Abstract
Static and dynamic uniaxial tensile responses were investigated to accurately characterize and predict the mechanical properties of PEEK (polyether-ether-ketone) at strain rates ranging from 10−3 s−1 to 200 s−1 and temperatures ranging from 23 °C to 110 °C. The tensile responses showed dependences on the strain rate and temperature, and the dependences of the yield strength and elastic modulus on the temperature and strain rate were studied. A modified phenomenological Sherwood–Frost constitutive model considering a wide range of strain rates and temperatures was established to characterize the tensile mechanical response of PEEK material before yielding based on the experimental data. The results indicate that the model can accurately describe the pre-yield behavior of PEEK under different temperature and strain rate conditions, thus reducing the dependency on experimental data for subsequent researchers, thereby providing a theoretical foundation and modeling framework for the design and performance evaluation of CF/PEEK composite structures.