Design of the Pore Structure of Sponge-Structured Cement Pastes with Both Absorption and Storage Functions
Abstract
1. Introduction
2. Raw Materials and Test Methods
2.1. Raw Materials
2.2. Mix Design and Specimen Preparation
2.3. Experimental Methods
3. Experimental Results and Analysis
3.1. Absorption and Retention Test
3.1.1. Compressive Strength
3.1.2. Capillary Water Absorption Performance
3.1.3. Influence of Curing Method
3.1.4. Water Storage Capacity
3.2. Microscopic Pore Structure Analysis
3.2.1. Analysis of Pore Shape
3.2.2. Porosity Analysis
3.2.3. Pore Size Distribution
3.3. Analysis of Pore Formation Patterns in Sponge Structure Cement Paste
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, J.; Luo, Z.; Muhammad, B.E.K. Impact of aggregate type and size and mineral admixtures on the properties of pervious concrete: An experimental investigation. Constr. Build. Mater. 2020, 265, 120759. [Google Scholar] [CrossRef]
- Ramakrishnan, R.; Abilash, B.; Trivedi, M.; Varsha, P.; Varun, P.; Vishanth, S. Effect of Mineral Admixtures on Pervious Concrete. Mater. Today Proc. 2018, 5, 24014–24023. [Google Scholar] [CrossRef]
- Kia, A.; Delens, J.M.; Wong, H.S.; Cheeseman, C.R. Structural and hydrological design of permeable concrete pavements. Case Stud. Constr. Mater. 2021, 15, e00564. [Google Scholar] [CrossRef]
- Jerath, S.; Hanson, N. Effect of fly ash content and aggregate gradation on the durability of concrete pavements. J. Mater. Civ. Eng. 2007, 19, 367–375. [Google Scholar] [CrossRef]
- Gao, Y.; Hu, C.; Zhang, Y.; Li, Z.; Pan, J. Investigation on microstructure and microstructural elastic properties of mortar incorporating fly ash. Cem. Concr. Compos. 2018, 86, 315–321. [Google Scholar] [CrossRef]
- Liu, W.; Xing, F.; Xie, Y. Influence of mineral admixture on water sorptivity of concrete. J. Shenzhen Univ. Sci. Eng. 2008, 25, 303–307. (In Chinese) [Google Scholar]
- Li, S.; Zhao, T.; Wu, K. Relationship between permeability and microstructure of concrete. China Concr. Cem. Prod. 2004, 6–8. (In Chinese) [Google Scholar]
- Yu, Z.; Ye, G. The pore structure of cement paste blended with fly ash. Constr. Build. Mater. 2013, 45, 30–35. [Google Scholar] [CrossRef]
- Choi, Y.C.; Kim, J.; Choi, S. Mercury intrusion porosimetry characterization of micropore structures of high-strength cement pastes incorporating high volume ground granulated blast-furnace slag. Constr. Build. Mater. 2017, 137, 96–103. [Google Scholar]
- Gorce, J.P.; Milestone, N.B. Probing the microstructure and water phases in composite cement blends. Cem. Concr. Res. 2007, 37, 310–318. [Google Scholar] [CrossRef]
- Zhao, Y.; Qiu, J.; Ma, Z.; Guo, Z.; Liu, H. Effect of superfine blast furnace slags on the binary cement containing high-volume fly ash. Powder Technol. 2020, 375, 539–548. [Google Scholar] [CrossRef]
- Han, T. The Distribute Characteristic of Slag Powder and the Influence on Strength of Cement. Master’s Thesis, Xi’an University of Architecture and Technology, Xi’an, China, 2004. [Google Scholar]
- Sun, J.; Zhang, Z.; Hou, G. Utilization of fly ash microsphere powder as a mineral admixture of cement: Effects on early hydration and microstructure at different curing temperatures. Powder Technol. 2020, 375, 262–270. [Google Scholar] [CrossRef]
- Liu, X.; Ni, C.; Meng, K.; Zhang, L.; Liu, D.; Sun, L. Strengthening mechanism of lightweight cellular concrete filled with fly ash. Constr. Build. Mater. 2020, 251, 118954. [Google Scholar] [CrossRef]
- Hall, C. Water sorptivity of mortars and concretes: A review. Mag. Concr. Res. 1989, 41, 51–61. [Google Scholar] [CrossRef]
- Sosoro, M. Transport of organic fluids through concrete. Mater. Struct. 1998, 31, 162–169. [Google Scholar] [CrossRef]
- Martys, N.S.; Ferraris, C.F. Capillary transport in mortars and concrete. Cem. Concr. Res. 1997, 27, 747–760. [Google Scholar] [CrossRef]
- Hall, C.; Yau, M.H.R. Water movement in porous building materials—IX. The water absorption and sorptivity of concretes. Build. Environ. 1987, 22, 77–82. [Google Scholar] [CrossRef]
- Wittmann, F.H.; Zhang, P.; Zhao, T. Influence of combined environmental loads on durability of reinforced concrete structures. Restor. Build. Monum. 2006, 12, 349–362. [Google Scholar] [CrossRef]
- Shen, C.; Shui, Z.; Zhou, Z. Research on Water Transport and Kinetics in Cement-based Materials. J. Wuhan Univ. Technol. 2007, 84–87. (In Chinese) [Google Scholar]
- Zhang, P.; Wittmann, F.H.; Zhao, T.; Lehmann, E.H.; Vontobel, P. Neutron radiography, a powerful method to determine time-dependent moisture distributions in concrete. Nucl. Eng. Des. 2011, 241, 4758–4766. [Google Scholar] [CrossRef]
- Shan, X. Influence of Particle Size Distribution of Mineral Admixture on Shrinkage of Cement Paste. Master’s Thesis, Yanshan University, Qinhuangdao, China, 2018. [Google Scholar]
- Yang, C. Research on Relationship Between Capillary Water Absorption and Pore Structure of Sponge Cement Paste. Master’s Thesis, Northeast Petroleum University, Daqing, China, 2022. (In Chinese). [Google Scholar]
- GB/T 17671-1999; Method of Testing Cements-Determination of Strength. Standards Press of China: Beijing, China, 1999.
- Li, W.; Lai, J.; Lin, X.; Qian, K.; Qian, X. Effect of Porous Super Absorbent Polymer on Flowability of Cement Paste. J. Buliding Mater. 2022, 25, 171–177. (In Chinese) [Google Scholar]
- Yang, H.C. Experimental Study on Permeability Resistant and Pore Structure of High Content Mineral Admixtures of HPC. Adv. Mater. Res. 2014, 860, 1232–1236. [Google Scholar] [CrossRef]
- Wu, C.; Miao, M.; Yu, H. Effect of MgO Activity and Molar Ratio on Strength of Basic Magnesium Sulfate Cement and Its Mechanism. J. Build. Mater. 2022, 25, 360–366. (In Chinese) [Google Scholar]
- Abraham, S.M.; Ransinchung, G.D. Effects of Reclaimed Asphalt Pavement aggregates and mineral admixtures on pore structure, mechanical and durability properties of cement mortar. Constr. Build. Mater. 2019, 216, 202–213. [Google Scholar] [CrossRef]
- An, G. Prediction of Compressive Strength of Concrete Considering Pore Relative Humidity. Materials 2025, 18, 2859. [Google Scholar] [CrossRef]
- Xu, F.; Pan, H. Research on Quantitative Characterization Model of Compressive Strength or Elastic Modulus of Recycled Concrete Based on Pore Grading. Materials 2024, 18, 3. [Google Scholar] [CrossRef]
- Zhu, C.; Zhu, E.; Wang, B.; Li, J.; Yao, T.; Zhang, Z. Effect of Porosity and Pore Size on the Axial Compressive Properties of Recycled Aggregate Concrete. Materials 2025, 18, 2830. [Google Scholar] [CrossRef] [PubMed]
- Washburn, E.W. The dynamics of capillary flow. Phys. Rev. 1921, 17, 273. [Google Scholar] [CrossRef]
- Philleo, R. Concrete science and reality. In Materials Science of Concrete; American Ceramic Society: Westerville, OH, USA, 1991; pp. 1–8. [Google Scholar]
- Ramezanianpour, A.A.; Malhotra, V.M. Effect of curing on the compressive strength, resistance to chloride-ion penetration and porosity of concretes incorporating slag, fly ash or silica fume. Cem. Concr. Compos. 1995, 17, 125–133. [Google Scholar] [CrossRef]
- Xin, Q.; Luo, M. Modern Catalytic Research Methods; Science Press: Beijing, China, 2018. (In Chinese) [Google Scholar]
- Xu, Y.; Xu, B.; Yin, S. Analysis on the permeability of sandstone with fractal theory. Geotech. Investig. Surv. 2014, 42, 45–49. (In Chinese) [Google Scholar]
- Wang, D.; Yang, C.; Pan, H.; Li, T.; Chi, Y. Research Progress on Relationship Between Pore Structure and Water Absorption Performance of Cement–Based Materials. Bull. Chin. Ceram. Soc. 2021, 40, 10. (In Chinese) [Google Scholar]
- Shen, C. Researches on The Moisture Transport of Cement-Based Materials. Ph.D. Thesis, Wuhan University of Technology, Wuhan, China, 2007. (In Chinese). [Google Scholar]












| Material | CaO/% | SiO2/% | Al2O3/% | SO3/% | Fe2O3/% | K2O/% | Density/ kg·m−3 | Specific Surface Area/m2·kg−1 | Median Diameter/ μm |
|---|---|---|---|---|---|---|---|---|---|
| Cement | 63.40 | 20.20 | 4.95 | 3.33 | 3.32 | 0.94 | 2994 | 474.0 | 14.160 |
| Grade II fly ash | 4.48 | 42.70 | 44.80 | 0.61 | 2.31 | 1.14 | 2144 | 420.4 | 18.050 |
| S95 Slag | 32.30 | 32.90 | 17.40 | 2.81 | 0.69 | 0.61 | 2854 | 461.1 | 14.480 |
| S105 Slag | 37.70 | 30.60 | 17.40 | 2.44 | 0.41 | 0.51 | 3002 | 614.8 | 9.057 |
| Specimens | Cement/% | Grade II Fly Ash/% | S95 Slag/% | S105 Slag/% | W/B | Water-Reducing Ddmixture/% |
|---|---|---|---|---|---|---|
| A1(A1-W) | 20 | 70 | 10 | — | 0.4 | 0.2 |
| A2(A2-W) | 20 | 50 | 30 | — | 0.4 | 0.2 |
| A3(A3-W) | 20 | 30 | 50 | — | 0.4 | 0.2 |
| A4(A4-W) | 20 | 10 | 70 | — | 0.4 | 0.2 |
| B1(B1-W) | 20 | 70 | — | 10 | 0.4 | 0.2 |
| B2(B2-W) | 20 | 50 | — | 30 | 0.4 | 0.2 |
| B3(B3-W) | 20 | 30 | — | 50 | 0.4 | 0.2 |
| B4(B4-W) | 20 | 10 | — | 70 | 0.4 | 0.2 |
| D0(D0-W) | 100 | — | — | — | 0.4 | 0.2 |
| A1-1(A1-W-1) | 20 | 70 | 10 | — | 0.5 | 0.2 |
| A2-1 | 20 | 50 | 30 | — | 0.5 | 0.2 |
| A3-1 | 20 | 30 | 50 | — | 0.5 | 0.2 |
| A4-1 | 20 | 10 | 70 | — | 0.5 | 0.2 |
| B1-1 | 20 | 70 | — | 10 | 0.5 | 0.2 |
| B2-1 | 20 | 50 | — | 30 | 0.5 | 0.2 |
| B3-1 | 20 | 30 | — | 50 | 0.5 | 0.2 |
| B4-1 | 20 | 10 | — | 70 | 0.5 | 0.2 |
| D0.5 | 100 | — | — | — | 0.5 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Du, G.; Zhang, H.; Wang, D.; Tao, X.; Zhang, J. Design of the Pore Structure of Sponge-Structured Cement Pastes with Both Absorption and Storage Functions. Materials 2025, 18, 5537. https://doi.org/10.3390/ma18245537
Li T, Du G, Zhang H, Wang D, Tao X, Zhang J. Design of the Pore Structure of Sponge-Structured Cement Pastes with Both Absorption and Storage Functions. Materials. 2025; 18(24):5537. https://doi.org/10.3390/ma18245537
Chicago/Turabian StyleLi, Tong, Guojun Du, Hefang Zhang, Dongli Wang, Xiangwang Tao, and Jinqiu Zhang. 2025. "Design of the Pore Structure of Sponge-Structured Cement Pastes with Both Absorption and Storage Functions" Materials 18, no. 24: 5537. https://doi.org/10.3390/ma18245537
APA StyleLi, T., Du, G., Zhang, H., Wang, D., Tao, X., & Zhang, J. (2025). Design of the Pore Structure of Sponge-Structured Cement Pastes with Both Absorption and Storage Functions. Materials, 18(24), 5537. https://doi.org/10.3390/ma18245537
