An Editorial for Mechanical Performance and Microstructural Characterization of Light Alloys (2nd Edition)
Funding
Conflicts of Interest
List of Contributions
- Lacki, P.; Derlatka, A.; Więckowski, W.; Adamus, J. Development of FSW Process Parameters for Lap Joints Made of Thin 7075 Aluminum Alloy Sheets. Materials 2024, 17, 672.
- Wang, Y.; Xiong, L.; Feng, D.; Zhao, S.; Guo, Y. Investigation of the Penetration Performance of the Radial Forging Process for Wrought Aluminium Alloy. Materials 2024, 17, 2065.
- Yang, C.; Cui, X.L.; Guo, C.; Jiang, F.; Yang, P. Mechanical Properties of Aluminum Alloy Tubes Fabricated Through Surface Mechanical Grinding Treatment and Graphene Lubrication Under Biaxial Stress States. Materials 2025, 18, 2038.
- Antolak-Dudka, A.; Czujko, T.; Durejko, T.; Stępniowski, W.J.; Ziętala, M.; Łukasiewicz, J. Comparison of the Microstructural, Mechanical and Corrosion Resistance Properties of Ti6Al4V Samples Manufactured by LENS and Subjected to Various Heat Treatments. Materials 2024, 17, 1166.
- Kluczyński, J.; Sarzyński, B.; Dražan, T.; Łuszczek, J.; Kosturek, R.; Szachogłuchowicz, I. Influence of Process Parameters on Selected Properties of Ti6Al4V Manufacturing via L-PBF Process. Materials 2024, 17, 4384.
- Yue, X.; Xu, K.; Wang, S.; Liu, H.; Guo, S.; Zhao, R.; Xu, G.; Wang, H.; Yue, X. SLM Magnesium Alloy Micro-Arc Oxidation Coating. Materials 2024, 17, 4988.
- Chen, M.; Zhu, L.; Chen, Y.; Dai, S.; Liu, Q.; Xue, Na.; Li, W.; Wang, J.; Huang, Y.; Yang, K.; Shao, L. Effect of Chemical Composition on the Thermoplastic Formability and Nanoindentation of Ti-Based Bulk Metallic Glasses. Materials 2024, 17, 1699.
- Sun, T.; Bao, Q.; Gao, Y.; Li, S.; Li, J.; Wang, H. Transformation of Coherent Twin Boundary into Basal-Prismatic Boundary in HCP-Ti: A Molecular Dynamics Study. Materials 2024, 17, 2165.
- Zuo, D.; Jin, S.; Xu, T.; Zhang, M.; Cui, M.; Ding, H.; Fu, Y. Dynamic Behavior of Ti/Ti Single-Lap Laminated Structure with a Large-Diameter Bolt-Based Electromagnetic Force: Numerical Simulation and Experimental Verification. Materials 2025, 18, 1473.
- Huang, S.J.; Sanjaya, J.; Adityawardhana, Y.; Kannaiyan, S. Enhancing the Mechanical Properties of AM60B Magnesium Alloys through Graphene Addition: Characterization and Regression Analysis. Materials 2024, 17, 4673.
- Zhang, X.; Jiang, Z.; Zhao, S.; Xie, X.; Xiao, J.; Liu, X.; Wu, Z.; Zhang, Y. Analysis of Bending Deformation and Stress of 6063-T5 Aluminum Alloy Multi-Cavity Tube Filled with Liquid. Materials 2024, 17, 3230.
References
- Ma, Y.; Xiong, H.; Chen, B. Effect of Heat Treatment on Microstructure and Corrosion Behavior of Mg-5Al-1Zn-1Sn Magnesium Alloy. Corros. Sci. 2021, 191, 109759. [Google Scholar] [CrossRef]
- Liu, C.; Liang, N.; Ma, P.; Ding, S.; Zhan, L.; Li, J. Promoting Single-Step Shearing to Improve the Strength-Ductility Synergy in an Al-Cu-Li Alloy. J. Alloys Compd. 2025, 1043, 184193. [Google Scholar] [CrossRef]
- Balpande, A.R.; Karthick, G.; Li, X.; Hu, Q.; Guo, S.; Pradeep, K.G.; Nene, S.S. Superior Tensile Ductility in an Annealed Ti-Rich High Entropy Alloy with Unexpected High Specific Strength. J. Alloys Compd. 2025, 1036, 181784. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J.; Ke, H.; Sun, B.; Zhu, Z.; Wang, Y.; Li, H.; Wang, A.; Zhang, H. On Low-Temperature Strength and Tensile Ductility of Bulk Metallic Glass Composites Containing Stable or Shape Memory β-Ti crystals. Acta Mater. 2022, 222, 117444. [Google Scholar] [CrossRef]
- Yu, M.; Bian, L.; Ping, H.; Cheng, Y.; Wang, T.; Liang, W. Microstructure and Mechanical Properties of a Novel High-Strength Al-6.5Zn-3.5Mg-1.5Cu-0.2Mn-0.2Zr-0.15Sc Crossover Alloy. J. Alloys Compd. 2025, 1044, 184433. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, Y.; Zheng, Y.; Wang, J.; Yan, L.; Zhou, Z.; Lu, Q.; Li, K.; Du, Y. Preparation and Properties of High Strength Al-Mg-Fe-Mn-Sc-Zr Alloy by Laser Powder Bed Fusion with Quasicrystal Enhancement. Mater. Sci. Eng. A 2025, 946, 149106. [Google Scholar] [CrossRef]
- Jin, Z.Q.; Guo, S.; Zhang, Z.Y.; Li, Z.X.; Yi, H.L.; Xie, G.M. Microstructural Evolution and Mechanical Properties of Laser-Welded Novel Al-Si Coated 2 GPa Press-Hardened Steel by Weld Alloying. Mater. Charact. 2025, 228, 115444. [Google Scholar] [CrossRef]
- Vitoshkin, I.; Malikov, A.; Shmakov, A.; Mironova, M.; Gutakovskii, A.; Batsanov, S. In Situ Observation of the Phase Transformations in Al-Cu-Li-Ag Alloy and its Laser Weld. Mater. Charact. 2025, 230, 115695. [Google Scholar] [CrossRef]
- Hu, S.; Huo, Q.; Wang, C.; Zhang, Y.; Zhang, Z.; Xu, S.; Yang, X. Overcoming the Trade-Off between Stretch Formability and Heat Resistance in Magnesium via Alloying Dilute Neodymium. J. Alloys Compd. 2022, 895, 162666. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, T.; Kuang, J.; Huo, Q. Relationship Between Work Hardening Capacity and Compressive Creep Behavior in a Hot-Extruded Mg–6Al–1Zn Alloy Rod. Metall. Mater. Trans. A 2022, 53, 747–753. [Google Scholar] [CrossRef]
- An, Y.; Xi, C.; Li, T.; Huo, Q. One Novel Mg-Y-Ni Dilute Alloy with an Excellent Combination of Strong High-Temperature Strength and Fast Dissolution Rate. J. Alloys Compd. 2025, 1038, 182901. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, Y.; Wen, P.; Yang, Z.; Sha, G.; Wang, W.; Jiao, Z.; Kim, H.S.; Chen, H. Precipitate Evolution in an Ultrahigh-Strength, Carbon-Impurity-Enhanced Maraging Steel Manufactured via Laser Powder Bed Fusion. Acta Mater. 2025, 300, 121455. [Google Scholar] [CrossRef]
- Tang, S.; Chen, G.; Rui, T.; Kou, Z.; Yi, J.; Feng, T.; Zuhailawati, H.; Wilde, G.; Lan, S. Enhancing Strength-Ductility Synergy in Lightweight Complex Concentrated Alloys via Nano-Precipitate Tailored Heterostructures. Acta Mater. 2025, 299, 121468. [Google Scholar] [CrossRef]
- Wang, X.Q.; Zhang, Y.S.; Han, W.Z. Design of High Strength and Wear-Resistance β-Ti Alloy via Oxygen-Charging. Acta Mater. 2022, 227, 117686. [Google Scholar] [CrossRef]
- Panin, A.V.; Kazachenok, M.S.; Shugurov, A.R.; Pribytkov, G.A.; Krukovskii, K.V. Microstructure and Scratch Behavior of TiB/Ti-6Al-4V Composites Fabricated by Wire-Feed Electron Beam Additive Manufacturing. Mater. Lett. 2026, 405, 139741. [Google Scholar] [CrossRef]
- Séchepée, I.; Didon, L.; Bajic, L.; Matsumoto, H. Using Machine Learning as a Supportive Tool to Systematically Study the Tensile Properties of a Ti-6Al-2Sn-4Zr-2Mo-Si Alloy with Various Microstructures: Effects of Texture, Phase Proportions and Grain Size. Mater. Charact. 2025, 225, 115148. [Google Scholar] [CrossRef]
- He, S.; Xiao, F.; Li, L.; Liu, Y.; Zeng, Y.; Gong, M.; Zhou, Y.; Han, J.; Liu, J.; Jin, X. Design Biomedical β-Ti Alloys with Exceptional Strength-Ductility Balance via Domain Knowledge-Based Machine Learning. Acta Mater. 2025, 301, 121550. [Google Scholar] [CrossRef]
- Yi, X.; Bai, X.; Yu, R.; Zhou, X.; Li, R.; Li, F. Microstructure and Mechanical Properties of Laminated Ti-TiBw/Ti Composites Fabricated by Wire Arc Additive Manufacturing. Mater. Charact. 2024, 218, 114512. [Google Scholar] [CrossRef]
- Yu, W.; Yu, H.; Guo, Y.; Zhang, Y.; Liu, Y.; Yang, Y.; Wang, Q.; Yu, Z.; Guo, B. Unveiling the microstructure-property relationships of additively manufactured Ti-Ta bimetal composites. J. Alloys Compd. 2025, 1026, 180439. [Google Scholar] [CrossRef]
- Zhao, K.; Liu, W.; Fan, Q.; Wang, L.; Zhou, Y.; Xie, B.; Yao, J. Simultaneous Enhancement of Strength and Ductility in a near-α Ti-3Al-2.5 V Alloy via Carbon Microalloying. J. Alloys Compd. 2025, 1039, 183211. [Google Scholar] [CrossRef]
- Lenoir, T.; Chéhab, B.; Mouton, I.; Robaut, F.; De Geuser, F.; Gault, B.; Després, A.; Blandin, J.J.; Martin, G. Influence of Ageing on the High-Temperature Mechanical Strength of the Al-4Mn-3Ni-2Cu-1Zr Alloy Produced by Laser Powder Bed Fusion. Mater. Sci. Eng. A 2025, 948, 149372. [Google Scholar] [CrossRef]
- Xu, L.; Liu, X.; Sun, K.; Fu, R.; Wang, G. Corrosion Behavior in Magnesium-Based Alloys for Biomedical Applications. Materials 2022, 15, 2613. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huo, Q. An Editorial for Mechanical Performance and Microstructural Characterization of Light Alloys (2nd Edition). Materials 2025, 18, 5330. https://doi.org/10.3390/ma18235330
Huo Q. An Editorial for Mechanical Performance and Microstructural Characterization of Light Alloys (2nd Edition). Materials. 2025; 18(23):5330. https://doi.org/10.3390/ma18235330
Chicago/Turabian StyleHuo, Qinghuan. 2025. "An Editorial for Mechanical Performance and Microstructural Characterization of Light Alloys (2nd Edition)" Materials 18, no. 23: 5330. https://doi.org/10.3390/ma18235330
APA StyleHuo, Q. (2025). An Editorial for Mechanical Performance and Microstructural Characterization of Light Alloys (2nd Edition). Materials, 18(23), 5330. https://doi.org/10.3390/ma18235330
