Experimental Optimization Study on Pumping Pipeline Transportation Performance of Pure Gangue Slurry Filling Material
Abstract
1. Introduction
2. Materials and Methods
2.1. Basic Properties of Raw Materials
2.2. Talbot Gradation Theory Design Test
2.3. Test Methods
2.3.1. Rheological Test
2.3.2. Slump Test
2.3.3. Bleeding Rate Test
3. Results and Analysis
3.1. Test Result Analysis
3.2. The Influence of Rheological Properties Under Different Gradation and W/S
3.3. The Influence of Fluidity Under Different Gradation and W/S
3.4. The Influence of Stability Under Different Gradation and W/S
4. Conclusions
- In this study, the shear stress of the PGS increases with the shear rate, demonstrating good agreement with the Bingham rheological model. As W/S decreases, heightened slurry concentration intensifies particle flocculation while reducing free water availability, diminishing lubrication; consequently, yield stress rises and fluidity declines, though stability improves. Lower gradation indices with abundant fine particles necessitate excessive water, rendering them unsuitable for high-concentration backfill applications.
- Increasing gradation reduces fine particle content, diminishing free water entrapment capacity and weakening the floc network structure while improving particle continuity; consequently, PGS exhibits an initial decrease followed by an increase in yield stress, with fluidity first enhancing then declining. At gradation n = 0.4, coarse-to-fine equilibrium achieves minimal yield stress and optimal fluidity, though bleeding rate maintains a persistent upward trajectory.
- The optimal mixture proportion for PGS is established at gradation n = 0.4 combined with W/S 0.18, where balanced coarse-to-fine particle distribution enables thorough occupation of the coarse-particle skeletal framework by fines, achieving minimal porosity while comprehensively satisfying all pumping specifications. This study provides an important experimental basis for the selection of crushing parameters and mixture proportioning in subsequent industrial-scale mine backfill systems.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, C.; Zhang, J.; Yan, C.; Yin, L.; Wang, X.; Liu, S. Hydration characteristics of low carbon cementitious materials with multiple solid wastes. Constr. Build. Mater. 2022, 322, 126366. [Google Scholar] [CrossRef]
- Jia, J.; Ma, N.; Dong, Y.; Li, Q.; Zhang, D. Review on the comprehensive utilization of coal gangue. Clean Coal Technol. 2024, 30, 36–45. [Google Scholar]
- Yin, Y.; Tu, J.; Wang, S.; Liu, S.; Wang, T.; Qi, C.; Deng, C.; Wei, J.; Peng, Z.; Shakir, M.; et al. Unlocking the synergy: Thermochemical behavior and kinetics in the co-combustion of coal gangue and wheat straw. Energy Sources Part A Recovery Util. Environ. Eff. 2025, 47, 8758–8768. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, T.; Gao, X. Incorporation of self-ignited coal gangue in steam cured precast concrete. J. Clean. Prod. 2021, 292, 126004. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhan, J.; Liu, G.; Zheng, M.; Jin, R.; Yang, L.; Hao, L.; Wu, X.; Zhang, X.; Wang, P. Evaluation of dioxins and dioxin-like compounds from a cement plant using carbide slag from chlor-alkali industry as the major raw material. J. Hazard. Mater. 2017, 330, 135–141. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhou, Y.; Liu, X.; Liu, M.; Liao, L.; Lv, G. Environmental hazards and comprehensive utilization of solid waste coal gangue. Prog. Nat. Sci. Mater. Int. 2024, 34, 223–239. [Google Scholar] [CrossRef]
- Liang, W.; Guo, F.; Yu, Y.; Zhang, Z.; Yan, J. Research progress on in-situ intelligent sorting and filling technology of coal gangue underground. Coal Sci. Technol. 2024, 52, 12–27. [Google Scholar]
- Wu, D.; Deng, T.; Zhao, R. A coupled THMC modeling application of cemented coal gangue-fly ash backfill. Constr. Build. Mater. 2018, 158, 326–336. [Google Scholar] [CrossRef]
- Wu, D.; Sun, G.; Liu, Y. Modeling the thermo-hydro-chemical behavior of cemented coal gangue-fly ash backfill. Constr. Build. Mater. 2016, 111, 522–528. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, N.; Gao, F.; Yan, H. Method of gangue grouting filling in subsequent space of coal mining. J. China Coal Soc. 2023, 48, 150–162. [Google Scholar]
- Xu, J.; Zhou, N.; Zhang, J.; Yao, Y.; Wang, H.; Liu, S. Study on rheological properties of large particle gangue slurry and its drag reduction effect caused by wall slippage in pipeline transportation. Powder Technol. 2025, 452, 120573. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, Y.; Yang, S. Influence of coal gangue-aeolian sand aggregate gradation on rheological properties and pipeline transportation characteristics of filling slurry. Sci. Rep. 2025, 15, 789. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Zhu, L.; Song, T. Research on key parameters of pipeline transportation of waste rock treatment in underground residual space. Front. Earth Sci. 2023, 10, 1098674. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Yang, G.; Ruan, Z.; Wang, Z. Effect of cement-to-tailings ratio and flow rate on the wear performance of filling pipeline. Powder Technol. 2022, 397, 117027. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, S.; Wu, Z.; Liu, Z.; Wang, J.; Lang, C.; Li, Y. Investigation of flow and viscosity characteristics of hydrate slurries within a visual-loop system. Energy 2024, 289, 129929. [Google Scholar] [CrossRef]
- Jin, J.; Yang, F.; Gu, C.; Zhou, Y.; Wang, X. Study on Rheological Characteristics of Uncemented Coal Gangue-Fly Ash Backfill (UCGFB) Slurry Based on Fractal Theory. Adv. Mater. Sci. Eng. 2022, 2022, 7634951. [Google Scholar] [CrossRef]
- Liu, P.; Liu, Z.; Lu, Z.; Guo, Y.; Qiu, Y. Study on preparation and influencing factors of coal gangue fill slurry material. Case Stud. Constr. Mater. 2024, 21, e03986. [Google Scholar] [CrossRef]
- Sun, K.; Wu, X. Experimental study on rheological properties of coal gangue slurry based on response surface methodology. Processes 2023, 11, 1205. [Google Scholar] [CrossRef]
- Qiu, J.; Chen, Q.; Jiang, J.; He, X.; Xiao, C.; Bin, F.; Liu, S.; Huang, Z. In-depth study on influence of material ratio on performance of gangue filler through experiment and machine learning. Constr. Build. Mater. 2025, 462, 140029. [Google Scholar] [CrossRef]
- Zheng, B.; Zhou, H.; He, R. Experimental research on coal gangue paste filling material. J. Min. Saf. Eng. 2006, 23, 460–463. [Google Scholar]
- Zhang, D.; Hao, Y.; Wen, H.; Sun, W.; Zhai, X. Properties optimization and hydration mechanism of coal-based solid waste paste filling materials. Powder Technol. 2025, 455, 120751. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Y.; Hao, Y. Experimental study and application of rheological properties of coal gangue-fly ash backfill slurry. Processes 2020, 8, 284. [Google Scholar] [CrossRef]
- Wang, H.; Jiao, J.; Wang, Y.; Du, W. Feasibility of using gangue and fly ash as filling slurry materials. Processes 2018, 6, 232. [Google Scholar] [CrossRef]
- Liu, P.; Cui, F.; Wang, H.; Zhao, W. Experimental study on fluidity of coarse and fine particles mixed with pure gangue filling slurry. Coal Technol. 2021, 40, 27–31. [Google Scholar]
- Lu, W.; Zhang, M.; Wang, C.; Liao, C.; Zhang, C.; Xu, G. Simulation study on load-bearing capacity and broken characteristics of the loose gangue based on Talbot theory. Powder Technol. 2023, 429, 118953. [Google Scholar] [CrossRef]
- Yao, Y.; El Naggar, M.H.; Zhang, J.; Xu, J.; Yang, J.; Li, M. Dynamic mechanical properties of coal-based solid waste cemented backfill material. J. Build. Eng. 2024, 98, 111347. [Google Scholar] [CrossRef]
- Ji, Y.; Xie, L.; Xiao, J.; Zheng, Y.; Ma, S.; Pan, T. Mechanical properties and acoustic emission characteristics of microbial cemented backfill with various particle size distributions of recycled aggregates. Constr. Build. Mater. 2024, 417, 135269. [Google Scholar] [CrossRef]
- Zhu, L.; Jin, Z.; Zhao, Y.; Duan, Y. Rheological properties of cemented coal gangue backfill based on response surface methodology. Constr. Build. Mater. 2021, 306, 124836. [Google Scholar] [CrossRef]
- Gu, C.; Yang, B.; Yang, F.; Ren, Q.; e Silva, M.C. Fluidity and rheological properties with time-dependence of cemented fine-grained coal gangue backfill containing HPMC using response surface method. Constr. Build. Mater. 2024, 451, 138691. [Google Scholar] [CrossRef]
- Guo, Q.; Zhang, J.; Li, M.; Huo, B.; Zhao, Y.; Yin, Z.; Xing, S.; Fu, X. Rheological and CO2 sequestration properties of alkali-activated gangue-based backfill slurry: Effect of temperature. J. Mater. Res. Technol. 2025, 36, 3886–3897. [Google Scholar] [CrossRef]
- Gao, S.; Zhao, S.; Yang, L.; Wang, Y.; Guan, X.; Zhang, H.; Luo, S. Synergistic effects of fly ash-cement slurry and CO2 mineralization on coal gangue aggregate and its concrete properties. Constr. Build. Mater. 2025, 465, 140225. [Google Scholar] [CrossRef]
- Pan, Y.; Yuan, H.; Zhai, S.; Geng, Z.; Huo, F. Study on Slump and Compressive Strength of Gangue Based on Aggregate Size Gradation. Appl. Sci. 2024, 14, 4214. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, S.; Liu, C.; Dang, Q.; Bai, G. Study on the properties of recycled concrete mixed with coal gangue: Mechanics, workability and microstructure. J. Build. Eng. 2024, 98, 111065. [Google Scholar] [CrossRef]
- GB/T50080-2002; Standard for Test Method of Performance on Ordinary Fresh Concrete. Standardization Administration of the People’s Republic of China: Beijing, China, 2002.
- Liu, C.; Li, Z.; Bezuijen, A.; Chen, L.; Cachim, P. Optimizing the shield tunnel backfilling grouts with supplementary cementitious materials by response surface methodology. Constr. Build. Mater. 2024, 421, 135575. [Google Scholar] [CrossRef]
- Long, K.; Li, B.; Ma, J.; Liu, H.; Li, J. Ecological risk analysis of leakage caused by coal-based solid waste backfill slurry bleeding: An experimental study. J. Clean. Prod. 2025, 494, 144993. [Google Scholar] [CrossRef]
- Qi, T.; Gao, X.; Feng, G.; Bai, J.; Wang, Z.; Chen, Q.; Wang, H.; Du, X. Effect of biomass power plant ash on fresh properties of cemented coal gangue backfill. Constr. Build. Mater. 2022, 340, 127853. [Google Scholar] [CrossRef]
- Duan, X.; Huang, Y.; Hao, Y.; Zhang, L. Research on the Testing Method for the Rheological Properties of Large-Particle Gangue Filling Slurry. Processes 2025, 13, 789. [Google Scholar] [CrossRef]
- Li, H.; Wang, H.; Bai, L. Effect of coal gangue grading characteristics on cemented paste backfill rheology. Case Stud. Constr. Mater. 2024, 21, e03694. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, M.; Bai, J.; Liao, Y.; Li, D.; Zhang, B. Research on the Rheological Properties and Diffusion Law of Coal-Based Solid Waste Geopolymer Grouting Material. Materials 2024, 17, 5433. [Google Scholar] [CrossRef]
- Fang, Z.; Gao, Y.; He, W.; Zhu, M.; Xia, L.; Yang, P.; Liu, D.; He, J. Carbonation curing of magnesium-coal slag solid waste backfill material: Study on properties of flow, mechanics and carbon sequestration. Case Stud. Constr. Mater. 2024, 20, e03204. [Google Scholar] [CrossRef]
- Chen, J.; Min, F.-F.; Liu, L.-Y. The interactions between fine particles of coal and kaolinite in aqueous, insights from experiments and molecular simulations. Appl. Surf. Sci. 2019, 467, 12–21. [Google Scholar] [CrossRef]
- Li, T.; Chen, X.; Liu, Z.; Jiang, W.; Min, H. Study on the suspending mechanism of gangue particle in coal-based solid waste slurry. Alex. Eng. J. 2024, 107, 583–590. [Google Scholar] [CrossRef]
- Klein, N.S.; Lenz, L.A.; Mazer, W. Influence of the granular skeleton packing density on the static elastic modulus of conventional concretes. Constr. Build. Mater. 2020, 242, 118086. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, S.; Yang, T.; Wang, Y.; Li, J.; Li, K. The influence of coal gangue dosage and concentration on the properties and hydration mechanism of fly ash-based cemented filling materials. J. Clean. Prod. 2025, 492, 144903. [Google Scholar] [CrossRef]
Numb | Gradation | W/S | Yield Stress/Pa | Viscosity/Pa·s | Slump/mm | Spread Flow/cm | Bleeding Rate/% |
---|---|---|---|---|---|---|---|
S1 | 0.2 | 0.22 | 138.76 | 1.01 | 265 | 66.6 | 4.77 |
S2 | 0.2 | 0.20 | 212.92 | 2.76 | 210 | 51.1 | 1.99 |
S3 | 0.2 | 0.18 | / | / | 40 | 23 | 0.78 |
S4 | 0.2 | 0.16 | / | / | 30 | 21 | 0.24 |
S5 | 0.3 | 0.22 | 56.27 | 1.27 | 285 | 74.2 | 6.86 |
S6 | 0.3 | 0.20 | 128.37 | 0.63 | 266 | 68.8 | 3.83 |
S7 | 0.3 | 0.18 | 274.31 | 0.51 | 238 | 57.3 | 1.86 |
S8 | 0.3 | 0.16 | / | / | 156 | 28 | 1.32 |
S9 | 0.4 | 0.22 | 39.52 | 3.04 | 290 | 78.5 | 7.85 |
S10 | 0.4 | 0.20 | 77.08 | 1.73 | 280 | 73.6 | 4.21 |
S11 | 0.4 | 0.18 | 144.25 | 0.79 | 255 | 60.1 | 2.21 |
S12 | 0.4 | 0.16 | / | / | 190 | 31.5 | 1.64 |
S13 | 0.5 | 0.22 | 348.35 | 3.71 | 283 | 73.9 | 10.31 |
S14 | 0.5 | 0.20 | 365.46 | 2.45 | 272 | 70.1 | 5.19 |
S15 | 0.5 | 0.18 | 382.69 | 0.85 | 250 | 58.2 | 3.69 |
S16 | 0.5 | 0.16 | / | / | 188 | 30.5 | 3.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Tang, X.; Ju, F.; Xiao, M.; Wang, T.; Wang, D.; Yin, L.; Si, L.; Xu, M. Experimental Optimization Study on Pumping Pipeline Transportation Performance of Pure Gangue Slurry Filling Material. Materials 2025, 18, 4788. https://doi.org/10.3390/ma18204788
Wang Y, Tang X, Ju F, Xiao M, Wang T, Wang D, Yin L, Si L, Xu M. Experimental Optimization Study on Pumping Pipeline Transportation Performance of Pure Gangue Slurry Filling Material. Materials. 2025; 18(20):4788. https://doi.org/10.3390/ma18204788
Chicago/Turabian StyleWang, Yingbo, Xiaoming Tang, Feng Ju, Meng Xiao, Tengfei Wang, Dong Wang, Lidong Yin, Lu Si, and Mengxin Xu. 2025. "Experimental Optimization Study on Pumping Pipeline Transportation Performance of Pure Gangue Slurry Filling Material" Materials 18, no. 20: 4788. https://doi.org/10.3390/ma18204788
APA StyleWang, Y., Tang, X., Ju, F., Xiao, M., Wang, T., Wang, D., Yin, L., Si, L., & Xu, M. (2025). Experimental Optimization Study on Pumping Pipeline Transportation Performance of Pure Gangue Slurry Filling Material. Materials, 18(20), 4788. https://doi.org/10.3390/ma18204788