face masks. Adv. Fiber Mater. 2023, 5, 1519–1533. [Google Scholar] [CrossRef] [PubMed]
- Chokesawatanakit, N.; Thammasang, S.; Phanthanawiboon, S.; Knijnenburg, J.T.; Theerakulpisut, S.; Kamwilaisak, K. Enhancing the multifunctional properties of cellulose fabrics through in situ hydrothermal deposition of TiO2 nanoparticles at low temperature for antibacterial self-cleaning under UV–Vis illumination. Int. J. Biol. Macromol. 2024, 256, 128321. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Yaniv, V.; Betzalel, Y.; Mamane, H.; Gray, K.A. Creating anti-viral high-touch surfaces using photocatalytic transparent films. Chemosphere 2023, 323, 138280. [Google Scholar] [CrossRef]
- Panchal, P.; Sharma, R.; Reddy, A.S.; Nehra, K.; Sharma, A.; Nehra, S.P. Eco-friendly synthesis of Ag-doped ZnO/MgO as a potential photocatalyst for antimicrobial and dye degradation applications. Coord. Chem. Rev. 2023, 493, 215283. [Google Scholar] [CrossRef]
- Meganathan, M.K.; Ramalingam, S. Green Nanoengineered Fabrics: Waste-Derived Polyphenol-Zinc@ Silica Core–Shell Reactive Janus Nanoparticles for Functional Fabrics. ACS Appl. Mater. Interfaces 2024, 16, 40004–40017. [Google Scholar] [CrossRef]
- Wu, J.Y.; Chen, Y.A.; Chien, Y.A.; Kurioka, T.; Sone, M.; Chen, C.Y.; Chang, T.F.M.; Hsu, Y.J. Photocatalytic Fibers for Environmental Purification: Challenges and Opportunities in the Post-Pandemic Era. Adv. Energy Sustain. Res. 2024, 5, 2300212. [Google Scholar] [CrossRef]
- Sharma, V.; Kumar, A.; Jaswal, P.; Porwal, C.; Gaur, A.; Vaish, R. Nanophotocatalyst-Infused Textile Composites for Environmental Remediation. In Smart and Sustainable Applications of Nanocomposites; IGI Global: Hershey, PA, USA, 2024. [Google Scholar]
- Xia, G.; Lam, Y.; Fan, S.; Bian, X.; Qi, P.; Qiao, Z.; Ma, K.; Xin, J.H. Recent advances in cotton fabric-based photocatalytic composites for the degradation of organic contaminants. Carbohydr. Polym. 2024, 332, 121872. [Google Scholar] [CrossRef]
- Thakur, A.; Kumar, S.; Kumari, P.; Sharma, M.; Kumar, A. Emerging Applications of Photocatalysis in Wastewater Treatment. In Integrated Waste Management: A Sustainable Approach from Waste to Wealth; Springer: Berlin/Heidelberg, Germany, 2024; pp. 269–288. [Google Scholar]
- Zhu, Q.; Wang, C. Applications in energy conversion. In Full-Spectrum Responsive Photocatalytic Materials: From Fundamentals to Applications; Elsevier: Amsterdam, The Netherlands, 2024; p. 183. [Google Scholar]
- Sutar, R.S.; Shi, B.; Kanchankoti, S.S.; Ingole, S.S.; Jamadar, W.S.; Sayyad, A.J.; Bhosale, A.K. Development of self-cleaning superhydrophobic cotton fabric through silica/PDMS composite coating. Surf. Topogr. Metrol. Prop. 2023, 11, 045004. [Google Scholar] [CrossRef]
- Sahu, R.; Ninan, N.; Nguyen, N.H.; Wang, J.; Vasilev, K.; Truong, V.K.; Tang, Y. Antibacterial Textile Coating Armoured with Aggregation-Induced Emission Photosensitisers to Prevent Healthcare-Associated Infections. Molecules 2024, 29, 1209. [Google Scholar] [CrossRef]
- Silva, D.; Landi, S., Jr.; Rocha Segundo, I.; Afonso, C.; Fernandes, F.; da Silva Nunes, E.; Carneiro, J. Photocatalytic performance of textiles coated with titanium dioxide-reduced graphene oxide system for degradation of crude petroleum under similar solar irradiation. J. Mater. Sci. 2022, 57, 8464–8480. [Google Scholar] [CrossRef]
- Sharifiyan, M.S.; Fattah-alhosseini, A.; Karbasi, M. Photocatalytic evaluation of hierarchical TiO2/WO3 hybrid coating created by PEO/hydrothermal method. Appl. Surf. Sci. Adv. 2023, 18, 100541. [Google Scholar] [CrossRef]
- Kang, X.; Liu, S.; Dai, Z.; He, Y.; Song, X.; Tan, Z. Titanium dioxide: From engineering to applications. Catalysts 2019, 9, 191. [Google Scholar] [CrossRef]
- Lin, M.; Chen, H.; Zhang, Z.; Wang, X. Engineering interface structures for heterojunction photocatalysts. Phys. Chem. Chem. Phys. 2023, 25, 4388–4407. [Google Scholar] [CrossRef] [PubMed]
Method Category | Specific Technique | Process Description | Key Advantages | Limitations | Applications |
---|---|---|---|---|---|
Traditional Methods | Dip Coating | Immersion and controlled withdrawal |
|
|
|
Spray Coating | Atomization and deposition |
|
|
| |
Sol–Gel Method | Chemical synthesis and gelation |
|
|
| |
Advanced Technologies | Atomic Layer Deposition (ALD) | Vapor phase deposition |
|
|
|
Chemical Vapor Deposition | Vapor phase material transfer |
|
|
| |
UV/E-beam Curing | Energy beam processing |
|
|
|
A. Material Development Trends | |||
A-1. Traditional Materials | |||
Material Type | Key Components | Performance Highlights | References |
TiO2-Based | Pure TiO2, doped TiO2 |
| [30,31,32,33,34] |
ZnO-Based | Pure ZnO, composite ZnO |
| [35,36,37,38] |
Metal-Doped | Ag, Cu, Fe doped variants |
| [39,40,41] |
A-2. Advanced Materials | |||
Material Type | Composition | Key Features | References |
Graphene-Based | GO, rGO, composites |
| [32,42,43,44] |
MOFs | Zr-Ti MOFs, Al-MOFs |
| [45,46] |
Novel Composites | g-C3N4, Ag2MoO4/Ag3PO4 |
| [47,48,49] |
B. Processing Technologies | |||
B-1. Conventional Methods | |||
Method | Features | Limitations | References |
Sol–Gel |
|
| [50,51,52] |
Dip Coating |
|
| [43,53] |
Pad-Dry-Cure |
|
| [34,54] |
B-2. Advanced Technologies | |||
Technology | Advantages | Challenges | References |
Plasma Treatment |
|
| [41,55] |
ALD |
|
| [56] |
Magnetron Sputtering |
|
| [57] |
C. Functional Properties | |||
C-1. Primary Functions | |||
Function | Performance Metrics | Key Materials | References |
Self-Cleaning |
|
| [31,58,59] |
Antimicrobial |
|
| [37,38,45] |
UV Protection |
|
| [36,37,40] |
C-2. Advanced Functions | |||
Function | Features | Implementation | References |
Superhydrophobicity |
|
| [55,58,60] |
Smart Response |
|
| [33] |
Multiple Functions |
|
| [45,61] |
D. Applications | |||
D-1. Current Applications | |||
Field | Requirements | Solutions | References |
Medical Textiles |
|
| [62,63] |
Protective Gear |
|
| [46] |
Environmental |
|
| [64,65] |
D-2. Emerging Applications | |||
Application | Innovation | Development Status | References |
Smart Textiles |
|
| [49,66] |
Water Treatment |
|
| [52,67] |
Energy Systems |
|
| [68] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-C.; Huh, M.-W.; Hou, Y.-L.; Kim, W.-J. Complex Challenges in the Textile Industry and Potential Solutions in Photocatalytic Coating Technology: A Systematic Literature Review. Materials 2025, 18, 810. https://doi.org/10.3390/ma18040810
Lee J-C, Huh M-W, Hou Y-L, Kim W-J. Complex Challenges in the Textile Industry and Potential Solutions in Photocatalytic Coating Technology: A Systematic Literature Review. Materials. 2025; 18(4):810. https://doi.org/10.3390/ma18040810
Chicago/Turabian StyleLee, Jun-Cheol, Man-Woo Huh, Yao-Long Hou, and Wha-Jung Kim. 2025. "Complex Challenges in the Textile Industry and Potential Solutions in Photocatalytic Coating Technology: A Systematic Literature Review" Materials 18, no. 4: 810. https://doi.org/10.3390/ma18040810
APA StyleLee, J.-C., Huh, M.-W., Hou, Y.-L., & Kim, W.-J. (2025). Complex Challenges in the Textile Industry and Potential Solutions in Photocatalytic Coating Technology: A Systematic Literature Review. Materials, 18(4), 810. https://doi.org/10.3390/ma18040810