A Comprehensive Review of θ-Series Precipitates in Aluminum Alloys
Abstract
1. Introduction
2. Fundamentals of θ-Series Precipitates
2.1. Precipitation Mechanism
2.2. Definition and Structural Characteristics
2.3. Precipitation Kinetics
2.4. Precipitation Hardening Mechanism
3. Historical Development of θ-Series Precipitate Research
3.1. Early Discoveries
3.2. θ′ Precipitates
3.3. GP Zones (GP I Zones) and θ″ Precipitates (GP II Zones)
4. Recent Advances in θ-Series Precipitates Research
4.1. Precipitation Sequence and Transformation Mechanisms
4.2. θ′/Al Interface
4.2.1. θ′/Al Interface Characteristics
4.2.2. θ′/ Al Interface Regulation by Alloying Elements
5. Summary and Outlook
Funding
Data Availability Statement
Conflicts of Interest
References
- Alza, V.M.A. A critical review of age treatment hardening mechanisms in aluminum alloys. IOSR J. Mech. Civ. Eng. 2022, 19, 32–51. [Google Scholar]
- Da Costa Teixeira, J.; Bourgeois, L.; Sinclair, C.W.; Hutchinson, C.R. The effect of shear-resistant, plate-shaped precipitates on the work hardening of Al alloys: Towards a prediction of the strength–elongation correlation. Acta Mater. 2009, 57, 6075–6089. [Google Scholar] [CrossRef]
- Chen, Y.; Weyland, M.; Hutchinson, C. The effect of interrupted aging on the yield strength and uniform elongation of precipitation-hardened Al alloys. Acta Mater. 2013, 61, 5877–5894. [Google Scholar] [CrossRef]
- Ringer, S.; Hono, K. Microstructural evolution and age hardening in aluminium alloys: Atom probe field-ion microscopy and transmission electron microscopy studies. Mater. Charact. 2000, 44, 101–131. [Google Scholar] [CrossRef]
- Guinier, A. Heterogeneities in solid solutions. In Solid State Physics; Elsevier: Amsterdam, The Netherlands, 1959; Volume 9, pp. 293–398. [Google Scholar]
- Gerold, V. On the structures of Guinier-Preston zones in AlCu alloys introductory paper. Scr. Metall. 1988, 22, 927–932. [Google Scholar] [CrossRef]
- Starink, M.; Van Mourik, P. Cooling and heating rate dependence of precipitation in an Al—Cu alloy. Mater. Sci. Eng. A 1992, 156, 183–194. [Google Scholar] [CrossRef]
- Bourgeois, L.; Medhekar, N.V.; Smith, A.E.; Weyland, M.; Nie, J.-F.; Dwyer, C. Efficient atomic-scale kinetics through a complex heterophase interface. Phys. Rev. Lett. 2013, 111, 046102. [Google Scholar] [CrossRef]
- Hashimoto, T.; Zhou, X.; Skeldon, P.; Thompson, G. Structure of the copper–enriched layer introduced by anodic oxidation of copper-containing aluminium alloy. Electrochim. Acta 2015, 179, 394–401. [Google Scholar] [CrossRef]
- Bradley, A.J.; Jones, P. An X-ray investigation of the copper-aluminium alloys. J. Inst. Met. 1933, 51, 131–157. [Google Scholar]
- Liu, H.; Papadimitriou, I.; Lin, F.; LLorca, J. Precipitation during high temperature aging of Al− Cu alloys: A multiscale analysis based on first principles calculations. Acta Mater. 2019, 167, 121–135. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. On the statistical theory of the crystallization of metals. Izv. Akad. Nauk SSSR Ser. Mat. 1937, 3, 355. [Google Scholar]
- Johnson, W.A.; Mehl, R.F. Reaction kinetics in process of nucleation and growth. Trans. Am. Inst. Min. Metall. Eng. 1939, 135, 416–458. [Google Scholar]
- Avrami, M. Kinetics of phase change. I General theory. J. Chem. Phys. 1939, 7, 1103–1112. [Google Scholar] [CrossRef]
- Avrami, M. Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J. Chem. Phys. 1940, 8, 212–224. [Google Scholar] [CrossRef]
- Avrami, M. Kinetics of phase change. III, granulation, phase change and microstructure. J. Chem. Phy. 1941, 9, 177–184. [Google Scholar] [CrossRef]
- Wert, C.A. Precipitation from Solid Solutions of C and N in α-Iron. J. Appl. Phys. 1949, 20, 943–949. [Google Scholar] [CrossRef]
- Zener, C. Theory of growth of spherical precipitates from solid solution. J. Appl. Phys. 1949, 20, 950–953. [Google Scholar] [CrossRef]
- Wert, C.; Zener, C. Interference of growing spherical precipitate particles. J. Appl. Phys. 1950, 21, 5–8. [Google Scholar] [CrossRef]
- Ham, F.S. Theory of diffusion-limited precipitation. J. Phys. Chem. Solids 1958, 6, 335–351. [Google Scholar] [CrossRef]
- Ham, F.S. Stress-assisted precipitation on dislocations. J. Appl. Phys. 1959, 30, 915–926. [Google Scholar] [CrossRef]
- Johnson, W.A.; Mehl, R.F.; Member, A.I.M.E. Reaction Kinetics in Processes of Nucleation and Growth. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2010, 41A, 1–65. [Google Scholar]
- Shackelford, J.F. Introduction to Materials Science for Engineers; Pearson Higher Education, Inc.: Upper Saddle River, NJ, USA, 2015. [Google Scholar]
- Fatmi, M.; Ghebouli, B.; Ghebouli, M.A.; Chihi, T.; Ouakdi, E.-H.; Heiba, Z.A. Study of precipitation kinetics in Al-3.7 wt% Cu alloy during non-isothermal and isothermal ageing. Chin. J. Phys. 2013, 51, 1019–1032. [Google Scholar]
- Khamel, B.; Sahnoune, F.; Fatmi, M.; Brihi, N. Mechanism and kinetics of precipitation and dissolution of GP zone and metastable phase in Al-3wt% Cu alloy. Acta Phys. Pol. A 2017, 131, 133–135. [Google Scholar] [CrossRef]
- Heugue, P.; Larouche, D.; Breton, F.; Martinez, R.; Chen, X.G. Evaluation of the growth kinetics of θ′ and θ-Al2Cu precipitates in a binary Al-3.5 Wt Pct Cu alloy. Metall. Mater. Trans. A 2019, 50, 3048–3060. [Google Scholar] [CrossRef]
- Naseri, T.; Larouche, D.; Heugue, P.; Martinez, R.; Breton, F.; Massinon, D. Multiphase modelling of the growth kinetics of precipitates in Al-Cu alloys during artificial aging. Philos. Mag. 2021, 101, 1–24. [Google Scholar] [CrossRef]
- Karov, J.; Youdelis, W. Growth kinetics of θ′–and θ-phases in Al–3Cu alloy. Mater. Sci. Technol. 1986, 2, 1183–1188. [Google Scholar] [CrossRef]
- Papazian, J.M. Calorimetric studies of precipitation and dissolution kinetics in aluminum alloys 2219 and 7075. Metall. Trans. A 1982, 13, 761–769. [Google Scholar] [CrossRef]
- Lifshitz, I.M.; Slyozov, V.V. The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 1961, 19, 35–50. [Google Scholar] [CrossRef]
- Wagner, C. Theorie der alterung von niederschlägen durch umlösen (Ostwald-reifung). Z. Elektrochem. Berichte Bunsenges. Phys. Chem. 1961, 65, 581–591. [Google Scholar] [CrossRef]
- Boyd, J.; Nicholson, R. The coarsening behaviour of θ″ and θ′ precipitates in two Al-Cu alloys. Acta Metall. 1971, 19, 1379–1391. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, Y.; Zhang, Z. Theoretical and experimental study of precipitation and coarsening kinetics of θ′ phase in Al–Cu alloy. Vacuum 2021, 189, 110263. [Google Scholar] [CrossRef]
- Merle, P.; Fouquet, F. Coarsening of θ′ plates in Al-Cu alloys—I. experimental determination of mechanisms. Acta Metall. 1981, 29, 1919–1927. [Google Scholar] [CrossRef]
- Brown, L. Direct observation of coarsening in Al-Cu alloys. Acta Metall. 1985, 33, 1391–1398. [Google Scholar] [CrossRef]
- Panseri, C.; Federighi, T. A resistometric study of pre-precipitation in Al-10% Zn. Acta Metall. 1960, 8, 217–238. [Google Scholar] [CrossRef]
- Panseri, C.; Federighi, T. Evidence for the interaction between Mg atoms and vacancies in Al-Zn 10%-Mg 0.1% alloy. Acta Metall. 1963, 11, 575–584. [Google Scholar] [CrossRef]
- Olita, M.; Hamamoto, T. GP zones and Clusters in Al· Zn Alloy and Al Cu Alloy. Mem. Sch. Eng. Okayama Univ. 1975, 10, 39–47. [Google Scholar]
- Starke, E.A., Jr. Heat-treatable aluminum alloys. In Treatise on Materials Science & Technology; Elsevier: Amsterdam, The Netherlands, 1989; Volume 31, pp. 35–63. [Google Scholar]
- Hull, D.; Bacon, D.J. Introduction to Dislocations, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2011; Volume 14, 502p. [Google Scholar]
- Frank, F.C.; Read, W.T., Jr. Multiplication Processes for Slow Moving Dislocations. Phys. Rev. 1950, 79, 722–723. [Google Scholar] [CrossRef]
- Murray, J.L. The aluminium-copper system. Int. Met. Rev. 1985, 30, 211–234. [Google Scholar] [CrossRef]
- Silcock, J.; Heal, T. The θ’ structure in aluminium–copper alloys. Acta Crystallogr. 1956, 9, 680. [Google Scholar] [CrossRef]
- Yang, J.; Liu, C.; Ma, P.; Chen, L.; Zhan, L.; Yan, N. Superposed hardening from precipitates and dislocations enhances strength-ductility balance in Al-Cu alloy. Int. J. Plast. 2022, 158, 103413. [Google Scholar] [CrossRef]
- Yan, J.; Starink, M.; Gao, N. Modeling of Precipitation Hardening of Al-Cu-Mg Alloys. In Proceedings of the 9th International Conference on Aluminium Alloys (2004), Brisbane, Australia, 2–5 August 2004; pp. 926–932. [Google Scholar]
- Weakley-Bollin, S.; Donlon, W.; Donlon, W.; Wolverton, C.; Allison, J.; Jones, J. Modeling the age-hardening behavior of Al-Si-Cu alloys. Metall. Mater. Trans. A 2004, 35, 2407–2418. [Google Scholar] [CrossRef]
- Wilm, A. Verfahren zum Veredeln von magnesiumhaltigen Aluminiumlegierungen. Patent no DRP244554, 20 March 1909. [Google Scholar]
- Wilm, A. Physical metallurgical experiments on aluminium alloys containing magnesium. Metallurgie 1911, 8, 223. [Google Scholar]
- Gayle, F.W.; Goodway, M. Precipitation hardening in the first aerospace aluminum alloy: The wright flyer crankcase. Science 1994, 266, 1015–1017. [Google Scholar] [CrossRef]
- Merica, P.D.; Waltenberg, R.G.; Scott, H. Heat Treatment of Duralumin; US Government Printing Office: Washington, DC, USA, 1919.
- Rosenhain, W. Abstracted by Tanabe. J. Inst. Met. 1924, 32, 438. [Google Scholar]
- Jeffries, Z.; Archer, R.S. The Science of Metals; McGraw-Hill: Columbus, OH, USA, 1924. [Google Scholar]
- Gayler, M.L.; Preston, G. The age-hardening of some aluminium alloys. J. Inst. Met. 1929, 41, 191–247. [Google Scholar]
- Merica, P.D. The age-hardening of metals. Trans. Am. Inst. Min. Metall. Eng. 1932, 99, 13–54. [Google Scholar]
- Hengstenberg, J.; Wassermann, G. Über röntgenographische Untersuchungen der Kaltvergütung des Dur aluminiums. Z. Metallkde. 1931, 23, 141. [Google Scholar]
- Mehl, R.; Barrett, C.; Rhines, F. Studies upon the Widmanstätten Structure, III. The Aluminum-rich Alloys of Aluminum with Copper, and of Aluminum with Magnesium and Silicon. Trans. AIME 1932, 99, 203–229. [Google Scholar]
- Schmid, E.; Wassermann, G. Versuche zum Duraluminproblem. Metallwirtsch 1928, 7, 1329–1334. [Google Scholar]
- Wassermann, G.; Weerts, J. On the mechanism of CuAl 2-precipitation in an age-hardenable aluminium alloy. Metallwirtsch 1935, 14, 605. [Google Scholar]
- Fink, W.; Smith, D. Lattice Parameter Measurements No Criterion. Min. Metall. 1935, 16, 228. [Google Scholar]
- Fink, W.L.; Smith, D.W. Age-hardening of Aluminum Alloys, I-Aluminumcopper Alloy. Trans. AIME 1936, 122, 284. [Google Scholar]
- Preston, G. LXXIV. The diffraction of X-rays by an age-hardening alloy of aluminium and copper. The structure of an intermediate phase. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1938, 26, 855–871. [Google Scholar] [CrossRef]
- Mehl, R.F.; Jetter, L.K. The Mechanism of Precipitation from Solid Solution. The Theory of Age Hardening. In ASM Symposium; American Society for Metals: Cleveland, OH, USA, 1940; pp. 342–438. [Google Scholar]
- Gayler, M.; Parkhouse, R. The Ageing of High Purity 4 per Cent. Copper-Aluminium Alloy. Jour. lnst. Met. 1940, 66, 67–84. [Google Scholar]
- Gayler, M. The Ageing of a High Purity Alu minium Alloy Containing 4% of Copper. J. Inst. Met. 1946, 70, 243–263. [Google Scholar]
- Gayler, M.L. The microscopic analysis of intermediate phases in some age-hardening alloys. Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 1939, 173, 83–91. [Google Scholar] [CrossRef]
- Guinier, A. Le mécanisme de la précipitation dans un cristal de solution solide métallique.-Cas des systèmes aluminium-cuivre et aluminium-argent. J. Phys. Radium 1942, 3, 124–136. [Google Scholar] [CrossRef]
- Dahmen, U.; Westmacott, K. Ledge structure and the mechanism of θ′ precipitate growth in Al-Cu. Phys. Status Solidi A 1983, 80, 249–262. [Google Scholar] [CrossRef]
- Heimendahl, M.v.; Wassermann, G. Klektronenmikroskopische Untersuchungen an Ausscheidungen einer Aluminium-Kupfer-Legierung. Int. J. Mater. Res. 1962, 53, 275–283. [Google Scholar] [CrossRef]
- Vaughan, D.; Silcock, J. Electron microscope observations of the formation of θ from θ′ in A1–4% Cu. Acta Metall. 1964, 12, 1463–1466. [Google Scholar] [CrossRef]
- Laird, C.; Aaronson, H. Mechanisms of formation of θ and dissolution of θ′ precipitates in an Al-4% Cu alloy. Acta Metall. 1966, 14, 171–185. [Google Scholar] [CrossRef]
- Guinier, A. Un nouveau type de diagrammes de rayons X. Comptes Rendus Hebd. Seánces L’academie Sci. 1938, 206, 1641–1643. [Google Scholar]
- Calvet, J.; Jacquet, P.; Guinier, A. Sur le durcissement par vieillissement d’un alliage aluminium-cuivre. Comptes Rendus Hebd. Seánces L’academie Sci. 1938, 206, 1972–1974. [Google Scholar]
- Guinier, A. Structure of age-hardened aluminium-copper alloys. Nature 1938, 142, 569–570. [Google Scholar] [CrossRef]
- Guinier, A. Diffraction of X-rays of very small angles—Application to the study of ultramicroscopic phenomenon. Ann. Phys. 1939, 12, 161–237. [Google Scholar] [CrossRef]
- Preston, G. The diffraction of X-rays by age-hardening aluminium copper alloys. Proc. R Soc. London. Ser. A Math. Phys. Sci. 1938, 167, 526–538. [Google Scholar] [CrossRef]
- Guinier, A. Interprétation de la diffusion anormale des rayons X par les alliages à durcissement structural. Acta Crystallogr. 1952, 5, 121–130. [Google Scholar] [CrossRef]
- Gerold, V. Röntgenographische Untersuchungen über die Aushärtung einer Aluminium-Kupfer-Legierung mit Kleinwinkel-Schwenkaufnahmen*. Z. Met. 1954, 45, 593–599. [Google Scholar] [CrossRef]
- Gerold, V. The structure of Guinier–Preston zones in aluminium-copper alloys. Acta Cryst. 1958, 11, 10.1107. [Google Scholar]
- Toman, K. The structure of Guinier–Preston zones. II. The room-temperature ageing of the Al–Cu alloy. Acta Crystallogr. 1957, 10, 187–190. [Google Scholar] [CrossRef]
- Toman, K. A note on the structure of Guinier–Preston zones in Al–Cu alloys. Acta Crystallogr. 1960, 13, 60. [Google Scholar] [CrossRef]
- Nicholson, R.; Nutting, J. Direct observation of the strain field produced by coherent precipitated particles in an age-hardened alloy. Philos. Mag. A J. Theor. Exp. Appl. Phys. 1958, 3, 531–535. [Google Scholar]
- Thomas, G. The Structure of Precipitation-Hardened Alloys. In Electron Microscopy and Strength of Crystals; Wiley-Interscience: New York, NY, USA, 1963; pp. 793–859. [Google Scholar]
- Nicholson, R. Electron-microscopic studies of precipitation in aluminium alloys. J. Inst. Met. 1959, 87, 429–438. [Google Scholar]
- Hirsch, P.B.; Howie, A.; Nicholson, R.; Pashley, D.W.; Whelan, M.J.; Marton, L.L. Electron Microscopy of Thin Crystals; Butterworths: London, UK, 1965. [Google Scholar]
- Doi, K. The structure analysis of a Guinier–Preston zone by means of a Fourier method. Acta Crystallogr. 1960, 13, 45–49. [Google Scholar] [CrossRef]
- Thomas, A.D., Jr. The Structure of a Guinier–Preston Zone; Purdue University: West Lafayette, IN, USA, 1961. [Google Scholar]
- Parsons, J.; Rainville, M.; Hoelke, C. Influence of crystalline defects on 2-beam crystal lattice images-Experimental. Philos. Mag. 1970, 21, 1105–1117. [Google Scholar] [CrossRef]
- Phillips, V. Lattice resolution measurement of strain fields at Guinier–Preston zones in Al-3.0% Cu. Acta Metall. 1973, 21, 219–228. [Google Scholar] [CrossRef]
- Fontaine, A.; Lagarde, P.; Naudon, A.; Raoux, D.; Spanjaard, D. EXAFS studies on Al-Cu alloys. Philos. Mag. B 1979, 40, 17–30. [Google Scholar] [CrossRef]
- Auvray, X.; Georgopoulos, P.; Cohen, J. The structure of GP I zones in Al-1.7 at.% Cu. Acta Metall. 1981, 29, 1061–1075. [Google Scholar] [CrossRef]
- Casanove-Lahana, M.; Dorignac, D.; Jouffrey, B. Computed High-Resolution Guinier–Preston Zone Images in an Al-Cu Alloy. In Electron Microscopy and Analysis, 1981: Proceedings of the Institute of Physics Electron Microscopy and Analysis Group Conference Held at the University of Cambridge, 7–10 September 1981 (EMAG 81), Cambridge, UK, 7–10 September 1981; Institute of Physics Publishing (GB): London, UK, 1982; p. 377. [Google Scholar]
- Sato, T.; Kojima, Y.; Takahashi, T. Observations of the microstructure of pre-precipitates in an Al–3% Cu alloy by a lattice imaging technique. Trans. Jpn. Inst. Met. 1982, 23, 461–472. [Google Scholar] [CrossRef]
- Matsubara, E.; Cohen, J. The GP zones in Al-Cu alloys—I. Acta Metall. 1985, 33, 1945–1955. [Google Scholar] [CrossRef]
- James, D.; Liedl, G. Variations in the structure of Guinier–Preston zones during aging. Acta Crystallogr. 1965, 18, 678–681. [Google Scholar] [CrossRef]
- Höno, K.; Satoh, T.; Hirano, K.-I. Evidence of multi-layer GP zones in Al-1· 7at.%, Cu alloy. Philos. Mag. A 1986, 53, 495–504. [Google Scholar] [CrossRef]
- Hono, K.; Hashizume, T.; Hasegawa, Y.; Hirano, K.; Sakura, T. A study of multi-layer GP zones in an A1-1.7 at.% Cu alloy by atom-probe fim. Scr. Metall. 1986, 20, 487–492. [Google Scholar] [CrossRef]
- Karlík, M.; Bigot, A.; Jouffrey, B.; Auger, P.; Belliot, S. HREM, FIM and tomographic atom probe investigation of Guinier–Preston zones in an Al–1.54 at% Cu alloy. Ultramicroscopy 2004, 98, 219–230. [Google Scholar] [CrossRef]
- Kelly, A.; Nicholson, R. Precipitate hardening. Prog. Mater. Sci. 1963, 10, 216. [Google Scholar] [CrossRef]
- Phillips, V.A. High resolution electron microscope observations on precipitation in Al-3.0% Cu alloy. Acta Metall. 1975, 23, 751–767. [Google Scholar] [CrossRef]
- Yoshida, H.; Cockayne, D.; Whelan, M. A study of Guinier–Preston zones in aluminium-copper alloys using the weak-beam technique of electron microscopy. Philos. Mag. 1976, 34, 89–100. [Google Scholar] [CrossRef]
- Ajika, N.; Endoh, H.; Hashimoto, H.; Tomita, M.; Yoshida, H. Interpretation of atomic-resolution electron microscope images of Guiner–Preston zones in aluminium-copper alloys. Philos. Mag. A 1985, 51, 729–744. [Google Scholar] [CrossRef]
- Abe, T.; Miyazaki, K.; Hirano, K.-I. Imaging of pure Al and aged Al-4WT% Cu alloys by field-ion microscope. Acta Metall. 1982, 30, 357–366. [Google Scholar] [CrossRef]
- Osamura, K.; Murakami, Y.; Sato, T.; Takahashi, T.; Abe, T.; Hirano, K. Structure of GP zones in an Al-1.7 at.% Cu alloy aged for 14 years at room temperature. Acta Metall. 1983, 31, 1669–1673. [Google Scholar] [CrossRef]
- Sato, T.; Takahashi, T. High resolution electron microscopy on the layered structures of GP zones in an Al-1.7 at% Cu alloy. Scr. Metall. 1988, 22, 941–946. [Google Scholar] [CrossRef]
- Wada, M.; Kita, H.; Mori, T. FIM observation of GP zones in an Al-4% Cu alloy. Acta Metall. 1985, 33, 1631–1636. [Google Scholar] [CrossRef]
- Yoshida, H.; Hashimoto, H.; Yokota, Y.; Ajika, N. High resolution lattice images of GP zones in an Al-3.97 wt% Cu alloy. Trans. Jpn. Inst. Met. 1983, 24, 378–385. [Google Scholar] [CrossRef]
- Sato, T.; Takahashi, T. High resolution electron microscopy studies on the precipitation in an Al-4% Cu alloy. Trans. Jpn. Inst. Met. 1983, 24, 386–395. [Google Scholar] [CrossRef]
- Jouffrey, B.; Dorignac, D. Observation of monolayer Guinier–Preston zones in Al-at 1.7% Cu. J. De Phys. I 1992, 2, 1067–1074. [Google Scholar] [CrossRef]
- Jouffrey, B.; Karlik, M. First attempt towards the direct determination of the Guinier–Preston zones (GP1) copper content in Al-1.7 at% Cu alloy. Microsc. Microanal. Microstruct. 1992, 3, 243–257. [Google Scholar] [CrossRef]
- Alfonso, C.; Charai, A.; Zahra, C.; Zahra, A. HREM Investigation of G.P. Zones and Precipitates in Al-1.7at.%Cu and Al-0.9at.%Cu-1.5at.%Mg Alloys. In Proceedings of the 13th International Congress on Electron Microscopy, Paris, France, 17–22 July 1994; Jouffrey, B., Colliex, C., Eds.; Editions de physique: Paris, France, 1994; Volume 2A, pp. 689–690. [Google Scholar]
- Fujita, H.; Lu, C. An Electron Microscope Study of GP Zones and θ′-Phase in Al-1.6 at% Cu Crystals. Mater. Trans. JIM 1992, 33, 892–896. [Google Scholar] [CrossRef]
- Fujita, H.; Lu, C. Formation Mechanisms of GP Zones and θ′-Phase in Al–Cu Crystals. Mater. Trans. JIM 1992, 33, 897–903. [Google Scholar] [CrossRef]
- Takeda, M.; Oka, H.; Onaka, I. A New Approach to the Study of the GP (I) Zone Stability in Al-Cu Alloy by Means of Extended Hiickel Molecular Orbital Calculations. Phys. Status Solidi A 1992, 132, 305–322. [Google Scholar] [CrossRef]
- Karlik, M.; Jouffrey, B. High resolution electron microscopy study of Guinier-Preston (GP1) zones in Al-Cu based alloys. Acta Mater. 1997, 45, 3251–3263. [Google Scholar] [CrossRef]
- Konno, T.; Hiraga, K.; Kawasaki, M. Guinier-Preston (GP) zone revisited: Atomic level observation by HAADF-TEM technique. Scr. Mater. 2001, 44, 2303–2307. [Google Scholar] [CrossRef]
- Konno, T.J.; Kawasaki, M.; Hiraga, K. Guinier-Preston zones observed by high-angle annular detector dark-field scanning transmission electron microscopy. Philos. Mag. B 2001, 81, 1713–1724. [Google Scholar] [CrossRef]
- Chen, B.; Dong, L.; Hu, B.; Liu, Z. The Effect of Cu Addition on the Precipitation Sequence in the Al-Si-Mg-Cr Alloy. Materials 2022, 15, 8221. [Google Scholar] [CrossRef] [PubMed]
- Hamaoka, T.; Jao, C.-Y.; Zhang, X.; Oshima, Y.; Takeguchi, M. Three-dimensional characterization of Guinier–Preston zones in an Al–Cu alloy using depth-sectioning technique. Microscopy 2017, 66, 78–88. [Google Scholar] [CrossRef] [PubMed]
- von Heimendahl, M.; Wassermann, G. Elektronenmikroskopische Untersuchungen an Ausscheidungen einer Aluminium-Kupfer-Legierung (II. Teil). Int. J. Mater. Res. 1963, 54, 385–392. [Google Scholar] [CrossRef]
- Shen, Z.; Ding, Q.; Liu, C.; Wang, J.; Tian, H.; Li, J.; Zhang, Z. Atomic-scale mechanism of the θ ″→ θ′ phase transformation in Al-Cu alloys. J. Mater. Sci. Technol. 2017, 33, 1159–1164. [Google Scholar] [CrossRef]
- Son, S.; Takeda, M.; Mitome, M.; Bando, Y.; Endo, T. Precipitation behavior of an Al–Cu alloy during isothermal aging at low temperatures. Mater. Lett. 2005, 59, 629–632. [Google Scholar] [CrossRef]
- Li, Z.; Ren, W.; Chen, H.; Nie, J. θ′′′ precipitate phase, GP zone clusters and their origin in Al-Cu alloys. J. Alloys Compd. 2023, 930, 167396. [Google Scholar] [CrossRef]
- Ouyang, Y.; Chen, H.; Tao, X.; Gao, F.; Peng, Q.; Du, Y. A first-principles study of the structural, mechanical and electronic properties of precipitates of Al 2 Cu in Al–Cu alloys. Phys. Chem. Chem. Phys. 2018, 20, 967–976. [Google Scholar] [CrossRef]
- Liu, H.; Wilson, N.; Yang, Q.; Nie, J. A first-principles study of the formation of θ′′ phase in Al–Cu alloys. Philos. Mag. Lett. 2017, 97, 197–205. [Google Scholar] [CrossRef]
- Bourgeois, L.; Dwyer, C.; Weyland, M.; Nie, J.-F.; Muddle, B.C. Structure and energetics of the coherent interface between the θ′ precipitate phase and aluminium in Al–Cu. Acta Mater. 2011, 59, 7043–7050. [Google Scholar] [CrossRef]
- Gao, L.; Li, K.; Ni, S.; Du, Y.; Song, M. The growth mechanisms of θ′ precipitate phase in an Al-Cu alloy during aging treatment. J. Mater. Sci. Technol. 2021, 61, 25–32. [Google Scholar] [CrossRef]
- Westmacott, K.; Dahmen, U. Recent TEM studies of precipitate growth mechanisms. Rev. Phys. Appliquée 1986, 21, 757–773. [Google Scholar] [CrossRef]
- Ma, P.; Liu, C.; Ma, Z.; Zhan, L.; Huang, M. Formation of a new intermediate phase and its evolution toward θ’during aging of pre-deformed Al-Cu alloys. J. Mater. Sci. Technol. 2019, 35, 885–890. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, X.; Hao, Y.; Chen, B. Ageing evolution process of the θ′-phase in Al-Si-Cu-Mg alloys: Atomic-scale observations and first-principles calculations. J. Alloys Compd. 2023, 968, 171787. [Google Scholar] [CrossRef]
- Zhou, L.; Wu, C.; Xie, P.; Niu, F.; Ming, W.; Du, K.; Chen, J. A hidden precipitation scenario of the θ′-phase in Al-Cu alloys. J. Mater. Sci. Technol. 2021, 75, 126–138. [Google Scholar] [CrossRef]
- Zuiko, I.; Kaibyshev, R. Effect of plastic deformation on the ageing behaviour of an Al–Cu–Mg alloy with a high Cu/Mg ratio. Mater. Sci. Eng. A 2018, 737, 401–412. [Google Scholar] [CrossRef]
- Yan, J.; Xiong, X.; Wu, C.; Ming, W.; Xie, P.; Chen, J. A secondary high-temperature precursor of the θ′-phase in Al-Cu-(Sc) alloys. J. Mater. Sci. Technol. 2025, 212, 55–66. [Google Scholar] [CrossRef]
- Vaithyanathan, V.; Wolverton, C.; Chen, L. Multiscale modeling of θ′ precipitation in Al–Cu binary alloys. Acta Mater. 2004, 52, 2973–2987. [Google Scholar] [CrossRef]
- Hu, S.; Baskes, M.; Stan, M.; Chen, L. Atomistic calculations of interfacial energies, nucleus shape and size of θ′ precipitates in Al–Cu alloys. Acta Mater. 2006, 54, 4699–4707. [Google Scholar] [CrossRef]
- Kim, K.; Zhou, B.-C.; Wolverton, C. Interfacial stability of θ′/Al in Al-Cu alloys. Scr. Mater. 2019, 159, 99–103. [Google Scholar] [CrossRef]
- Chisholm, M.; Shin, D.; Duscher, G.; Oxley, M.P.; Allard, L.; Poplawsky, J.D.; Shyam, A. Atomic structures of interfacial solute gateways to θ′ precipitates in Al-Cu alloys. Acta Mater. 2021, 212, 116891. [Google Scholar] [CrossRef]
- Sankaran, R.; Laird, C. Effect of trace additions Cd, In and Sn on the interfacial structure and kinetics of growth of θ′ plates in Al-Cu alloy. Mater. Sci. Eng. 1974, 14, 271–279. [Google Scholar] [CrossRef]
- Shin, D.; Shyam, A.; Lee, S.; Yamamoto, Y.; Haynes, J.A. Solute segregation at the Al/θ′-Al2Cu interface in Al-Cu alloys. Acta Mater. 2017, 141, 327–340. [Google Scholar] [CrossRef]
- Chen, B.; Pan, L.; Wang, R.; Liu, G.; Cheng, P.; Xiao, L.; Sun, J. Effect of solution treatment on precipitation behaviors and age hardening response of Al–Cu alloys with Sc addition. Mater. Sci. Eng. A 2011, 530, 607–617. [Google Scholar] [CrossRef]
- Jiang, L.; Li, J.; Liu, G.; Wang, R.; Chen, B.; Zhang, J.; Sun, J.; Yang, M.; Yang, G.; Yang, J. Length-scale dependent microalloying effects on precipitation behaviors and mechanical properties of Al–Cu alloys with minor Sc addition. Mater. Sci. Eng. A 2015, 637, 139–154. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, P.; Shao, D.; Wang, R.; Cao, L.; Zhang, J.; Liu, G.; Chen, B.; Sun, J. The influence of Sc solute partitioning on the microalloying effect and mechanical properties of Al-Cu alloys with minor Sc addition. Acta Mater. 2016, 119, 68–79. [Google Scholar] [CrossRef]
- Gao, Y.; Cao, L.; Yang, C.; Zhang, J.; Liu, G.; Sun, J. Co-stabilization of θ′-Al2Cu and Al3Sc precipitates in Sc-microalloyed Al–Cu alloy with enhanced creep resistance. Mater. Today Nano 2019, 6, 100035. [Google Scholar] [CrossRef]
- Gao, Y.; Kuang, J.; Zhang, J.; Liu, G.; Sun, J. Tailoring precipitation strategy to optimize microstructural evolution, aging hardening and creep resistance in an Al–Cu–Sc alloy by isochronal aging. Mater. Sci. Eng. A 2020, 795, 139943. [Google Scholar] [CrossRef]
- Gao, Y.; Cao, L.; Kuang, J.; Zhang, J.; Liu, G.; Sun, J. Assembling dual precipitates to improve high-temperature resistance of multi-microalloyed Al–Cu alloys. J. Alloys Compd. 2020, 822, 153629. [Google Scholar] [CrossRef]
- Yang, C.; Cao, L.; Gao, Y.; Cheng, P.; Zhang, P.; Kuang, J.; Zhang, J.; Liu, G.; Sun, J. Nanostructural Sc-based hierarchy to improve the creep resistance of Al–Cu alloys. Mater. Des. 2020, 186, 108309. [Google Scholar] [CrossRef]
- Zhang, D.-l.; Jiong, W.; Yi, K.; You, Z.; Yong, D. First-principles investigation on stability and electronic structure of Sc-doped θ′/Al interface in Al−Cu alloys. Trans. Nonferrous Met. Soc. China 2021, 31, 3342–3355. [Google Scholar] [CrossRef]
- Gao, Y.; Kuang, J.; Liu, G.; Sun, J. Effect of minor Sc and Fe co-addition on the microstructure and mechanical properties of Al-Cu alloys during homogenization treatment. Mater. Sci. Eng. A 2019, 746, 11–26. [Google Scholar] [CrossRef]
- Gao, Y.; Cao, L.; Kuang, J.; Song, H.; Liu, G.; Zhang, J.; Sun, J. Solute repositioning to tune the multiple microalloying effects in an Al–Cu alloy with minor Sc, Fe and Si addition. Mater. Sci. Eng. A 2021, 803, 140509. [Google Scholar] [CrossRef]
- Gao, X.; Nie, J.F.; Muddle, B.C. Effects of Si additions on the precipitation hardening response in Al-Cu-Mg (-Ag) alloys. Mater. Sci. Forum 1996, 217–222, 1251–1256. [Google Scholar] [CrossRef]
- Mitlin, D.; Morris, J.; Radmilovic, V. Catalyzed precipitation in Al-Cu-Si. Metall. Mater. Trans. A 2000, 31, 2697–2711. [Google Scholar] [CrossRef]
- Biswas, A.; Siegel, D.J.; Wolverton, C.; Seidman, D.N. Precipitates in Al–Cu alloys revisited: Atom-probe tomographic experiments and first-principles calculations of compositional evolution and interfacial segregation. Acta Mater. 2011, 59, 6187–6204. [Google Scholar] [CrossRef]
- Liu, L.; Chen, J.; Wang, S.; Liu, C.; Yang, S.; Wu, C. The effect of Si on precipitation in Al–Cu–Mg alloy with a high Cu/Mg ratio. Mater. Sci. Eng. A 2014, 606, 187–195. [Google Scholar] [CrossRef]
- Jiang, L.; Zhao, Z.; Wang, G. The Effects on Stability and Electronic Structure of Si-Segregated θ′/Al Interface Systems in Al-Cu Alloys. Coatings 2024, 14, 879. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, G.; Ye, M.; Wang, S.; Wang, L.; Rong, Y. A precipitation hardening model for Al-Cu-Cd alloys. Mater. Des. 2018, 151, 123–132. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, G.; Ji, Y.; Wang, L.; Rong, Y.; Chen, L.-Q. Study of θ’precipitation behavior in Al-Cu-Cd alloys by phase-field modeling. Mater. Sci. Eng. A 2019, 746, 105–114. [Google Scholar] [CrossRef]
- Bai, H.; Wu, X.; Zhao, W.; Huangfu, B.; Cheng, S.; Wu, Z.; Liu, Y.; Gao, Y.; Liu, X. Enhanced strength-ductility synergy in an Al–Cu alloy via Cd-induced hybrid θ ″+ θ′ precipitation. J. Mater. Res. Technol. 2024, 30, 1834–1842. [Google Scholar] [CrossRef]
- Tsivoulas, D.; Robson, J. Heterogeneous Zr solute segregation and Al3Zr dispersoid distributions in Al–Cu–Li alloys. Acta Mater. 2015, 93, 73–86. [Google Scholar] [CrossRef]
- Niu, G.; Zhuo, Z.; Mao, J. Inclined θ′ precipitates with terraced Cu/Mn-rich multilayers in Al–Cu alloys. J. Mater. Res. Technol. 2024, 30, 424–430. [Google Scholar] [CrossRef]
- Shyam, A.; Roy, S.; Shin, D.; Poplawsky, J.D.; Allard, L.; Yamamoto, Y.; Morris, J.; Mazumder, B.; Idrobo, J.; Rodriguez, A. Elevated temperature microstructural stability in cast AlCuMnZr alloys through solute segregation. Mater. Sci. Eng. A 2019, 765, 138279. [Google Scholar] [CrossRef]
- Poplawsky, J.D.; Milligan, B.K.; Allard, L.F.; Shin, D.; Shower, P.; Chisholm, M.F.; Shyam, A. The synergistic role of Mn and Zr/Ti in producing θ′/L12 co-precipitates in Al-Cu alloys. Acta Mater. 2020, 194, 577–586. [Google Scholar] [CrossRef]
- Chen, X.; Chen, X.; Wang, Z.; Chen, K.; Wang, Y. The origins of segregation behaviors of solute atoms and their effect on the strength of α-Al//θ′-Al 2 Cu interfaces in Al–Cu alloys. Phys. Chem. Chem. Phys. 2022, 24, 18370–18392. [Google Scholar] [CrossRef]
- Petrik, M.; Gornostyrev, Y.N.; Korzhavyi, P.A. Segregation of alloying elements to stabilize θ′ phase interfaces in Al-Cu based alloys. Scr. Mater. 2021, 202, 114006. [Google Scholar] [CrossRef]
- Wang, J.; Li, B.; Zhang, C.-H. First principles study on the influence of multi-element doping on the mechanical properties of θ/Al interface in Al-Cu alloy. Mater. Today Commun. 2023, 34, 105114. [Google Scholar] [CrossRef]
- Bourgeois, L.; Dwyer, C.; Weyland, M.; Nie, J.-F.; Muddle, B.C. The magic thicknesses of θ′ precipitates in Sn-microalloyed Al–Cu. Acta Mater. 2012, 60, 633–644. [Google Scholar] [CrossRef]
- Wang, R.; Wen, Y.; Chen, B. Sn microalloying Al–Cu alloys with enhanced fracture toughness. Mater. Sci. Eng. A 2021, 814, 141243. [Google Scholar] [CrossRef]
- Yoshimura, R.; Konno, T.J.; Abe, E.; Hiraga, K. Transmission electron microscopy study of the evolution of precipitates in aged Al–Li–Cu alloys: The θ′ and T1 phases. Acta Mater. 2003, 51, 4251–4266. [Google Scholar] [CrossRef]
- Yoshimura, R.; Konno, T.J.; Abe, E.; Hiraga, K. Transmission electron microscopy study of the early stage of precipitates in aged Al–Li–Cu alloys. Acta Mater. 2003, 51, 2891–2903. [Google Scholar] [CrossRef]
- Duan, S.; Wu, C.; Gao, Z.; Cha, L.; Fan, T.; Chen, J. Interfacial structure evolution of the growing composite precipitates in Al-Cu-Li alloys. Acta Mater. 2017, 129, 352–360. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, P.; Jiang, Y.; Wang, Y.; Liu, C. First-principles insights into complex interplays among nano-phases in an Al-Cu-Li-Zr alloy. Acta Mater. 2022, 239, 118304. [Google Scholar] [CrossRef]
- Ma, J.; Liu, X.; Yan, D.; Rong, L. A novel GP-Li precursor and the correlated precipitation behaviors in Al-Cu-Li alloys with different Cu/Li ratio. Acta Mater. 2023, 243, 118442. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Z.; Chen, Z.; Tsalanidis, A.; Weyland, M.; Findlay, S.; Allen, L.J.; Li, J.; Medhekar, N.V.; Bourgeois, L. The enhanced theta-prime (θ′) precipitation in an Al-Cu alloy with trace Au additions. Acta Mater. 2017, 125, 340–350. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, Y.; Wilson, N.; Liu, S.; Zhao, X.; Chen, H.; Li, J.; Zheng, Z.; Bourgeois, L.; Nie, J.-F. Solute segregation induced sandwich structure in Al-Cu (-Au) alloys. Acta Mater. 2020, 184, 17–29. [Google Scholar] [CrossRef]
- Rosalie, J.M.; Bourgeois, L. Silver segregation to θ′(Al2Cu)–Al interfaces in Al–Cu–Ag alloys. Acta Mater. 2012, 60, 6033–6041. [Google Scholar] [CrossRef]
- Cai, Q.; Fang, C.; Mendis, C.; Chang, I.T.; Cantor, B. Thermal behaviour and microstructure evolution of new ternary eutectic alloy in Al-Cu-Si-Ni system. J. Alloys Compd. 2023, 941, 168942. [Google Scholar] [CrossRef]
| Phase | Composition | Crystal Structure | Lattice Parameters (nm) | Orientation Relationship | Coherency |
|---|---|---|---|---|---|
| GP Zone | Cu-rich layer | Disc on {100}Al | a ≈ 0.405 | Fully coherent with matrix | Coherent |
| θ″ | Al3Cu | Tetragonal | a = 0.404, c = 0.768–0.780 | (001)θ″//(001)Al, [100]θ″//[100]Al | Coherent |
| θ′ | Al2Cu | Body-centered tetragonal | a = 0.404, c = 0.580 | (001)θ′//(001)Al, [100]θ′//[100]Al | Semi-coherent |
| θ | Al2Cu | Body-centered tetragonal | a = 0.6066, c = 0.4874 | (001)θ//(001)Al, [100]θ//[100]Al | Incoherent |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, B. A Comprehensive Review of θ-Series Precipitates in Aluminum Alloys. Materials 2025, 18, 5406. https://doi.org/10.3390/ma18235406
Chen B. A Comprehensive Review of θ-Series Precipitates in Aluminum Alloys. Materials. 2025; 18(23):5406. https://doi.org/10.3390/ma18235406
Chicago/Turabian StyleChen, Bin. 2025. "A Comprehensive Review of θ-Series Precipitates in Aluminum Alloys" Materials 18, no. 23: 5406. https://doi.org/10.3390/ma18235406
APA StyleChen, B. (2025). A Comprehensive Review of θ-Series Precipitates in Aluminum Alloys. Materials, 18(23), 5406. https://doi.org/10.3390/ma18235406
