Hybrid Mortar Composites Incorporating Oyster Shell Filler and Recycled Fibers from Disposable Masks
Abstract
1. Introduction
2. Materials and Methods
2.1. Disposable Face Mask
2.2. Oyster Shell Powder
2.3. Cement and Fine Aggregate
2.4. Mix Proportions
2.5. Testing Program
- Air content: Determined according to ASTM C185 [81] to assess the percentage of entrapped air in fresh mortar.
- Dry bulk density, volume of permeable voids, and water absorption: Determined using 50 mm cubic specimens following ASTM C642 [82].
- Compressive strength: Assessed on 50 mm mortar cubes following ASTM C109 [83].
- Splitting tensile strength: Measured on 100 × 200 mm cylindrical specimens according to ASTM C496 [84]. This test was selected because it allows obtaining a more direct and representative estimate of tensile strength and the effect of fibers on the internal cohesion of the mortar, compared to conventional flexural tests [19,85,86].
- Shear bond strength (SBS): Determined according to standard NMX-C-082-ONNCCE [87]. In determining this property, five specimens of each type of mixture were analyzed. A specimen consists of two brick pieces joined with the mortar mix under analysis (Figure 6). After preparation, the specimens were stored for 28 days in a temperature-controlled laboratory (23 ± 2 °C) and tested using a universal testing machine. The SBS was calculated using Equation (1):
2.6. Statistical Analysis
3. Results and Discussion
3.1. Air Content
3.2. Dry Bulk Density
3.3. Volume of Permeable Voids
3.4. Water Absorption
3.5. Compressive Strength
3.6. Split Tensile Strength
3.7. Shear Bond Strength (SBS)
4. Conclusions
- The addition of 5% OSP increased compressive strength by approximately 10% and improved shear bond strength, demonstrating its potential as a reactive filler and its contribution to matrix densification.
- Increasing the FM strip content progressively raised the air content of the mixtures, which negatively affected most of the properties evaluated.
- Increasing strip length produced three main effects: (1) higher air content due to the hydrophobic nature of the strip surface; (2) greater tendency for entanglement, generating additional porosity and creating weak zones within the matrix; and (3) greater interconnection between pores, facilitating water migration through the mortar.
- Under controlled conditions, FM strips acted as micro-bridges or micro-anchors between tensile zones, improving load distribution.
- The optimal content for balanced performance across the three series of mixes was 0.2%, a percentage that ensures proper strip dispersion, minimizes entanglement, and prevents the generated porosity from significantly affecting the evaluated properties.
- With 0.2% content and dimensions of up to 3 × 6 mm (width/length ratio = 0.5), splitting tensile strengths close to the Control + OSP mortar were achieved, indicating that this length favors tensile load transfer within the matrix.
- Assess long-term durability under marine and urban exposure conditions.
- Investigate air-reducing admixtures and optimized mixing procedures to improve density and mechanical performance.
- Explore surface treatments or alternative geometries for FM strips to enhance adhesion and reduce entanglement.
- Incorporate microstructural characterization techniques to better understand how fillers and fibers interact with cement paste.
- Evaluate and optimize the calcination stage to reduce CO2 emissions associated with the process.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Selvaranjan, K.; Navaratnam, S.; Rajeev, P.; Ravintherakumaran, N. Environmental Challenges Induced by Extensive Use of Face Masks during COVID-19: A Review and Potential Solutions. Environ. Chall. 2021, 3, 100039. [Google Scholar] [CrossRef]
- Ammendolia, J.; Saturno, J.; Brooks, A.L.; Jacobs, S.; Jambeck, J.R. An Emerging Source of Plastic Pollution: Environmental Presence of Plastic Personal Protective Equipment (PPE) Debris Related to COVID-19 in a Metropolitan City. Environ. Pollut. 2021, 269, 116160. [Google Scholar] [CrossRef]
- Awoyera, P.O.; Adesina, A. Plastic Wastes to Construction Products: Status, Limitations and Future Perspective. Case Stud. Constr. Mater. 2020, 12, e00330. [Google Scholar] [CrossRef]
- Lamba, P.; Kaur, D.P.; Raj, S.; Sorout, J. Recycling/Reuse of Plastic Waste as Construction Material for Sustainable Development: A Review. Environ. Sci. Pollut. Res. 2022, 29, 86156–86179. [Google Scholar] [CrossRef]
- Saberian, M.; Li, J.; Kilmartin-Lynch, S.; Boroujeni, M. Repurposing of COVID-19 Single-Use Face Masks for Pavements Base/Subbase. Sci. Total Environ. 2021, 769, 145527. [Google Scholar] [CrossRef] [PubMed]
- Rajeev, P.; Ramesh, A.; Navaratnam, S.; Sanjayan, J. Using Fibre Recovered from Face Mask Waste to Improve Printability in 3D Concrete Printing. Cem. Concr. Compos. 2023, 139, 105047. [Google Scholar] [CrossRef]
- Guo, H.; Tao, J.; Chen, Y.; Li, D.; Jia, B.; Zhai, Y. Effect of Steel and Polypropylene Fibers on the Quasi-Static and Dynamic Splitting Tensile Properties of High-Strength Concrete. Constr. Build. Mater. 2019, 224, 504–514. [Google Scholar] [CrossRef]
- Liu, J.; Jia, Y.; Wang, J. Experimental Study on Mechanical and Durability Properties of Glass and Polypropylene Fiber Reinforced Concrete. Fibers Polym. 2019, 20, 1900–1908. [Google Scholar] [CrossRef]
- Koniorczyk, M.; Bednarska, D.; Masek, A.; Cichosz, S. Performance of Concrete Containing Recycled Masks Used for Personal Protection during Coronavirus Pandemic. Constr. Build. Mater. 2022, 324, 126712. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Han, Y.; Shen, L.; Zhu, D. Experimental Study on the Effect of Polypropylene Fiber on Compressive Strength and Fracture Properties of High-Strength Concrete after Elevated Temperatures. J. Build. Eng. 2024, 86, 108860. [Google Scholar] [CrossRef]
- Ahmed, W.; Lim, C.W. Effective Recycling of Disposable Medical Face Masks for Sustainable Green Concrete via a New Fiber Hybridization Technique. Constr. Build. Mater. 2022, 344, 128245. [Google Scholar] [CrossRef] [PubMed]
- Aziz, M.T.; Hossain, M.S.S.; Hasan, M.A.; Mohiuddin, M.A. Utilization of Face Masks and Ladle Furnace Slag in Concrete: Insights from Experimental Study. Clean. Eng. Technol. 2023, 15, 100653. [Google Scholar] [CrossRef]
- Kenney, P.A.; Chan, B.K.; Kortright, K.E.; Cintron, M.; Russi, M.; Epright, J.; Lee, L.; Balcezak, T.J.; Havill, N.L.; Martinello, R.A. Hydrogen Peroxide Vapor Decontamination of N95 Respirators for Reuse. Infect. Control Hosp. Epidemiol. 2022, 43, 45–47. [Google Scholar] [CrossRef] [PubMed]
- Armentano, I.; Barbanera, M.; Belloni, E.; Crognale, S.; Lelli, D.; Marconi, M.; Calabrò, G. Design and Analysis of a Novel Ultraviolet-C Device for Surgical Face Mask Disinfection. ACS Omega 2022, 7, 34117–34126. [Google Scholar] [CrossRef]
- Golovkine, G.R.; Roberts, A.W.; Cooper, C.; Riano, S.; DiCiccio, A.M.; Worthington, D.L.; Clarkson, J.P.; Krames, M.; Zhang, J.; Gao, Y.; et al. Practical Considerations for Ultraviolet-C Radiation Mediated Decontamination of N95 Respirator against SARS-CoV-2 Virus. PLoS ONE 2021, 16, e0258336. [Google Scholar] [CrossRef]
- Ayub, A.; Cheong, Y.K.; Castro, J.C.; Cumberlege, O.; Chrysanthou, A. Use of Hydrogen Peroxide Vapour for Microbiological Disinfection in Hospital Environments: A Review. Bioengineering 2024, 11, 205. [Google Scholar] [CrossRef]
- Xiang, Y.; Song, Q.; Gu, W. Decontamination of Surgical Face Masks and N95 Respirators by Dry Heat Pasteurization for One Hour at 70 °C. Am. J. Infect. Control 2020, 48, 880–882. [Google Scholar] [CrossRef]
- El Aal, A.A.; Abdullah, G.M.S.; Qadri, S.M.T.; Abotalib, A.Z.; Othman, A. Advances on Concrete Strength Properties after Adding Polypropylene Fibers from Health Personal Protective Equipment (PPE) of COVID-19: Implication on Waste Management and Sustainable Environment. Phys. Chem. Earth Parts A/B/C 2022, 128, 103260. [Google Scholar] [CrossRef]
- Paul, S.C.; Santo, M.A.H.; Nahid, S.A.; Majumder, A.R.; Al Mamun, M.F.; Basit, M.A.; Babafemi, A.J. Potential Use of COVID-19 Surgical Masks and Polyethylene Plastics in Developing Sustainable Concrete. J. Compos. Sci. 2023, 7, 402. [Google Scholar] [CrossRef]
- Maloba, J.W.; Kiambigi, J.M.; Kabubo, C.K. Reutilizing Single-Use Surgical Face Masks to Improve the Mechanical Properties of Concrete: A Feasibility Study. Eng. Technol. Appl. Sci. Res. 2023, 13, 10511–10516. [Google Scholar] [CrossRef]
- ASTM C270-19; Standard Specification for Mortar for Unit Masonry. ASTM International: West Conshohocken, PA, USA, 2019.
- ACI 318-19; Building Code Requirements for Structural Concrete. American Concrete Institute: Farmington Hills, MI, USA, 2019.
- Ajam, L.; Trabelsi, A.; Kammoun, Z. Valorisation of Face Mask Waste in Mortar. Innov. Infrastruct. Solut. 2022, 7, 130. [Google Scholar] [CrossRef]
- Thwe Win, T.; Jongvivatsakul, P.; Jirawattanasomkul, T.; Prasittisopin, L.; Likitlersuang, S. Use of Polypropylene Fibers Extracted from Recycled Surgical Face Masks in Cement Mortar. Constr. Build. Mater. 2023, 391, 131845. [Google Scholar] [CrossRef] [PubMed]
- Miah, M.J.; Pei, J.; Kim, H.; Sharma, R.; Jang, J.G.; Ahn, J. Property Assessment of an Eco-Friendly Mortar Reinforced with Recycled Mask Fiber Derived from COVID-19 Single-Use Face Masks. J. Build. Eng. 2023, 66, 105885. [Google Scholar] [CrossRef] [PubMed]
- Nie, Q.; Wu, B.; Wang, Z.; Dai, X.; Chen, L. Incorporation of Disposed Face Mask to Cement Mortar Material: An Insight into the Dynamic Mechanical Properties. Buildings 2024, 14, 1063. [Google Scholar] [CrossRef]
- Idrees, M.; Akbar, A.; Mohamed, A.M.; Fathi, D.; Saeed, F. Recycling of Waste Facial Masks as a Construction Material, a Step towards Sustainability. Materials 2022, 15, 1810. [Google Scholar] [CrossRef]
- Avudaiappan, S.; Cendoya, P.; Arunachalam, K.P.; Maureira-Carsalade, N.; Canales, C.; Amran, M.; Parra, P.F. Innovative Use of Single-Use Face Mask Fibers for the Production of a Sustainable Cement Mortar. J. Compos. Sci. 2023, 7, 214. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Boutouil, M.; Sebaibi, N.; Baraud, F.; Leleyter, L. Durability of Pervious Concrete Using Crushed Seashells. Constr. Build. Mater. 2017, 135, 137–150. [Google Scholar] [CrossRef]
- Mora-Ortiz, R.S.; Del Angel-Meraz, E.; Díaz, S.A.; Munguía-Balvanera, E.; Magaña-Hernández, F.; Alavez-Ramírez, J.; Pantoja Castro, M.A.; Torres-Hernández, J. del R. The Use of Pre-Wetting to Improve the Mechanical Behavior of Masonry Mortar Elaborated with Crushed Oyster Shell. Sustainability 2023, 16, 199. [Google Scholar] [CrossRef]
- Lee, C.H.; Lee, D.K.; Ali, M.A.; Kim, P.J. Effects of Oyster Shell on Soil Chemical and Biological Properties and Cabbage Productivity as a Liming Materials. Waste Manag. 2008, 28, 2702–2708. [Google Scholar] [CrossRef]
- Hong, Y.-M.; Choudhury, S.R. The Substitution Effect of the Fine Aggregate in Concrete with Oyster Shell. Materials 2024, 17, 6148. [Google Scholar] [CrossRef]
- Ez-zaki, H.; Diouri, A.; Kamali-Bernard, S.; Sassi, O. Composite Cement Mortars Based on Marine Sediments and Oyster Shell Powder. Mater. De Construcción 2016, 66, e080. [Google Scholar] [CrossRef]
- Olivia, M.; Oktaviani, R. Ismeddiyanto Properties of Concrete Containing Ground Waste Cockle and Clam Seashells. Procedia Eng. 2017, 171, 658–663. [Google Scholar] [CrossRef]
- Bellei, P.; Torres, I.; Solstad, R.; Flores-Colen, I. Potential Use of Oyster Shell Waste in the Composition of Construction Composites: A Review. Buildings 2023, 13, 1546. [Google Scholar] [CrossRef]
- Yang, B.; Jang, J.G. Environmentally Benign Production of One-Part Alkali-Activated Slag with Calcined Oyster Shell as an Activator. Constr. Build. Mater. 2020, 257, 119552. [Google Scholar] [CrossRef]
- de los Santos, C.R.; López Rodríguez, A.S.; Sifuentes Gallardo, P.; Hernández Rivera, M.Á.; Rivera Trejo, J.G.F.; Díaz Flores, L.L. Reuse of “Cassostrea Virginica” Oyster Shells to Obtain a Mortar Binder from Their Milling and Calcination. Rev. Espac. I+D Innovación Más Desarro. 2016, 5, 38–48. [Google Scholar] [CrossRef]
- Ramón de los Santos, C.; López Rodríguez, A.S.; Sifuentes Gallardo, P.; Hernández Rivera, M.A.; Pérez-Hernández, G.; Gárnica Romo, M.G.; Rivera Trejo, J.G.F.; Diaz Flores, L.L. Effect of the Thermal Annealing on the Phase Transitions of Biogenic CaCO3 Nanostructures. J. Mex. Chem. Soc. 2019, 63, 1–12. [Google Scholar] [CrossRef]
- Lertwattanaruk, P.; Makul, N.; Siripattarapravat, C. Utilization of Ground Waste Seashells in Cement Mortars for Masonry and Plastering. J. Environ. Manag. 2012, 111, 133–141. [Google Scholar] [CrossRef]
- Seo, J.H.; Park, S.M.; Yang, B.J.; Jang, J.G. Calcined Oyster Shell Powder as an Expansive Additive in Cement Mortar. Materials 2019, 12, 1322. [Google Scholar] [CrossRef] [PubMed]
- Badreddine, D.; Bourdot, A.; Maalouf, J.; Rateau, O.; Abhari, K.; Sebaibi, N. Valorisation of Oyster Shell Powder in Mortars as Partial Replacement of Cement. Acad. J. Civil. Eng. 2020, 38, 5. [Google Scholar] [CrossRef]
- Berodier, E.; Scrivener, K. Understanding the Filler Effect on the Nucleation and Growth of C-S-H. J. Am. Ceram. Soc. 2014, 97, 3764–3773. [Google Scholar] [CrossRef]
- Oey, T.; Kumar, A.; Bullard, J.W.; Neithalath, N.; Sant, G. The Filler Effect: The Influence of Filler Content and Surface Area on Cementitious Reaction Rates. J. Am. Ceram. Soc. 2013, 96, 1978–1990. [Google Scholar] [CrossRef]
- Filazi, A.; Akat, R.; Pul, M.; Tortuk, S.; Özdin, A. Physical Structural Mechanical and Thermal Insulation Properties of Hemp Fiber-Substituted Geopolymer Composites. Materials 2025, 18, 2536. [Google Scholar] [CrossRef] [PubMed]
- Fujiyama, R.; Darwish, F.; Pereira, M.V. Mechanical Characterization of Sisal Reinforced Cement Mortar. Theor. Appl. Mech. Lett. 2014, 4, 061002. [Google Scholar] [CrossRef]
- Chafei, S.; Freitas Dutra, L.; Jamali, A. Enhancing Mechanical Behavior of Cement Composites through Citric Acid Treatment of Flax Fibers. J. Mater. Civil. Eng. 2024, 36, 04023486. [Google Scholar] [CrossRef]
- Bencardino, F.; Mazzuca, P.; do Carmo, R.; Costa, H.; Curto, R. Cement-Based Mortars with Waste Paper Sludge-Derived Cellulose Fibers for Building Applications. Fibers 2024, 12, 13. [Google Scholar] [CrossRef]
- da Costa Santos, A.C.; Archbold, P. Suitability of Surface-Treated Flax and Hemp Fibers for Concrete Reinforcement. Fibers 2022, 10, 101. [Google Scholar] [CrossRef]
- Jahami, A.; Issa, C.A. Exploring the Use of Mixed Waste Materials (MWM) in Concrete for Sustainable Construction: A Review. Constr. Build. Mater. 2023, 398, 132476. [Google Scholar] [CrossRef]
- Letelier, V.; Henríquez-Jara, B.I.; Manosalva, M.; Moriconi, G. Combined Use of Waste Concrete and Glass as a Replacement for Mortar Raw Materials. Waste Manag. 2019, 94, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Bu, C.; Tan, B.; Wu, Q.; Qiao, Y.; Sun, Y.; Yu, L.; Yang, Q. Activation Method and Reuse of Waste Concrete Powder—A Review. Sustainability 2023, 15, 5451. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, H.; Tao, Z.; Li, W. Performance of Sustainable Cementitious Mortar Incorporating Hybrid Waste Glass Powder and Steel Slag. Constr. Build. Mater. 2025, 472, 140928. [Google Scholar] [CrossRef]
- Uddin, M.A.; Sobuz, M.H.R.; Kabbo, M.K.I.; Tilak, M.K.C.; Lal, R.; Reza, M.S.; Alsharari, F.; AbdelMongy, M.; Abdullah, M. Predicting the Mechanical Performance of Industrial Waste Incorporated Sustainable Concrete Using Hybrid Machine Learning Modeling and Parametric Analyses. Sci. Rep. 2025, 15, 26330. [Google Scholar] [CrossRef]
- United Nations Nations Environment Programme. Available online: https://wedocs.unep.org/20.500.11822/7790 (accessed on 15 June 2025).
- World Economic Forum. Circular Economy. Available online: https://www.weforum.org/stories/2022/11/heres-how-circular-system-building-materials/ (accessed on 15 June 2025).
- European Union. The European Portal for Energy Efficiency and Renewable Energy in Buildings. Available online: https://build-up.ec.europa.eu/en/resources-and-tools/articles/circular-construction-and-materials-sustainable-building-sector (accessed on 20 June 2025).
- Ali, M.; Opulencia, M.J.C.; Chandra, T.; Chandra, S.; Muda, I.; Dias, R.; Chetthamrongchai, P.; Jalil, A.T. An Environmentally Friendly Solution for Waste Facial Masks Recycled in Construction Materials. Sustainability 2022, 14, 8739. [Google Scholar] [CrossRef]
- Amin, F.; Javed, M.F.; Ahmad, I.; Asad, O.; Khan, N.; Khan, A.B.; Ali, S.; Abdullaev, S.; Awwad, F.A.; Ismail, E.A.A. Utilization of Discarded Face Masks in Combination with Recycled Concrete Aggregate and Silica Fume for Sustainable Civil Construction Projects. Sci. Rep. 2024, 14, 449. [Google Scholar] [CrossRef]
- Battegazzore, D.; Cravero, F.; Frache, A. Is It Possible to Mechanical Recycle the Materials of the Disposable Filtering Masks? Polymers 2020, 12, 2726. [Google Scholar] [CrossRef] [PubMed]
- O’Dowd, K.; Nair, K.M.; Forouzandeh, P.; Mathew, S.; Grant, J.; Moran, R.; Bartlett, J.; Bird, J.; Pillai, S.C. Face Masks and Respirators in the Fight Against the COVID-19 Pandemic: A Review of Current Materials, Advances and Future Perspectives. Materials 2020, 13, 3363. [Google Scholar] [CrossRef]
- ASTM D792-20; Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM D570-22; Standard Test Method for Water Absorption of Plastics. ASTM International: West Conshohocken, PA, USA, 2022.
- Miller, K.E.; Jahn, A.-C.; Strohm, B.M.; Demyttenaere, S.M.; Nikolai, P.J.; Behm, B.D.; Paracha, M.S.; Miri, M.J. Polymers Used in Transparent Face Masks—Characterization, Assessment, and Recommendations for Improvements Including Their Sustainability. Polymers 2025, 17, 937. [Google Scholar] [CrossRef]
- Karunadasa, K.S.P.; Manoratne, C.H.; Pitawala, H.M.T.G.A.; Rajapakse, R.M.G. Thermal Decomposition of Calcium Carbonate (Calcite Polymorph) as Examined by in-Situ High-Temperature X-Ray Powder Diffraction. J. Phys. Chem. Solids 2019, 134, 21–28. [Google Scholar] [CrossRef]
- Bui, N.K.; Kurihara, R.; Kanematsu, M.; Hyodo, H.; Noguchi, T.; Maruyama, I. Effect of Temperature on Binding Process of Calcium Carbonate Concrete through Aragonite Crystals Precipitation. Compos. B Eng. 2024, 283, 111625. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Kuo, W.-T.; Lin, C.-C.; Po-Yo, C. Study of the Material Properties of Fly Ash Added to Oyster Cement Mortar. Constr. Build. Mater. 2013, 41, 532–537. [Google Scholar] [CrossRef]
- Ballester, P.; Mármol, I.; Morales, J.; Sánchez, L. Use of Limestone Obtained from Waste of the Mussel Cannery Industry for the Production of Mortars. Cem. Concr. Res. 2007, 37, 559–564. [Google Scholar] [CrossRef]
- ASTM C188; Standard Test Method for Density of Hydraulic Cement. ASTM International: West Conshohocken, PA, USA, 2025.
- Zhang, G.-Y.; Lee, S.; Han, Y.; Wang, X.-Y. The Effect of Oyster Shell Powder on the High-Temperature-Properties of Slag-Ceramic Powder-Based Geopolymer. Materials 2023, 16, 3706. [Google Scholar] [CrossRef]
- ASTM C33-07; Standard Specification for Concrete Aggregates. ASTM International: West Conshohocken, PA, USA, 2012.
- ASTM C128-22; Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM C136M-19; Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. ASTM International: West Conshohocken, PA, USA, 2019.
- Mora-Ortiz, R.S.; Díaz, S.A.; Del Angel-Meraz, E.; Magaña-Hernández, F. Recycled Fine Aggregates from Mortar Debris and Red Clay Brick to Fabricate Masonry Mortars: Mechanical Analysis. Materials 2022, 15, 7707. [Google Scholar] [CrossRef] [PubMed]
- ASTM C150/C150M-19a; Standard Specification for Portland Cement. ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM C1437-20; Standard Test Method for Flow of Hydraulic Cement Mortar. ASTM International: West Conshohocken, PA, USA, 2020.
- Kara De Maeijer, P.; Craeye, B.; Snellings, R.; Kazemi-Kamyab, H.; Loots, M.; Janssens, K.; Nuyts, G. Effect of Ultra-Fine Fly Ash on Concrete Performance and Durability. Constr. Build. Mater. 2020, 263, 120493. [Google Scholar] [CrossRef]
- Ashraf, M.; Iqbal, M.F.; Rauf, M.; Ashraf, M.U.; Ulhaq, A.; Muhammad, H.; Liu, Q. Developing a Sustainable Concrete Incorporating Bentonite Clay and Silica Fume: Mechanical and Durability Performance. J. Clean. Prod. 2022, 337, 130315. [Google Scholar] [CrossRef]
- Han, T.; Aponte, D.; Valls, S.; Bizinotto, M.B. Impact of Recycled Concrete and Ceramic Fillers on the Performance of Cementitious Systems: Microstructural, Mechanical, and Durability Aspects. Recycling 2025, 10, 108. [Google Scholar] [CrossRef]
- El-Hawary, M.; Nouh, K. Properties and Sustainability of Concrete Containing Fillers. Aust. J. Civil. Eng. 2018, 16, 96–105. [Google Scholar] [CrossRef]
- ASTM C305-20; Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM C185-20; Standard Test Method for Air Content of Hydraulic Cement Mortar. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM C642-21; Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM C109-21; Standard Test Method for Compressive Strength of Hydraulic Cement Mortars(Using 2-in. or [50-Mm] Cube Specimens). ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM C496/C496M-17; Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International: West Conshohocken, PA, USA, 2017.
- Alabduljabbar, H.; Farooq, F.; Alyami, M.; Hammad, A.W. Assessment of the Split Tensile Strength of Fiber Reinforced Recycled Aggregate Concrete Using Interpretable Approaches with Graphical User Interface. Mater. Today Commun. 2024, 38, 108009. [Google Scholar] [CrossRef]
- Boumaaza, M.; Belaadi, A.; Bourchak, M. Systematic Review on Reinforcing Mortars with Natural Fibers: Challenges of Environment-Friendly Option. J. Nat. Fibers 2022, 19, 14262–14286. [Google Scholar] [CrossRef]
- NMX-C-082-ONNCCE; Building Industry—Masonry—Determination of Shear Bond Strength of Mortar to Masonry Units—Test Method. National Body for Standardization and Certification of Construction and Building: Mexico City, Mexico, 2013.
- J. (Version 2. 4. 8) [Computer S.R. from The Jamovi Project 2024. Available online: https://www.jamovi.org (accessed on 8 August 2025).
- Bhagwat, Y.; Nayak, G.; Pandit, P.; Lakshmi, A. Effect of Polypropylene Fibres on Strength and Durability Performance of M-Sand Self Compacting Concrete. Cogent Eng. 2023, 10, 2233783. [Google Scholar] [CrossRef]
- Song, P.S.; Hwang, S.; Sheu, B.C. Strength Properties of Nylon- and Polypropylene-Fiber-Reinforced Concretes. Cem. Concr. Res. 2005, 35, 1546–1550. [Google Scholar] [CrossRef]
- Hannawi, K.; Bian, H.; Prince-Agbodjan, W.; Raghavan, B. Effect of Different Types of Fibers on the Microstructure and the Mechanical Behavior of Ultra-High Performance Fiber-Reinforced Concretes. Compos. B Eng. 2016, 86, 214–220. [Google Scholar] [CrossRef]
- Liu, J.; Jia, Y.; Wang, J. Calculation of Chloride Ion Diffusion in Glass and Polypropylene Fiber-Reinforced Concrete. Constr. Build. Mater. 2019, 215, 875–885. [Google Scholar] [CrossRef]
- Sayed Mohammad Akid, A.; Hossain, S.; Imtiaz Uddin Munshi, M.; Elahi, M.M.A.; Habibur Rahman Sobuz, M.; Tam, V.W.Y.; Saiful Islam, M. Assessing the Influence of Fly Ash and Polypropylene Fiber on Fresh, Mechanical and Durability Properties of Concrete. J. King Saud. Univ. Eng. Sci. 2023, 35, 474–484. [Google Scholar] [CrossRef]
- El-Newihy, A.; Azarsa, P.; Gupta, R.; Biparva, A. Effect of Polypropylene Fibers on Self-Healing and Dynamic Modulus of Elasticity Recovery of Fiber Reinforced Concrete. Fibers 2018, 6, 9. [Google Scholar] [CrossRef]
- He, X.; Yan, B.; Gu, J.; Shen, Q. Combined Impacts of Polypropylene Fibres on Workability, Strength and Permeability of SCC. Mag. Concr. Res. 2014, 66, 127–140. [Google Scholar] [CrossRef]
- Ranjbar, N.; Mehrali, M.; Behnia, A.; Javadi Pordsari, A.; Mehrali, M.; Alengaram, U.J.; Jumaat, M.Z. A Comprehensive Study of the Polypropylene Fiber Reinforced Fly Ash Based Geopolymer. PLoS ONE 2016, 11, e0147546. [Google Scholar] [CrossRef] [PubMed]
- Karahan, O.; Atiş, C.D. The Durability Properties of Polypropylene Fiber Reinforced Fly Ash Concrete. Mater. Des. 2011, 32, 1044–1049. [Google Scholar] [CrossRef]
- Sadiqul Islam, G.M.; Gupta, S. Das Evaluating Plastic Shrinkage and Permeability of Polypropylene Fiber Reinforced Concrete. Int. J. Sustain. Built Environ. 2016, 5, 345–354. [Google Scholar] [CrossRef]
- Cuenca-Moyano, G.M.; Martín-Morales, M.; Valverde-Palacios, I.; Valverde-Espinosa, I.; Zamorano, M. Influence of Pre-Soaked Recycled Fine Aggregate on the Properties of Masonry Mortar. Constr. Build. Mater. 2014, 70, 71–79. [Google Scholar] [CrossRef]
- Xie, C.; Cao, M.; Khan, M.; Yin, H.; Guan, J. Review on Different Testing Methods and Factors Affecting Fracture Properties of Fiber Reinforced Cementitious Composites. Constr. Build. Mater. 2021, 273, 121766. [Google Scholar] [CrossRef]
- Yoo, D.-Y.; Kang, S.-T.; Yoon, Y.-S. Effect of Fiber Length and Placement Method on Flexural Behavior, Tension-Softening Curve, and Fiber Distribution Characteristics of UHPFRC. Constr. Build. Mater. 2014, 64, 67–81. [Google Scholar] [CrossRef]
- Ahmad, W.; Khan, M.; Smarzewski, P. Effect of Short Fiber Reinforcements on Fracture Performance of Cement-Based Materials: A Systematic Review Approach. Materials 2021, 14, 1745. [Google Scholar] [CrossRef] [PubMed]
- Anas, M.; Khan, M.; Bilal, H.; Jadoon, S.; Khan, M.N. Fiber Reinforced Concrete: A Review. In Proceedings of the ICEC 2022, Basel, Switzerland, 22 September 2022; p. 3. [Google Scholar]
- Shen, D.; Liu, X.; Zeng, X.; Zhao, X.; Jiang, G. Effect of Polypropylene Plastic Fibers Length on Cracking Resistance of High Performance Concrete at Early Age. Constr. Build. Mater. 2020, 244, 117874. [Google Scholar] [CrossRef]
- Al-Hadithi, A.I.; Noaman, A.T.; Mosleh, W.K. Mechanical Properties and Impact Behavior of PET Fiber Reinforced Self-Compacting Concrete (SCC). Compos. Struct. 2019, 224, 111021. [Google Scholar] [CrossRef]
- Hama, S.M.; Hilal, N.N. Fresh Properties of Self-Compacting Concrete with Plastic Waste as Partial Replacement of Sand. Int. J. Sustain. Built Environ. 2017, 6, 299–308. [Google Scholar] [CrossRef]

















| Mortar Mix | Face Mask Type | FM (%) | NA (g) | CEM (g) | Filler (g) | Water (g) | Consistency Index—Flow Diameter (mm) | W/C |
|---|---|---|---|---|---|---|---|---|
| Control | — | 0 | 1573 | 353 | 0 | 357 | 176 | 1.011 |
| Control + OSP | — | 0 | 1573 | 353 | 17.65 | 368 | 177 | 1.042 |
| FM1-0.1 | FM1 (3 × 6 mm) | 0.10 | 1573 | 353 | 17.65 | 378 | 175 | 1.071 |
| FM1-0.2 | 0.20 | 1573 | 353 | 17.65 | 385 | 171 | 1.091 | |
| FM1-0.5 | 0.50 | 1573 | 353 | 17.65 | 401 | 178 | 1.136 | |
| FM1-0.8 | 0.80 | 1573 | 353 | 17.65 | 426 | 170 | 1.207 | |
| FM2-0.1 | FM2 (3 × 15 mm) | 0.10 | 1573 | 353 | 17.65 | 382 | 170 | 1.082 |
| FM2-0.2 | 0.20 | 1573 | 353 | 17.65 | 399 | 173 | 1.130 | |
| FM2-0.5 | 0.50 | 1573 | 353 | 17.65 | 424 | 175 | 1.201 | |
| FM2-0.8 | 0.80 | 1573 | 353 | 17.65 | 436 | 176 | 1.235 | |
| FM3-0.1 | FM3 (3 × 28 mm) | 0.10 | 1573 | 353 | 17.65 | 390 | 175 | 1.105 |
| FM3-0.2 | 0.20 | 1573 | 353 | 17.65 | 404 | 171 | 1.144 | |
| FM3-0.5 | 0.50 | 1573 | 353 | 17.65 | 435 | 178 | 1.232 | |
| FM3-0.8 | 0.80 | 1573 | 353 | 17.65 | 448 | 170 | 1.269 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mora-Ortiz, R.S.; Díaz Alvarado, S.A.; Del Angel-Meraz, E.; Magaña-Hernández, F.; Pantoja Castro, M.A.; Munguía-Balvanera, E. Hybrid Mortar Composites Incorporating Oyster Shell Filler and Recycled Fibers from Disposable Masks. Materials 2025, 18, 4854. https://doi.org/10.3390/ma18214854
Mora-Ortiz RS, Díaz Alvarado SA, Del Angel-Meraz E, Magaña-Hernández F, Pantoja Castro MA, Munguía-Balvanera E. Hybrid Mortar Composites Incorporating Oyster Shell Filler and Recycled Fibers from Disposable Masks. Materials. 2025; 18(21):4854. https://doi.org/10.3390/ma18214854
Chicago/Turabian StyleMora-Ortiz, René Sebastián, Sergio Alberto Díaz Alvarado, Ebelia Del Angel-Meraz, Francisco Magaña-Hernández, Mayra Agustina Pantoja Castro, and Emmanuel Munguía-Balvanera. 2025. "Hybrid Mortar Composites Incorporating Oyster Shell Filler and Recycled Fibers from Disposable Masks" Materials 18, no. 21: 4854. https://doi.org/10.3390/ma18214854
APA StyleMora-Ortiz, R. S., Díaz Alvarado, S. A., Del Angel-Meraz, E., Magaña-Hernández, F., Pantoja Castro, M. A., & Munguía-Balvanera, E. (2025). Hybrid Mortar Composites Incorporating Oyster Shell Filler and Recycled Fibers from Disposable Masks. Materials, 18(21), 4854. https://doi.org/10.3390/ma18214854

