Evaluating the Clinical Efficacy of Membrane-Assisted Regenerative Therapy in Peri-Implantitis Management: A Comprehensive Review Incorporating Systematic Review Evidence
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Protocol and Registration
2.3. PICO
2.3.1. Population
2.3.2. Intervention
2.3.3. Comparison
2.3.4. Outcome
2.4. Search Strategy
2.4.1. Medline via PubMed
2.4.2. Cochrane Library
2.4.3. Scopus
2.4.4. Google Scholar
2.5. Study Selection, Assessment and Agreement
2.5.1. Inclusion Criteria
2.5.2. Exclusion Criteria
2.6. Risk-of-Bias Assessment
Risk-of-Bias Evaluation in Included Studies
2.7. Data Analysis
3. Pathophysiology of Peri-Implantitis
4. Regenerative Therapeutic Approaches for Peri-Implantitis
5. Effects of Membrane-Assisted Regenerative Therapy
6. Role of Keratinized Mucosa in Membrane-Assisted Regenerative Therapy
7. Efficient Decontamination Methods in Membrane-Assisted Regenerative Therapy
7.1. Mechanical Decontamination Methods
- Air-Abrasive Techniques: The traditional use of Al2O3 particles has raised concerns about their potential embedding in surrounding tissues. Absorbable powders, such as glycine, NaHCO3, and CaCO3, are now preferred alternatives. Among them, glycine shows high efficacy with minimal implant surface damage. However, complete decontamination remains difficult, particularly in implant thread valleys.
- Implantoplasty: This method mechanically smooths contaminated implant threads to reduce plaque accumulation and surface roughness. A 9-year follow-up study reports an 89% success rate [76]. However, potential limitations include heat generation, structural weakening of the implant, and titanium particle release, which may contribute to peri-implant inflammation. Despite the lack of a clear consensus and ongoing debate over its efficacy, implantoplasty is regarded as a beneficial adjunctive mechanical decontamination procedure that promotes bone-fill and reduces PPD in PI management. Regular post-treatment maintenance is essential for sustaining long-term outcomes (Table 4 & Figure 5).
- The subgroup analysis of 12-month clinical studies using resorbable membranes revealed a quantitative trend favoring implantoplasty (Figure 5). The implantoplasty (+) group showed a significantly greater mean bone-fill gain than the implantoplasty (–) group (p < 0.05, Welch’s t-test), whereas the PPD reduction difference was not statistically significant. This finding suggests that implantoplasty mainly promotes hard-tissue regeneration by creating a smoother and cleaner implant surface that facilitates clot stabilization and bone matrix deposition beneath the membrane. In contrast, soft tissue changes such as pocket reduction appear more influenced by keratinized mucosa width, surgical access, and maintenance than by surface modification alone. In this standardized 12-month resorbable-membrane cohort, implantoplasty appeared to be an effective mechanical decontamination adjunct that enhances the predictability of guided bone regeneration. Nevertheless, some limitations should be acknowledged. The included studies varied in design, defect morphology, adjunctive biologics, decontamination methods, and maintenance protocols, resulting in inevitable heterogeneity. In addition, this analysis was based on study-level mean values rather than patient-level data; therefore, its findings should be interpreted cautiously as hypothesis-generating rather than definitive meta-analytic conclusions. These bone-fill trends are hypothesis-generating and require prospective, controlled trials with standardized protocol.
7.2. Chemical Decontamination Methods
- Citric Acid: Exhibits strong bactericidal activity but may adversely affect tissue regeneration due to its low pH and potential cytotoxicity.
- 3% Hydrogen Peroxide: Reduces inflammation and supports re-osseointegration, particularly when combined with laser therapy.
- Chlorhexidine (CHX): Provides long-term antimicrobial effects but demonstrates limited effectiveness when used alone.
- EDTA (24%): Facilitates the removal of bacterial endotoxins and promotes tissue healing; however, it requires thorough rinsing to mitigate cytotoxic effects.
- Sodium Hypochlorite (NaOCl): Effectively disrupts microbial biofilms; however, its optimal concentration for clinical safety remains under investigation.
- Pharmacological Approaches: Effective bacterial control is critical for managing PI, with antibiotics commonly used as adjuncts to mechanical and chemical decontamination. Adjunctive systemic antibiotics (e.g., amoxicillin + metronidazole) have been reported to improve outcomes in some study [76]. However, antibiotic therapy alone is inadequate when plaque control is poor, as bacterial recolonization can lead to reinfection. Therefore, consistent, supportive PI maintenance is necessary to sustain therapeutic outcomes and prevent recurrence.
7.3. Laser-Based Applications
7.4. Comparative Analysis of Decontamination Modalities
7.5. Clinical Implications of Surface Treatments in Membrane-Assisted Regenerative Therapy
8. Effect of Prosthesis Retention Versus Removal on Membrane-Assisted Regenerative Therapy
| Author (Year) | Wen (2022a, 2022b, 2024) [68,69,80] | Astolfi (2021) [81] | Daugela (2016) [89] * | |||
|---|---|---|---|---|---|---|
| Study Model | Prospective study | Retrospective study | Meta-analysis of systematic literature review | |||
| Crown Removal | Removed & Submerged | Removed, healing abutment maintained | Removed & submerged | Crown maintained | Removed & submerged | Crown or healing abutment maintained |
| Sample Size (patients) | 30 implants (22 patients) | 29 implants (24 patients) | 32 implants (28 patients) | Deppe et al. (2007) [60] Roos-Jansåker et al. (2007a, 2007b, 2014) [46,63,64] Schwarz et al. (2009, 2010, 2013) [77,82,90] Romanos et al. (2008) [83] Roccuzzo et al. (2011) [91] Froum et al. (2012, 2015) [30,53] Aghazadeh et al. (2012) [92] Wohlfahrt et al. (2012) [66] Wiltfang et al. (2012) [65] Matarasso et al. (2014) [31] Jepsen et al. (2015) [11] | ||
| Mechanical Debridement | curettage, implantoplasty, air-powder | curettage, implantoplasty | ||||
| Surface Decontamination | 2.5 mL of 250 mg TC (5 min) | 3–5% H2O2 (2 min) | ||||
| Bone Graft Type | 60% FDBA (Maxgraft®), 20% mineralized bovine bone (Cerabone®), 20% autobone | Bio-Oss® | ||||
| Membrane Type | dPTFE (Cytoplast®) | Collagen membrane (Jason®) | collagen membrane (Jason®) | |||
| Follow-up or Re-entry | 8 mo | 8–12 mo | 2 yr | |||
| Radiographic Bone-Fill (mm) | 3.47 ± 0.41 | 1.63 ± 1.7 | 2.18 ± 1.41 | 2.84 ± 1.78 | 2.17 (95% CIs 1.87–2.47) | 1.91 (95% CIs 1.44–2.39) |
| Clinical Bone-Fill (mm) | 3.22 ± 0.41 | 2.33 ± 1.88 | ||||
| Probing Pocket Depth Reduction (mm) | 2.93 ± 0.25 | 1.51 ± 1.17 | 2.68 (95% CIs 1.71–3.64) | 2.77 (95% CIs 2.23–3.3) | ||
| BOP Reduction to (baseline 100%) | 36.60% | 34.50% | 41.70% | 30% | ||
9. Histological Insights into Membrane-Assisted and Non-Membrane Regenerative Therapy for Peri-Implantitis Management
| Animal Type | Membrane Type | Bone Graft Type | Key Histologic Findings | Regenerative Outcomes | Year | Author | Reference |
|---|---|---|---|---|---|---|---|
| Beagle dog | Non-Resorbable (Gore-Tex®) | Resorbable HA | Space maintenance under membrane; organized new bone formation; limited epithelial downgrowth (histologic observations). | Structured bone fills with membrane support. | 1997 | Hürzeler et al. | [97] |
| Beagle dog | Resorbable | - | Connective tissue encapsulation around the implant neck; no new bone formation at GTR-treated sites; similar outcome with or without submerging. | No significant bone regeneration or re-osseointegration; GTR ineffective under study conditions | 1993 | Grunder et al. | [93] |
| Cynomolgus monkey | Non-Resorbable (Gore-Tex®) | Autogenous | New bone formation under the membrane; soft tissue encapsulation when exposed. | Bone-fill present; integration limited when exposure occurs. | 2003a | Schou et al. | [94] |
| Cynomolgus monkey | Non-Resorbable (Gore-Tex®) | Autogenous | Mature lamellar bone in protected areas; epithelial migration in unprotected zones. | Stable augmentation with ~45% bone-to-implant contact; partial re-osseointegration. | 2003b | Schou et al. | [98] |
| Cynomolgus monkey | Non-Resorbable (Gore-Tex®) | Bio-Oss® | Bio-Oss particles integrated within new bone; occlusal particles surrounded by connective tissue; no osteoclastic activity near particles. | Mean bone-to-implant contact 36%; stable bone-fill, slightly less than autogenous bone models. | 2003c | Schou et al. | [95] |
Independent Evaluation of Preclinical and Clinical Studies
10. Conclusions & Future Directions
10.1. Proposed Framework for Clinical Decision-Making in Membrane-Assisted Regenerative Therapy

10.2. Limitations and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Schwarz, F.; Alcoforado, G.; Guerrero, A.; Jönsson, D.; Klinge, B.; Lang, N.; Mattheos, N.; Mertens, B.; Pitta, J.; Ramanauskaite, A.; et al. Peri-implantitis: Summary and Consensus Statements of Group 3. The 6th EAO Consensus Conference 2021. Clin. Oral Implant. Res. 2021, 32, 245–253. [Google Scholar] [CrossRef]
- Woo, H.N.; Cho, Y.J.; Tarafder, S.; Lee, C.H. The Recent Advances in Scaffolds for Integrated Periodontal Regeneration. Bioact. Mater. 2021, 6, 3328–3342. [Google Scholar] [CrossRef] [PubMed]
- Renvert, S.; Giovannoli, J.-L.; Rinke, S. The Efficacy of Reconstructive Therapy in the Surgical Management of Peri-Implantitis: A 3-Year Follow-up of a Randomized Clinical Trial. J. Clin. Periodontol. 2024, 51, 1267–1276. [Google Scholar] [CrossRef] [PubMed]
- Aghazadeh, A.; Persson, G.R.; Stavropoulos, A.; Renvert, S. Reconstructive Treatment of Peri-Implant Defects-Results after Three and Five Years. Clin. Oral Implant. Res. 2022, 33, 1114–1124. [Google Scholar] [CrossRef]
- Cho, Y.J.; Jeong, Y.T.; Woo, H.N.; Cho, H.W.; Kang, M.G.; Hwang, S.-M.; Lee, J.-M. Reassessing the Use of Membranes in Peri-Implantitis Surgery: A Systematic Review and Meta-Analysis of In Vivo Studies. J. Funct. Biomater. 2025, 16, 262. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Berglundh, T.; Armitage, G.; Araujo, M.G.; Avila-Ortiz, G.; Blanco, J.; Camargo, P.M.; Chen, S.; Cochran, D.; Derks, J.; Figuero, E.; et al. Peri-Implant Diseases and Conditions: Consensus Report of Workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Clin. Periodontol. 2018, 45, S286–S291. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Altman, D.G.; Gotzsche, P.C.; Juni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.C.; et al. The Cochrane Collaboration’s Tool for Assessing Risk of Bias in Randomised Trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef]
- Schwarz, F.; Derks, J.; Monje, A.; Wang, H.-L. Peri-Implantitis. J. Clin. Periodontol. 2018, 45, S246–S266. [Google Scholar] [CrossRef]
- Ericsson, I.; Persson, L.G.; Berglundh, T.; Marinello, C.P.; Lindhe, J.; Klinge, B. Different Types of Inflammatory Reactions in Peri-Implant Soft Tissues. J. Clin. Periodontol. 1995, 22, 255–261. [Google Scholar] [CrossRef]
- Jepsen, S.; Berglundh, T.; Genco, R.; Aass, A.M.; Demirel, K.; Derks, J.; Figuero, E.; Giovannoli, J.L.; Goldstein, M.; Lambert, F.; et al. Primary Prevention of Peri-Implantitis: Managing Peri-Implant Mucositis. J. Clin. Periodontol. 2015, 42, S152–S157. [Google Scholar] [CrossRef] [PubMed]
- Renvert, S.; Persson, G.R.; Pirih, F.Q.; Camargo, P.M. Peri-Implant Health, Peri-Implant Mucositis, and Peri-Implantitis: Case Definitions and Diagnostic Considerations. J. Clin. Periodontol. 2018, 45, S278–S285. [Google Scholar] [CrossRef] [PubMed]
- Fragkioudakis, I.; Tseleki, G.; Doufexi, A.-E.; Sakellari, D. Current Concepts on the Pathogenesis of Peri-Implantitis: A Narrative Review. Eur. J. Dent. 2021, 15, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Lima, L.A.; Bosshardt, D.D.; Chambrone, L.; Araújo, M.G.; Lang, N.P. Excessive Occlusal Load on Chemically Modified and Moderately Rough Titanium Implants Restored with Cantilever Reconstructions. An Experimental Study in Dogs. Clin. Oral Implant. Res. 2019, 30, 1142–1154. [Google Scholar] [CrossRef]
- Irshad, M.; Scheres, N.; Crielaard, W.; Loos, B.G.; Wismeijer, D.; Laine, M.L. Influence of Titanium on in Vitro Fibroblast—Porphyromonas gingivalis Interaction in Peri-Implantitis. J. Clin. Periodontol. 2013, 40, 841–849. [Google Scholar] [CrossRef]
- Lindhe, J.; Berglundh, T.; Ericsson, I.; Liljenberg, B.; Marinello, C. Experimental Breakdown of Peri-implant and Periodontal Tissues. A Study in the Beagle Dog. Clin. Oral Implant. Res. 1992, 3, 9–16. [Google Scholar] [CrossRef]
- Berglundh, T.; Lindhe, J.; Ericsson, I.; Marinello, C.P.; Liljenberg, B.; Thornsen, P. The Soft Tissue Barrier at Implants and Teeth. Clin. Oral Implant. Res. 1991, 2, 81–90. [Google Scholar] [CrossRef]
- Carcuac, O.; Berglundh, T. Composition of Human Peri-Implantitis and Periodontitis Lesions. J. Dent. Res. 2014, 93, 1083–1088. [Google Scholar] [CrossRef]
- Salvi, G.E.; Stähli, A.; Imber, J.; Sculean, A.; Roccuzzo, A. Physiopathology of Peri-implant Diseases. Clin. Implant Dent. Relat. Res. 2023, 25, 629–639. [Google Scholar] [CrossRef]
- Carcuac, O.; Abrahamsson, I.; Albouy, J.-P.; Linder, E.; Larsson, L.; Berglundh, T. Experimental Periodontitis and Peri-Implantitis in Dogs. Clin. Oral Implant. Res. 2013, 24, 363–371. [Google Scholar] [CrossRef]
- Dionigi, C.; Larsson, L.; Carcuac, O.; Berglundh, T. Cellular Expression of DNA Damage/Repair and Reactive Oxygen/Nitrogen Species in Human Periodontitis and Peri-Implantitis Lesions. J. Clin. Periodontol. 2020, 47, 1466–1475. [Google Scholar] [CrossRef] [PubMed]
- Faggion, C.M.; Chambrone, L.; Listl, S.; Tu, Y. Network Meta-Analysis for Evaluating Interventions in Implant Dentistry: The Case of Peri-Implantitis Treatment. Clin. Implant Dent. Relat. Res. 2013, 15, 576–588. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, F.; Jepsen, S.; Obreja, K.; Galarraga-Vinueza, M.E.; Ramanauskaite, A. Surgical Therapy of Peri-Implantitis. Periodontol. 2000 2022, 88, 145–181. [Google Scholar] [CrossRef] [PubMed]
- Noelken, R.; Al-Nawas, B. Bone Regeneration as Treatment of Peri-implant Disease: A Narrative Review. Clin. Implant Dent. Relat. Res. 2023, 25, 696–709. [Google Scholar] [CrossRef]
- Khoury, F.; Buchmann, R. Surgical Therapy of Peri-Implant Disease: A 3-Year Follow-Up Study of Cases Treated with 3 Different Techniques of Bone Regeneration. J. Periodontol. 2001, 72, 1498–1508. [Google Scholar] [CrossRef]
- Schwarz, F.; Bieling, K.; Latz, T.; Nuesry, E.; Becker, J. Healing of Intrabony Peri-Implantitis Defects Following Application of a Nanocrystalline Hydroxyapatite (Ostim) or a Bovine-Derived Xenograft (Bio-Oss) in Combination with a Collagen Membrane (Bio-Gide). A Case Series. J. Clin. Periodontol. 2006, 33, 491–499. [Google Scholar] [CrossRef]
- Hämmerle, C.H.; Fourmousis, I.; Winkler, J.R.; Weigel, C.; Brägger, U.; Lang, N.P. Successful Bone Fill in Late Peri-Implant Defects Using Guided Tissue Regeneration. A Short Communication. J. Periodontol. 1995, 66, 303–308. [Google Scholar] [CrossRef]
- Hürzeler, M.B.; Quiñones, C.R.; Morrison, E.C.; Caffesse, R.G. Treatment of Peri-Implantitis Using Guided Bone Regeneration and Bone Grafts, Alone or in Combination, in Beagle Dogs. Part 1: Clinical Findings and Histologic Observations. Int. J. Oral Maxillofac. Implant. 1995, 10, 474–484. [Google Scholar]
- Yan, Y.; Orlandi, M.; Suvan, J.; Harden, S.; Smith, J.; D’Aiuto, F. Association between Peri-Implantitis and Systemic Inflammation: A Systematic Review. Front. Immunol. 2023, 14, 1235155. [Google Scholar] [CrossRef]
- Froum, S.J.; Froum, S.H.; Rosen, P.S. Successful Management of Peri-Implantitis with a Regenerative Approach: A Consecutive Series of 51 Treated Implants with 3- to 7.5-Year Follow-Up. Int. J. Periodontics Restor. Dent. 2012, 32, 11–20. [Google Scholar]
- Matarasso, S.; Iorio Siciliano, V.; Aglietta, M.; Andreuccetti, G.; Salvi, G.E. Clinical and Radiographic Outcomes of a Combined Resective and Regenerative Approach in the Treatment of Peri-implantitis: A Prospective Case Series. Clin. Oral Implant. Res. 2014, 25, 761–767. [Google Scholar] [CrossRef]
- Isler, S.C.; Soysal, F.; Ceyhanlı, T.; Bakırarar, B.; Unsal, B. Regenerative Surgical Treatment of Peri-implantitis Using Either a Collagen Membrane or Concentrated Growth Factor: A 12-month Randomized Clinical Trial. Clin. Implant Dent. Relat. Res. 2018, 20, 703–712. [Google Scholar] [CrossRef]
- La Monaca, G.; Pranno, N.; Annibali, S.; Cristalli, M.P.; Polimeni, A. Clinical and Radiographic Outcomes of a Surgical Reconstructive Approach in the Treatment of Peri-Implantitis Lesions: A 5-Year Prospective Case Series. Clin. Oral Implant. Res. 2018, 29, 1025–1037. [Google Scholar] [CrossRef] [PubMed]
- Renvert, S.; Giovannoli, J.-L.; Roos-Jansåker, A.-M.; Rinke, S. Surgical Treatment of Peri-Implantitis with or without a Deproteinized Bovine Bone Mineral and a Native Bilayer Collagen Membrane: A Randomized Clinical Trial. J. Clin. Periodontol. 2021, 48, 1312–1321. [Google Scholar] [CrossRef] [PubMed]
- Froum, S.; Kim, S.-W. Regenerative Treatment of Advanced Peri-Implantitis: A Retrospective Case Series with 3 to 15 Years of Follow-Up. Int. J. Periodontics Restor. Dent. 2022, 42, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Pilenza, D.; Filippi, A.; Walter, C.; Zitzmann, N.U.; Bornstein, M.M.; Kühl, S. Surgical Therapy of Peri-Implantitis with Adjunctive Hydroxyapatite and Enamel Matrix Derivative: A 1-Year Retrospective Case Series. Swiss Dent. J. 2022, 132, 238–246. [Google Scholar] [CrossRef]
- Regidor, E.; Ortiz-Vigón, A.; Romandini, M.; Dionigi, C.; Derks, J.; Sanz, M. The Adjunctive Effect of a Resorbable Membrane to a Xenogeneic Bone Replacement Graft in the Reconstructive Surgical Therapy of Peri-implantitis: A Randomized Clinical Trial. J. Clin. Periodontol. 2023, 50, 765–783. [Google Scholar] [CrossRef]
- Heitz-Mayfield, L.J.A.; Heitz, F.; Koong, B.; Huang, T.; Chivers, P. Surgical Peri-Implantitis Treatment with and without Guided Bone Regeneration. A Randomized Controlled Trial. Clin. Oral Implant. Res. 2023, 34, 892–910. [Google Scholar] [CrossRef]
- Aghazadeh, A. Impact of Bone Defect Morphology on the Outcome of Two Different Regenerative Procedures in the Treatment of Peri-implantitis. Clin. Oral Implant. Res. 2020, 30, 279. [Google Scholar] [CrossRef]
- Von Arx, T.; Kurt, B.; Hardt, N. Treatment of Severe Peri-Implant Bone Loss Using Autogenous Bone and a Resorbable Membrane. Case Report and Literature Review. Clin. Oral Implant. Res. 1997, 8, 517–526. [Google Scholar] [CrossRef]
- Rotenberg, S.A.; Steiner, R.; Tatakis, D.N. Collagen-Coated Bovine Bone in Peri-Implantitis Defects: A Pilot Study on a Novel Approach. Int. J. Oral Maxillofac. Implant. 2016, 31, 701–707. [Google Scholar] [CrossRef] [PubMed]
- Behneke, A.; Behneke, N.; d’Hoedt, B. Treatment of Peri-Implantitis Defects with Autogenous Bone Grafts: Six-Month to 3-Year Results of a Prospective Study in 17 Patients. Int. J. Oral Maxillofac. Implant. 2000, 15, 125–138. [Google Scholar]
- Roccuzzo, A.; Stähli, A.; Monje, A.; Sculean, A.; Salvi, G.E. Peri-Implantitis: A Clinical Update on Prevalence and Surgical Treatment Outcomes. J. Clin. Med. 2021, 10, 1107. [Google Scholar] [CrossRef] [PubMed]
- Monje, A.; Pons, R.; Sculean, A.; Nart, J.; Wang, H.-L. Defect Angle as Prognostic Indicator in the Reconstructive Therapy of Peri-Implantitis. Clin. Implant Dent. Relat. Res. 2023, 25, 992–999. [Google Scholar] [CrossRef]
- Mercado, F.; Hamlet, S.; Ivanovski, S. Regenerative Surgical Therapy for Peri-implantitis Using Deproteinized Bovine Bone Mineral with 10% Collagen, Enamel Matrix Derivative and Doxycycline—A Prospective 3-year Cohort Study. Clin. Oral Implant. Res. 2018, 29, 583–591. [Google Scholar] [CrossRef]
- Roos-Jansåker, A.-M.; Renvert, H.; Lindahl, C.; Renvert, S. Submerged Healing Following Surgical Treatment of Peri-Implantitis: A Case Series. J. Clin. Periodontol. 2007, 34, 723–727. [Google Scholar] [CrossRef]
- Monje, A.; Pons, R.; Roccuzzo, A.; Salvi, G.E.; Nart, J. Reconstructive Therapy for the Management of Peri-implantitis via Submerged Guided Bone Regeneration: A Prospective Case Series. Clin. Implant Dent. Relat. Res. 2020, 22, 342–350. [Google Scholar] [CrossRef]
- Nart, J.; De Tapia, B.; Pujol, À.; Pascual, A.; Valles, C. Vancomycin and Tobramycin Impregnated Mineralized Allograft for the Surgical Regenerative Treatment of Peri-Implantitis: A 1-Year Follow-up Case Series. Clin. Oral Investig. 2018, 22, 2199–2207. [Google Scholar] [CrossRef]
- de Tapia, B.; Valles, C.; Ribeiro-Amaral, T.; Mor, C.; Herrera, D.; Sanz, M.; Nart, J. The Adjunctive Effect of a Titanium Brush in Implant Surface Decontamination at Peri-Implantitis Surgical Regenerative Interventions: A Randomized Controlled Clinical Trial. J. Clin. Periodontol. 2019, 46, 586–596. [Google Scholar] [CrossRef]
- Masalawalla, V.; Rai, P.; Shetty, D.; Salvi, N. A Novel Approach to Treat Peri-Implantitis Using Sticky Bone: A Case Report. Int. J. Health Sci. 2022, 6, 1536–1543. [Google Scholar] [CrossRef]
- Nociti, F.H., Jr.; Caffesse, R.G.; Sallum, E.A.; Machado, M.A.; Stefani, C.M.; Sallum, A.W. Clinical Study of Guided Bone Regeneration and/or Bone Grafts in the Treatment of Ligature-Induced Peri-implantitis Defects in Dogs. Braz. Dent. J. 2001, 12, 127–131. [Google Scholar]
- Wang, C.-W.; Di Gianfilippo, R.; Kaciroti, N.; Ou, A.; Feng, S.-W.; Wang, H.-L. Stability of Peri-Implantitis Surgical Reconstructive Therapy-a (>2 Years) Follow-up of a Randomized Clinical Trial. Clin. Oral Investig. 2023, 28, 30. [Google Scholar] [CrossRef]
- Froum, S.; Froum, S.; Rosen, P. A Regenerative Approach to the Successful Treatment of Peri-Implantitis: A Consecutive Series of 170 Implants in 100 Patients with 2- to 10-Year Follow-Up. Int. J. Periodontics Restor. Dent. 2015, 35, 857–863. [Google Scholar] [CrossRef]
- Solakoglu, Ö.; Filippi, A. Regenerative Therapy of Peri-Implantitis: Clinical and Radiologic Documentation of 16 Consecutive Patients with a Mean Follow-Up of 3 Years. J. Oral Implantol. 2019, 45, 145–153. [Google Scholar] [CrossRef]
- González Regueiro, I.; Martínez Rodriguez, N.; Barona Dorado, C.; Sanz-Sánchez, I.; Montero, E.; Ata-Ali, J.; Duarte, F.; Martínez-González, J.M. Surgical Approach Combining Implantoplasty and Reconstructive Therapy with Locally Delivered Antibiotic in the Treatment of Peri-Implantitis: A Prospective Clinical Case Series. Clin. Implant Dent. Relat. Res. 2021, 23, 864–873. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-W.; Ashnagar, S.; Gianfilippo, R.D.; Arnett, M.; Kinney, J.; Wang, H.-L. Laser-Assisted Regenerative Surgical Therapy for Peri-Implantitis: A Randomized Controlled Clinical Trial. J. Periodontol. 2021, 92, 378–388. [Google Scholar] [CrossRef] [PubMed]
- Mellonig, J.T.; Griffiths, G.; Mathys, E.; Spitznagel, J., Jr. Treatment of the Failing Implant: Case Reports. Int. J. Periodontics Restor. Dent. 1995, 15, 384–395. [Google Scholar]
- Haas, R.; Baron, M.; Dörtbudak, O.; Watzek, G. Lethal Photosensitization, Autogenous Bone, and e-PTFE Membrane for the Treatment of Peri-Implantitis: Preliminary Results. Int. J. Oral Maxillofac. Implant. 2000, 15, 374–382. [Google Scholar]
- Bacaro, K.D.; Salomão, M.; Lourenço, D.; Filho, L.C.M.; Pedron, I.G. Bone Regeneration Using Polypropylene Membrane in Peri-Implant Bone Loss: Case Report with 4 Years of Follow-Up. SVOA Dent. 2022, 3, 162–167. [Google Scholar]
- Deppe, H.; Neff, A.; Horch, H.H. Conventional Versus CO2 Laser-Assisted Treatment of Peri-Implant Defects with the Concomitant Use of Pure-Phase -Tricalcium Phosphate: A 5-Year Clinical Report. Int. J. Oral Maxillofac. Implant. 2007, 22, 79–86. [Google Scholar]
- Monje, A.; Pons, R.; Vilarrasa, J.; Nart, J.; Wang, H. Significance of Barrier Membrane on the Reconstructive Therapy of Peri-implantitis: A Randomized Controlled Trial. J. Periodontol. 2023, 94, 323–335. [Google Scholar] [CrossRef]
- Roos-Jansåker, A.-M.; Lindahl, C.; Persson, G.R.; Renvert, S. Long-Term Stability of Surgical Bone Regenerative Procedures of Peri-Implantitis Lesions in a Prospective Case-Control Study over 3 Years. J. Clin. Periodontol. 2011, 38, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Roos-Jansåker, A.-M.; Renvert, H.; Lindahl, C.; Renvert, S. Surgical Treatment of Peri-Implantitis Using a Bone Substitute with or without a Resorbable Membrane: A Prospective Cohort Study. J. Clin. Periodontol. 2007, 34, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Roos-Jansåker, A.-M.; Persson, G.R.; Lindahl, C.; Renvert, S. Surgical Treatment of Peri-Implantitis Using a Bone Substitute with or without a Resorbable Membrane: A 5-Year Follow-Up. J. Clin. Periodontol. 2014, 41, 1108–1114. [Google Scholar] [CrossRef] [PubMed]
- Wiltfang, J.; Zernial, O.; Behrens, E.; Schlegel, A.; Warnke, P.H.; Becker, S.T. Regenerative Treatment of Peri-Implantitis Bone Defects with a Combination of Autologous Bone and a Demineralized Xenogenic Bone Graft: A Series of 36 Defects. Clin. Implant Dent. Relat. Res. 2012, 14, 421–427. [Google Scholar] [CrossRef]
- Wohlfahrt, J.C.; Lyngstadaas, S.P.; Rønold, H.J.; Saxegaard, E.; Ellingsen, J.E.; Karlsson, S.; Aass, A.M. Porous Titanium Granules in the Surgical Treatment of Peri-Implant Osseous Defects: A Randomized Clinical Trial. Int. J. Oral Maxillofac. Implant. 2012, 27, 401–410. [Google Scholar]
- Arab, H.; Shiezadeh, F.; Moeintaghavi, A.; Anbiaei, N.; Mohamadi, S. Comparison of Two Regenerative Surgical Treatments for Peri-Implantitis Defect Using Natix Alone or in Combination with Bio-Oss and Collagen Membrane. J. Long-Term Eff. Med. Implant. 2016, 26, 199–204. [Google Scholar] [CrossRef]
- Wen, S.; Barootchi, S.; Wang, H.; Huang, W.; Wen, S.-C.; Wang, H.-L.; Huang, W.-X. Non-Submerged Reconstructive Approach for Peri-Implantitis Osseous Defect with Removal of Implant Crowns: One-Year Outcomes of a Prospective Case Series Study. J. Periodontol. 2022, 93, 1250–1261. [Google Scholar] [CrossRef]
- Wen, S.; Barootchi, S.; Huang, W.; Wang, H.; Wen, S.-C.; Huang, W.-X.; Wang, H.-L. Surgical Reconstructive Treatment for Infraosseous Peri-Implantitis Defects with a Submerged Healing Approach: A Prospective Controlled Study. J. Periodontol. 2022, 93, 195–207. [Google Scholar] [CrossRef]
- Khoury, F.; Keeve, P.L.; Ramanauskaite, A.; Schwarz, F.; Koo, K.-T.; Sculean, A.; Romanos, G. Surgical Treatment of Peri-Implantitis—Consensus Report of Working Group 4. Int. Dent. J. 2019, 69, 18–22. [Google Scholar] [CrossRef]
- Monje, A.; Blasi, G.; Nart, J.; Urban, I.A.; Nevins, M.; Wang, H.-L. Soft Tissue Conditioning for the Surgical Therapy of Peri-Implantitis: A Prospective 12-Month Study. Int. J. Periodontics Restor. Dent. 2020, 40, 899–906. [Google Scholar] [CrossRef]
- Ravidà, A.; Saleh, I.; Siqueira, R.; Garaicoa-Pazmiño, C.; Saleh, M.H.A.; Monje, A.; Wang, H.-L. Influence of Keratinized Mucosa on the Surgical Therapeutical Outcomes of Peri-Implantitis. J. Clin. Periodontol. 2020, 47, 529–539. [Google Scholar] [CrossRef] [PubMed]
- Obreja, K.; Galarraga-Vinueza, M.E.; Müller, K.; Begic, A.; Ramanauskaite, A.; Schwarz, F. Volumetric Tissue Changes Following Combined Surgical Therapy of Peri-Implantitis: A 2-Year Follow-up Analysis. A Prospective Case Series. Clin. Implant Dent. Relat. Res. 2022, 24, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Galarraga-Vinueza, M.E.; Obreja, K.; Magini, R.; Sculean, A.; Sader, R.; Schwarz, F. Volumetric Assessment of Tissue Changes Following Combined Surgical Therapy of Peri-Implantitis: A Pilot Study. J. Clin. Periodontol. 2020, 47, 1159–1168. [Google Scholar] [CrossRef] [PubMed]
- Monje, A.; Amerio, E.; Cha, J.K.; Kotsakis, G.; Pons, R.; Renvert, S.; Sanz-Martin, I.; Schwarz, F.; Sculean, A.; Stavropoulos, A.; et al. Strategies for Implant Surface Decontamination in Peri-Implantitis Therapy. Int. J. Oral Implant. 2022, 15, 213–248. [Google Scholar]
- Pommer, B.; Haas, R.; Mailath-Pokorny, G.; Fürhauser, R.; Watzek, G.; Busenlechner, D.; Müller-Kern, M.; Kloodt, C. Periimplantitis Treatment: Long-Term Comparison of Laser Decontamination and Implantoplasty Surgery. Implant Dent. 2016, 25, 646–649. [Google Scholar] [CrossRef]
- Schwarz, F.; Hegewald, A.; John, G.; Sahm, N.; Becker, J. Four-year Follow-up of Combined Surgical Therapy of Advanced Peri-implantitis Evaluating Two Methods of Surface Decontamination. J. Clin. Periodontol. 2013, 40, 962–967. [Google Scholar] [CrossRef]
- Schwarz, F.; John, G.; Schmucker, A.; Sahm, N.; Becker, J. Combined Surgical Therapy of Advanced Peri-Implantitis Evaluating Two Methods of Surface Decontamination: A 7-Year Follow-up Observation. J. Clin. Periodontol. 2017, 44, 337–342. [Google Scholar] [CrossRef]
- Schwarz, F.; Becker, K.; Albrecht, C.; Ramanauskaite, A.; Begic, A.; Obreja, K. Effectiveness of Modified and Control Protocols for the Surgical Therapy of Combined Peri-Implantitis-Related Defects. A Retrospective Analysis. Clin. Oral Implant. Res. 2023, 34, 512–520. [Google Scholar] [CrossRef]
- Wen, S.C.; Sabri, H.; Dastouri, E.; Huang, W.X.; Barootchi, S.; Wang, H.L. Submerged vs Nonsubmerged Reconstructive Approach for Surgical Treatment of Peri-Implantitis: Reanalysis of Two Prospective Clinical Studies. Int. J. Oral Maxillofac. Implant. 2024, 39, 526–536. [Google Scholar] [CrossRef]
- Astolfi, V.; Gómez-Menchero, A.; Ríos-Santos, J.V.; Bullón, P.; Galeote, F.; Ríos-Carrasco, B.; Bullón De La Fuente, B.; Herrero-Climent, M. Influence of Removing or Leaving the Prosthesis after Regenerative Surgery in Peri-Implant Defects: Retrospective Study: 32 Clinical Cases with 2 to 8 Years of Follow-Up. Int. J. Environ. Res. Public Health 2021, 18, 645. [Google Scholar] [CrossRef]
- Schwarz, F.; Sahm, N.; Bieling, K.; Becker, J. Surgical Regenerative Treatment of Peri-Implantitis Lesions Using a Nanocrystalline Hydroxyapatite or a Natural Bone Mineral in Combination with a Collagen Membrane: A Four-Year Clinical Follow-up Report. J. Clin. Periodontol. 2009, 36, 807–814. [Google Scholar] [CrossRef]
- Romanos, G.E.; Nentwig, G.H. Regenerative Therapy of Deep Peri-Implant Infrabony Defects after CO2 Laser Implant Surface Decontamination. Int. J. Periodontics Restor. Dent. 2008, 28, 245–255. [Google Scholar]
- Isler, S.C.; Soysal, F.; Ceyhanlı, T.; Bakırarar, B.; Unsal, B. Efficacy of Concentrated Growth Factor versus Collagen Membrane in Reconstructive Surgical Therapy of Peri-Implantitis: 3-Year Results of a Randomized Clinical Trial. Clin. Oral Investig. 2022, 26, 5247–5260. [Google Scholar] [CrossRef]
- Hart, I.; Wells, C.; Tsigarida, A.; Bezerra, B. Effectiveness of Mechanical and Chemical Decontamination Methods for the Treatment of Dental Implant Surfaces Affected by Peri-implantitis: A Systematic Review and Meta-analysis. Clin. Exp. Dent. Res. 2024, 10, e839. [Google Scholar] [CrossRef] [PubMed]
- Akerzoul, N.; Azzouz, Y.; Abidi, S.; Chbicheb, S. Effectiveness of Laser Therapy as an Adjunctive Treatment of Peri-Implantitis: A Systematic Review. Open Dent. J. 2025, 19, e18742106400224. [Google Scholar] [CrossRef]
- Pisano, M.; Amato, A.; Sammartino, P.; Iandolo, A.; Martina, S.; Caggiano, M. Laser Therapy in the Treatment of Peri-Implantitis: State-of-the-Art, Literature Review and Meta-Analysis. Appl. Sci. 2021, 11, 5290. [Google Scholar] [CrossRef]
- Baima, G.; Citterio, F.; Romandini, M.; Romano, F.; Mariani, G.M.; Buduneli, N.; Aimetti, M. Surface Decontamination Protocols for Surgical Treatment of Peri-implantitis: A Systematic Review with Meta-analysis. Clin. Oral Implant. Res. 2022, 33, 1069–1086. [Google Scholar] [CrossRef]
- Daugela, P.; Cicciù, M.; Saulacic, N. Surgical Regenerative Treatments for Peri-Implantitis: Meta-Analysis of Recent Findings in a Systematic Literature Review. J. Oral Maxillofac. Res. 2016, 7, e15. [Google Scholar] [CrossRef]
- Schwarz, F.; Sahm, N.; Schwarz, K.; Becker, J. Impact of Defect Configuration on the Clinical Outcome Following Surgical Regenerative Therapy of Peri-Implantitis. J. Clin. Periodontol. 2010, 37, 449–455. [Google Scholar] [CrossRef]
- Roccuzzo, M.; Bonino, F.; Bonino, L.; Dalmasso, P. Surgical Therapy of Peri-Implantitis Lesions by Means of a Bovine-Derived Xenograft: Comparative Results of a Prospective Study on Two Different Implant Surfaces. J. Clin. Periodontol. 2011, 38, 738–745. [Google Scholar] [CrossRef]
- Aghazadeh, A.; Rutger Persson, G.; Renvert, S. A Single-centre Randomized Controlled Clinical Trial on the Adjunct Treatment of Intra-bony Defects with Autogenous Bone or a Xenograft: Results after 12 Months. J. Clin. Periodontol. 2012, 39, 666–673. [Google Scholar] [CrossRef] [PubMed]
- Grunder, U.; Hürzeler, M.B.; Schüpbach, P.; Strub, J.R. Treatment of Ligature-Induced Peri-Implantitis Using Guided Tissue Regeneration: A Clinical and Histologic Study in the Beagle Dog. Int. J. Oral Maxillofac. Implant. 1993, 8, 83–105. [Google Scholar]
- Schou, S.; Holmstrup, P.; Jørgensen, T.; Stoltze, K.; Hjørting-Hansen, E.; Wenzel, A. Autogenous Bone Graft and ePTFE Membrane in the Treatment of Peri-Implantitis. I. Clinical and Radiographic Observations in Cynomolgus Monkeys. Clin. Oral Implant. Res. 2003, 14, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Schou, S.; Holmstrup, P.; Jørgensen, T.; Skovgaard, L.T.; Stoltze, K.; Hjørting-Hansen, E.; Wenzel, A. Anorganic Porous Bovine-Derived Bone Mineral (Bio-Oss) and ePTFE Membrane in the Treatment of Peri-Implantitis in Cynomolgus Monkeys. Clin. Oral Implant. Res. 2003, 14, 535–547. [Google Scholar] [CrossRef]
- Namgoong, H.; Kim, M.; Ku, Y.; Rhyu, I.-C.; Lee, Y.M.; Seol, Y.J.; Gu, H.J.; Susin, C.; Wikesjö, U.M.E.; Koo, K.-T. Bone Reconstruction after Surgical Treatment of Experimental Peri-Implantitis Defects at a Sandblasted/Acid-Etched Hydroxyapatite-Coated Implant: An Experimental Study in the Dog. J. Clin. Periodontol. 2015, 42, 960–966. [Google Scholar] [CrossRef]
- Hürzeler, M.B.; Quiñones, C.R.; Schüpback, P.; Morrison, E.C.; Caffesse, R.G. Treatment of Peri-Implantitis Using Guided Bone Regeneration and Bone Grafts, Alone or in Combination, in Beagle Dogs. Part 2: Histologic Findings. Int. J. Oral Maxillofac. Implant. 1997, 12, 168–175. [Google Scholar]
- Schou, S.; Holmstrup, P.; Skovgaard, L.T.; Stoltze, K.; Hjørting-Hansen, E.; Gundersen, H.J.G. Autogenous Bone Graft and ePTFE Membrane in the Treatment of Peri-Implantitis. II. Stereologic and Histologic Observations in Cynomolgus Monkeys. Clin. Oral Implant. Res. 2003, 14, 404–411. [Google Scholar] [CrossRef]
- Cho, H.; Tarafder, S.; Fogge, M.; Kao, K.; Lee, C.H. Periodontal Ligament Stem/Progenitor Cells with Protein-Releasing Scaffolds for Cementum Formation and Integration on Dentin Surface. Connect. Tissue Res. 2016, 57, 488–495. [Google Scholar] [CrossRef]
- Almohandes, A.; Lund, H.; Carcuac, O.; Petzold, M.; Berglundh, T.; Abrahamsson, I. Accuracy of Bone-Level Assessments Following Reconstructive Surgical Treatment of Experimental Peri-Implantitis. Clin. Oral Implant. Res. 2022, 33, 433–440. [Google Scholar] [CrossRef]
- Derks, J.; Ortiz-Vigón, A.; Guerrero, A.; Donati, M.; Bressan, E.; Ghensi, P.; Schaller, D.; Tomasi, C.; Karlsson, K.; Abrahamsson, I.; et al. Reconstructive Surgical Therapy of Peri-Implantitis: A Multicenter Randomized Controlled Clinical Trial. Clin. Oral Implant. Res. 2022, 33, 921–944. [Google Scholar] [CrossRef]
- Polymeri, A.; Anssari-Moin, D.; van der Horst, J.; Wismeijer, D.; Laine, M.L.; Loos, B.G. Surgical Treatment of Peri-Implantitis Defects with Two Different Xenograft Granules: A Randomized Clinical Pilot Study. Clin. Oral Implant. Res. 2020, 31, 1047–1060. [Google Scholar] [CrossRef]
- Sato, R.; Matsuura, T.; Akizuki, T.; Fukuba, S.; Okada, M.; Nohara, K.; Takeuchi, S.; Hoshi, S.; Ono, W.; Maruyama, K.; et al. Influence of the Bone Graft Materials Used for Guided Bone Regeneration on Subsequent Peri-Implant Inflammation: An Experimental Ligature-Induced Peri-Implantitis Model in Beagle Dogs. Int. J. Implant Dent. 2022, 8, 3. [Google Scholar] [CrossRef]







| Treatment Modality | Membrane Type | Bone Graft Type | Study Model | Sample Size | Average Bone-Fill Gain ± SD (mm) | Average PPD Reduction ± SD (mm) | Period | Year | Author | Reference |
|---|---|---|---|---|---|---|---|---|---|---|
| No membrane + Bone Graft Only ± Biologics | - | Autogenous | Prospective Clinical Study | 17 patients with 25 implants | 6.2 (SD not available) | 3.5 (SD not available) | 3 yr | 2000 | Behneke | [42] |
| - | Alloplast (β-TCP) | Prospective Clinical Trial | Nine patients with 17 implants | 4.7 ± 1.1 | 3.8 ± 0.5 | 5 yr | 2007 | Deppe | [60] | |
| - | Autogenous | Clinical Trial | seven patients with 12 implants | 3.2 ± 2.4 | 5.1 ± 2.7 | 3 yr | 2001 | Khoury | [25] | |
| - | Bio-Oss Collagen® | Randomized Clinical Trial | 22 patients with 22 implants | 0.9 ± 1.3 | 4.2 ± 2.2 | 1 yr | 2023 | Regidor | [37] | |
| - | Xenograft Granules (EndoBon®) | Randomized Clinical Trial | 21 implants | 0.7 ± 0.2 | 4.0 ± 0.3 | 1 yr | 2018 | Renvert | [12] | |
| - | Bio-Oss Collagen® | Case Series | 64 patients with 51 implants | Not Available | 2.8 ± 0.5 | 5 yr | 2021 | Roccuzzo | [43] | |
| - | Allograft | Randomized Clinical Trial | 16 patients with 24 implants | 1.7 ± 0.8 | 4.0 ± 1.5 | 1 yr | 2023a | Monje | [61] | |
| - | Alloplast (Algipore®) | Prospective Case–Control Study | 15 patients with 27 implants | 1.3 ± 1.3 | Not Available | 3 yr | 2011 | Roos-Jansåker | [62] | |
| - | Alloplast (Algipore®) | Prospective Cohort Study | 19 patients with 36 implants | 1.4 ± 0.4 | 2.2 ± 0.3 | 1 yr | 2007b | Roos-Jansåker | [63] | |
| - | Alloplast (Algipore®) | Clinical Trial | 12 patients with 22 implants | 1.1 ± 1.2 | 3.3 ± 2.1 | 5 yr | 2014 | Roos-Jansåker | [64] | |
| - | Bio-Oss collagen® + Biologics (EMD®) | Prospective Cohort Study | 30 patients with 30 implants | 4.3 ± 0.5 | 5.4 ± 1.4 | 3 yr | 2018 | Mercado | [45] | |
| - | Autogenous + demineralized xenograft | Prospective Case Series | 22 patients with 36 implants | 3.5 (95% CIs: 2.7, 4.3) (SD not available) | 4.0 (95% CIs: 3.3, 4.6) (SD not available) | 1 yr | 2012 | Wiltfang | [65] | |
| - | Porous Titanium Granule | Randomized Clinical Trial | 16 patients with 16 implants | 2.0 ± 1.7 | 1.7 ± 1.7 | 1 yr | 2012 | Wohlfahrt | [66] | |
| Resorbable membrane + Bone Graft ± Biologics | Resorbable | Bio-Oss® | Clinical Trial | 12 patients with 12 implants | 1.4 ± 1.1 | 2.4 ± 1.0 | 6 mo | 2016 | Arab | [67] |
| Resorbable (Bio-Gide®) | Autogenous | Clinical Trial | seven patients with nine implants | 2.3 ± 1.6 | 2.6 ± 1.6 | 3 yr | 2001 | Khoury | [25] | |
| Resorbable (OsseoGuard®) | Autogenous | Randomized Clinical Trial | 16 patients with 25 implants | −0.7 ± 1.5 | 1.7 ± 1.8 | 5 yr | 2022 | Aghazadeh | [4] | |
| Resorbable (OsseoGuard®) | Autogenous or Bio-Oss® | Randomized Clinical Trial | 39 patients with 74 implants | 1.2 ± 0.5 (95% CIs: 0.1, 2.4) | 2.4 ± 0.5 (95% CIs: 1.3, 3.5) | 1 yr | 2020 | Aghazadeh | [39] | |
| Resorbable (Osgide®) | Alloplast (Osbone®) | Prospective Case Series | 43 patients with 43 implants | 2.6 ± 0.1 | 3.2 ± 1.1 | 1 yr | 2021 | González Regueiro | [55] | |
| Resorbable (Creoss®) | Autogenous + Bio-Oss® | Prospective Case Series | 15 patients with 27 implants | 2.2 ± 0.4 | 3.9 ± 0.2 | 1 yr | 2020b | Monje | [47] | |
| Resorbable (Bio-Gide®) | Bio-Oss® | MultiCenter Randomized Clinical Trial | 34 patients with 37 implants | 2.7 ± 1.3 | 1.9 ± 1.5 | 1 yr | 2021 | Renvert | [34] | |
| Resorbable (Bio-Gide®) | Bio-Oss® | MultiCenter Randomized Clinical Trial | 30 patients with 59 implants | 2.1 ± 1.3 | 1.6 ±1.9 | 3 yr | 2024 | Renvert | [3] | |
| Resorbable (Bio-Gide®) | Bio-Oss® | Prospective Case Series | 11 patients with 11 implants | 2.8 ± 1.5 | 4.1 ± 0.5 | 1 yr | 2014 | Matarasso | [31] | |
| Resorbable (Bio-Gide®) | Bio-Oss® | Randomized Clinical Trial | 20 patients with 20 implants | 2.4 ± 1.4 | 3.7 ± 1.9 | 1 yr | 2023 | Heitz-Mayfield | [38] | |
| Resorbable (Bio-Gide®) | Bio-Oss® | Randomized Clinical Trial | 21 patients with 21 implants | 1.5 ± 2.2 | 4.5 ± 2.6 | 1 yr | 2023 | Regidor | [37] | |
| Resorbable (Bio-Gide®) | Bio-Oss® | Randomized Clinical Trial | 26 patients with 26 implants | 2.0 ± 0.8 | 2.7 ± 0.4 | 1 yr | 2018 | Isler | [32] | |
| Resorbable (CGF) | Bio-Oss® | Randomized Clinical Trial | 26 patients with 26 implants | 1.6 ± 1.0 | 2.2 ± 0.2 | 1 yr | 2018 | Isler | [32] | |
| Resorbable (OsseoGuard®) | Bio-Oss® | Randomized Clinical Trial | 23 patients with 38 implants | 1.6 ± 1.8 | 2.8 ± 1.7 | 5 yr | 2022 | Aghazadeh | [4] | |
| Resorbable (Bio-Gide®) | Allograft (Puros®) | Prospective Case Series | 34 patients with 34 implants | 0.5 ± 0.4 | 1.3 ± 0.4 | 5 yr | 2018 | La Monaca | [33] | |
| Resorbable (RTM) | Allograft | Randomized Clinical Trial | 17 patients with 24 implants | 1.7 ± 0.7 | 3.4 ± 1.2 | 1 yr | 2023a and b | Monje | [44,61] | |
| Resorbable (Ossix Plus®) | Allograft + vancomycin and tobramycin | Case Series | 13 patients with 17 implants | 3.8 ± 0.7 | 4.2 ± 1.7 | 1 yr | 2018 | Nart | [48] | |
| Resorbable (Osseoquest®) | Alloplast (Algipore®) | Case Series | 12 patients with 16 implants | 2.3 ± 1.2 | 4.2 ± 1.5 | 1 yr | 2007a | Roos-Jansåker | [46] | |
| Resorbable (Osseoquest®) | Alloplast (Algipore®) | Prospective Cohort Study | 17 patients with 29 implants | 1.5 ± 1.2 | 2.9 ± 2.0 | 1 yr | 2007b | Roos-Jansåker | [63] | |
| Resorbable (Osseoquest®) | Alloplast (Algipore®) | Prospective Case–Control Study | 17 patients with 29 implants | 1.6 ± 1.2 | Not Available | 3 yr | 2011 | Roos-Jansåker | [62] | |
| Resorbable (Osseoquest®) | Alloplast (Algipore®) | Clinical Trial | 13 patients with 23 implants | 1.3 ± 1.4 | 3.0 ± 2.4 | 5 yr | 2014 | Roos-Jansåker | [64] | |
| Resorbable (Cytoplast®) | Alloplast (β-TCP + HA) | Randomized Clinical Trial | 30 patients with 30 implants | 2.1 ± 3.0 | 2.8 ± 0.9 | 1 yr | 2019 | De Tapia | [49] | |
| Resorbable (Bio-Gide®) | Alloplast (HA) + Biologics (EMD®) | Case Series | 11 patients with 20 implants | 1.3 ± 0.6 | 2.2 ± 0.7 | 1 yr | 2022 | Pilenza | [36] | |
| Resorbable (Bio-Gide®) | Bio-Oss® ± Allograft + Biologics (Gem21) | Case Series | 38 patients with 51 implants | 3.8 ± 1.5 | 5.4 ± 1.5 | 3–7.5 yr | 2012 | Froum | [30] | |
| Resorbable (Bio-Gide®) | BioOss ± Allograft + Biologics (Gem21S®) | Case Series | 100 patients with 168 implants | 1.8 ± 2.0 | 5.1 ± 2.2 | 2–10 yr | 2015 | Froum | [53] | |
| Resorbable (Bio-Gide®) | BioOss ± Allograft + Biologics (Gem21) | Retrospective Case Series | 38 patients with 46 implants | 3.6 ± 2.4 | 6.7 ± 1.6 | 3–15 yrs | 2022 | Froum | [35] | |
| Resorbable | Autogenous + Bio-Oss® | Prospective Case Series | 29 patients with 24 implants | 2.3 ± 1.9 (8 mo) | 1.5 ± 1.2 (1 yr) | 8 mo–1 yr | 2022b | Wen | [68] | |
| Non-resorbable membrane + Bone Graft ± Biologics | Non-Resorbable (Gore-Tex®) | Autogenous | Clinical Trial | 11 patients with 20 implants | 2.0 ± 1.9 | Not Available | 35 mo | 2000 | Haas | [58] |
| Non-Resorbable (e-PTFE) | Autogenous | Clinical Trial | 11 patients with 20 implants | 3.4 ± 2.4 | 5.4 ± 3.0 | 3 yr | 2001 | Khoury | [25] | |
| Non-Resorbable (Gore-Tex®) | Allograft | Case Reports | One patient with one implant | Not Available | 8.0 (SD not available) | 1 yr | 1995 | Mellonig | [57] | |
| One patient with one implant | 6.0 (SD not available) | 8.0 (SD not available) | 8 mo | |||||||
| One patient with one implant | Not Available | 6.0 ± 1.0 | 1 yr | |||||||
| Non-Resorbable (Gore-Tex®) | Autogenous + Allograft + Xenograft | Prospective Controlled Study | 22 patients with 30 implants | 3.5 ± 0.4 (8 mo) | 2.9 ± 0.3 ( 1 yr) | 8 mo–1 yr | 2022a | Wen | [69] | |
| Non-Resorbable Membrane Only | Non-Resorbable (Polypropylene) | - | Case Report | One patient with two implants | Not Available | Not Available | 4 yr | 2022 | Bacaro | [59] |
| Non-Resorbable (e-PTFE) | - | Case Series | Two patients with two implants | 2.3 (SD not available) | 3.2 (SD not available) | 1 yr | 1995 | Hämmerle | [27] |
| Treatment Modality | Sample Size | Weighted Mean | SD | Standard Error | 95% CIs | |
|---|---|---|---|---|---|---|
| Average Bone-Fill Gain (mm) | a Membrane | 34 | 2.4 | 1.2 | 0.2 | (2.0, 2.8) |
| b No Membrane | 12 | 2.6 | 1.8 | 0.5 | (1.6, 3.6) | |
| c Resorbable Membrane | 27 | 2.1 | 1.0 | 0.2 | (1.7, 2.4) | |
| d Non-Resorbable Membrane | 5 | 3.4 | 1.6 | 0.7 | (2.1, 4.8) | |
| e Resorbable Membrane + Bone Graft ± Biologics | 27 | 2.1 | 1.0 | 0.2 | (1.7, 2.4) | |
| f Bone Graft and Biologics Only | 1 | 4.3 | 0.5 | 0.5 | (3.3, 5.3) | |
| g Resorbable Membrane + Bone Graft | 22 | 2.1 | 0.9 | 0.2 | (1.7, 2.5) | |
| h Resorbable Membrane + Bone Graft + Biologics | 4 | 2.6 | 1.3 | 0.6 | (1.4, 3.9) | |
| Average PPD Reduction (mm) | a Membrane | 33 | 3.5 | 1.8 | 0.3 | (2.9, 4.1) |
| b No Membrane | 12 | 3.7 | 1.1 | 0.3 | (3.0, 4.3) | |
| c Resorbable Membrane | 26 | 3.2 | 1.3 | 0.3 | (2.7, 3.7) | |
| d Non-Resorbable Membrane | 6 | 5.6 | 2.2 | 0.9 | (3.8, 7.4) | |
| e Resorbable Membrane + Bone Graft ± Biologics | 26 | 3.2 | 1.3 | 0.3 | (2.7, 3.7) | |
| f Bone Graft and Biologics Only | 1 | 5.4 | 1.4 | 1.4 | (2.7, 8.1) | |
| g Resorbable Membrane + Bone Graft | 22 | 3.0 | 1.0 | 0.2 | (2.5, 3.4) | |
| h Resorbable Membrane + Bone Graft + Biologics | 4 | 4.9 | 1.9 | 1.0 | (3.0, 6.7) |
| KM | Membrane Type | Bone Graft Type | Study Model | Sample Size | Average Bone-Fill Gain ± SD (mm) | PPD Reduction ± SD (mm) | Period | Year | Author | Reference |
|---|---|---|---|---|---|---|---|---|---|---|
| ≥2 mm | Resorbable (Bio-Gide®) | Bio-Oss® | Prospective Case Series | 20 patients with 28 implants | - | 1.6 ± 1 | 2 yr | 2022 | Obreja | [73] |
| Resorbable (Bio-Gide®) | Bio-Oss® | Prospective Case Series | 20 patients with 28 implants | - | 0.86 ± 1 | 2 yr | 2020 | Galarraga-Vinueza | [74] | |
| Resorbable (Creoss®) | Autogenous + Bio-Oss® | Prospective Case Series | 15 patients with 27 implants | 2.2 ± 0.4 | 3.9 ± 0.2 | 1 yr | 2020b | Monje | [47] | |
| Resorbable (Bio-Gide®) | Allograft (Puros®) or Bio-Oss® | Retrospective Study | 40 patients with 29 implants | 0.6 (SD not available) | 2.6 (SD not available) | 1–12 yr | 2020 | Ravidà | [72] | |
| Resorbable (RTM) | Allograft | Randomized Clinical Trial | 17 patients with 24 implants | 1.7 ± 0.7 | 3.4 ± 1.2 | 1 yr | 2023a | Monje | [61] | |
| Resorbable (Ossix Plus®) | Allograft + antibiotics | Case Series | 13 patients with 17 implants | 3.8 ± 0.7 | 4.2 ± 1.7 | 1 yr | 2018 | Nart | [48] | |
| <2 mm | Resorbable (Bio-Gide®) | Allograft (Puros®) or Bio-Oss® | Retrospective Study | 40 patients with 39 implants | 0.4 (SD not available) | 1.4 (SD not available) | 1–12 yr | 2020 | Ravidà | [72] |
| Implantoplasty/Surface Protocol | Membrane Type | Bone Graft Type | Sample Size (Number of Implants) | Period (Months) | Average Bone-Fill Gain (mm) | PPD Reduction (mm) | Key Findings | Year | Author | Reference |
|---|---|---|---|---|---|---|---|---|---|---|
| Implantoplasty (Diamond + Arkansas burs) | Resorbable (Cytoplast) | Alloplast (β-TCP + HA) | 30 (15 test/15 control) | 12 | 2.5 ± 1.2 (test)/0.7 ± 1.3 (control) | 4.87 ± 1.55 (test)/2.85 ± 1.91 (control) | Ti-brush adjunct to implantoplasty significantly enhanced bone-fill and PPD reduction. Both groups underwent implantoplasty. | 2019 | De Tapia | [49] |
| Implantoplasty (Rotary burs) | Resorbable (Bio-Gide®) | Bio-Oss® | 28 | 12 | - | 0.86 ± 1 | Laser-assisted implantoplasty improved soft-tissue integration and marginal bone stability. | 2020 | Galarraga-Vinueza | [74] |
| Implantoplasty (Fine diamond burs) | Resorbable (Osgide®) | Alloplast (Osbone®) | 43 | 12 | 2.6 ± 0.1 | 3.2 ± 1.1 | Polished implantoplasty surface yielded greater bone-fill and soft-tissue integration. | 2021 | González Regueiro | [55] |
| Implantoplasty (Diamond burs + Arkansas + silicone polishers) | Resorbable (Bio-Gide®) | Bio-Oss® | 11 | 12 | 2.8 ± 1.5 | 4.1 ± 0.5 | Combined resective + regenerative approach showed ~93% defect fill and marked PPD reduction. | 2014 | Matarasso | [31] |
| Implantoplasty + soft-tissue conditioning | - | No graft | 31 | 12 | - | 3.0 ± 0.7 | Soft-tissue conditioning with implantoplasty achieved 87% disease resolution when KM ≥ 2 mm. | 2020a | Monje | [71] |
| Implantoplasty (Meisinger burs) | Resorbable (Creoss®) | Autogenous + Bio-Oss® | 27 | 12 | 2.2 ± 0.4 | 3.9 ± 0.2 | Submerged healing with MB and implantoplasty achieved ~85% disease resolution. | 2020b | Monje | [47] |
| Implantoplasty (Tungsten carbide bur (for uncontained defects)) | Resorbable (RTM) | Allograft | 24 | 12 | 1.7 ± 0.7 | 3.4 ± 1.2 | Defect angle < 40° predicted greater bone gain; implantoplasty improved surface stability. | 2023b | Monje | [44] |
| Implantoplasty + Er:YAG | Resorbable | Bio-Oss® | 21 | 48 | - | 1.2 ± 1.9 | 4-year follow-up: implantoplasty + bone graft maintained stable results; no difference between laser and manual decontamination. | 2013 | Schwarz | [77] |
| Implantoplasty + Er:YAG | Resorbable | Bio-Oss® | 15 | 84 | - | 0.74 ± 1.89 | 7-year data: PPD and CAL gains stable; surface decontamination method not determinant. | 2017 | Schwarz | [78] |
| Implantoplasty + Ti-brush | Resorbable | Bio-Oss® (collagen/spongiosa) | 20 | 12 | - | 1.2 ± 0.5 | Ti-brush improved surface cleanliness and healing in the combined regenerative approach. | 2023 | Schwarz | [79] |
| Implantoplasty at the supracrestal site | Resorbable | Allograft | 24 patients (12 test/12 control) | 6 | 1.27 ± 1.14 (test)/1.08 ± 1.04 (control) | 2.65 ± 2.14 (test)/1.85 ± 1.71 (control) | The laser-assisted group showed greater PPD reduction. | 2021 | Wang | [56] |
| Implantoplasty + Er:YAG laser | Resorbable | Allograft | 24 | 30 | 2.82 ± 0.46 (Laser)/1.96 ± 0.46 (control) | 3.04 ± 1.0 (Laser)/1.84 ± 1.0 (control) | The laser group maintained greater PPD reduction and bone gain. | 2023 | Wang | [52] |
| Implantoplasty (rotary + air-abrasive) | Non-Resorbable (Gore-Tex®) | Autogenous + Allograft + Xenograft | 30 | 8–12 | 3.5 ± 0.4 (8 months) | 2.9 ± 0.3 ( 1 year) | Submerged regenerative protocol achieved ≈ 3 mm bone gain and ≈ 3 mm PPD reduction. | 2022a | Wen | [69] |
| Implantoplasty (Rotary + air-abrasive) | Resorbable | Autogenous + Bio-Oss® | 24 | 8–12 | 2.3 ± 1.9 (8 months) | 1.5 ± 1.2 (1 year) | Non-submerged regenerative protocol (with crown removal) achieved significant bone gain and PPD reduction. | 2022b | Wen | [68] |
| Implantoplasty (rotary Meisinger system) | Resorbable | Autogenous + Allograft + Xenograft | 59 implants (30 submerged/29 non-submerged) | 12 | Submerged: 3.22 ± 0.41/non-submerged: 2.33 ± 1.88 | Submerged: 2.93 ± 0.25/non-submerged: 1.51 ± 1.17 | The submerged approach showed 1.3 mm PPD gain compared to the non-submerged. | 2024 | Wen | [80] |
| Implantoplasty (diamond under prosthesis) | - | Autogenous + demineralized xenograft | 36 | 12 | 3.5 (SD not available) | 4.0 (SD not available) | Etching-gel decontamination + autogenous/xenograft mix provided 3.5 mm bone gain and 4 mm PPD reduction at 1 year. | 2012 | Wiltfang | [65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, Y.J.; Jeong, Y.T.; Woo, H.N.; Cho, H.W.; Kang, M.G.; Hwang, S.-M.; Lee, J.-M. Evaluating the Clinical Efficacy of Membrane-Assisted Regenerative Therapy in Peri-Implantitis Management: A Comprehensive Review Incorporating Systematic Review Evidence. Materials 2025, 18, 5227. https://doi.org/10.3390/ma18225227
Cho YJ, Jeong YT, Woo HN, Cho HW, Kang MG, Hwang S-M, Lee J-M. Evaluating the Clinical Efficacy of Membrane-Assisted Regenerative Therapy in Peri-Implantitis Management: A Comprehensive Review Incorporating Systematic Review Evidence. Materials. 2025; 18(22):5227. https://doi.org/10.3390/ma18225227
Chicago/Turabian StyleCho, Young Joon, Yong Tak Jeong, Hyun Nyun Woo, Hyun Woo Cho, Min Gu Kang, Sung-Min Hwang, and Jae-Mok Lee. 2025. "Evaluating the Clinical Efficacy of Membrane-Assisted Regenerative Therapy in Peri-Implantitis Management: A Comprehensive Review Incorporating Systematic Review Evidence" Materials 18, no. 22: 5227. https://doi.org/10.3390/ma18225227
APA StyleCho, Y. J., Jeong, Y. T., Woo, H. N., Cho, H. W., Kang, M. G., Hwang, S.-M., & Lee, J.-M. (2025). Evaluating the Clinical Efficacy of Membrane-Assisted Regenerative Therapy in Peri-Implantitis Management: A Comprehensive Review Incorporating Systematic Review Evidence. Materials, 18(22), 5227. https://doi.org/10.3390/ma18225227

