An Innovative Solution for Post-Consumer Footwear Waste: Nonwoven Fibrous Structures with Thermal and Acoustic Insulation Properties
Abstract
Highlights
- An eco-innovative material was developed from post-consumer footwear waste.
- The recycled nonwoven structures show good thermal and acoustic insulation properties.
- Footwear waste can be upcycled into sustainable insulation materials.
- Processing conditions allow tuning between mechanical strength and insulation per-formance.
Abstract
1. Introduction
2. Materials and Methods
2.1. Residue Characterization
2.2. Residue Grinding
2.3. Nonwoven Production
2.4. Scanning Electron Microscopy
2.5. Physical Properties and Air Permeability
2.6. Mechanical Properties
2.7. Thermal Properties
2.8. Acoustic Properties
3. Results and Discussion
3.1. Residues Characterization
3.1.1. Chemical and Thermal Characterization of Leather Residues
3.1.2. Chemical and Thermal Characterization of Footwear Mixture Residues
3.1.3. Morphological Characterization of the Residues
3.2. Development and Characterization of Nonwoven Structures
3.2.1. Surface and Cross-Section Morphological Characterization
3.2.2. Physical Properties and Air Permeability
3.2.3. Mechanical Properties
3.2.4. Thermal Properties
3.2.5. Acoustic Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Van Rensburg, M.L.; Nkomo, S.L.; Mkhize, N.M. Characterization and Pyrolysis of Post-Consumer Leather Shoe Waste for the Recovery of Valuable Chemicals. Detritus 2021, 14, 92–107. [Google Scholar] [CrossRef]
- Portuguese shoes. World Footwear Yearbook 2024, 13th ed.; APPICAPS: Porto, Portugal, 2024. [Google Scholar]
- Staikos, T.; Rahimifard, S. Post-Consumer Waste Management Issues in the Footwear Industry. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2007, 221, 363–368. [Google Scholar] [CrossRef]
- Van Rensburg, M.L.; Nkomo, S.L.; Mkhize, N.M. Life Cycle and End-of-Life Management Options in the Footwear Industry: A Review. Waste Manag. Res. 2020, 38, 599–613. [Google Scholar] [CrossRef]
- Alves, B. Global Waste Generation—Statistics & Facts. Available online: https://www.statista.com/topics/4983/waste-generation-worldwide/#topicOverview (accessed on 25 July 2025).
- Dennis, P. Shoe Waste: How Consumption Became Culture. Available online: https://www.circularonline.co.uk/features/circular-trainers-how-consumption-became-culture/ (accessed on 20 March 2025).
- Islam, S.; Bhat, G. Environmentally-Friendly Thermal and Acoustic Insulation Materials from Recycled Textiles. J. Environ. Manag. 2019, 251, 109536. [Google Scholar] [CrossRef] [PubMed]
- Baccouch, W.; Ghith, A.; Yalcin-Enis, I.; Sezgin, H.; Miled, W.; Legrand, X.; Faten, F. Investigation of the Mechanical, Thermal, and Acoustical Behaviors of Cotton, Polyester, and Cotton/Polyester Nonwoven Wastes Reinforced Epoxy Composites. J. Ind. Text. 2022, 51, 876–899. [Google Scholar] [CrossRef]
- Dissanayake, D.G.K.; Weerasinghe, D.U.; Wijesinghe, K.A.P.; Kalpage, K.M.D.M.P. Developing a Compression Moulded Thermal Insulation Panel Using Postindustrial Textile Waste. Waste Manag. 2018, 79, 356–361. [Google Scholar] [CrossRef]
- Mia, A.; Alam, N.; Murad, W.; Ahmad, F.; Uddin, K. Waste Management & Quality Assessment of Footwear Manufacturing Industry in Bangladesh: An Innovative Approach. Int. J. Eng. Manag. Res. 2017, 7, 402–407. [Google Scholar]
- Tippayawong, K.Y.; Tippayawong, N. Fuel Recovery from Thermal Processing of Post-Consumer Footwear Waste. Energy Eng. 2017, 114, 7–16. [Google Scholar] [CrossRef]
- Cheah, L.; Ciceri, N.D.; Olivetti, E.; Matsumura, S.; Forterre, D.; Roth, R.; Kirchain, R. Manufacturing-Focused Emissions Reductions in Footwear Production. J. Clean. Prod. 2013, 44, 18–29. [Google Scholar] [CrossRef]
- Muthu, S.S. The Environmental Impact of Footwear and Footwear Materials. In Handbook of Footwear Design and Manufacture; Elsevier: Amsterdam, The Netherlands, 2013; pp. 266–279. ISBN 978-0-85709-539-8. [Google Scholar]
- Staikos, T.; Rahimifard, S. A Decision-Making Model for Waste Management in the Footwear Industry. Int. J. Prod. Res. 2007, 45, 4403–4422. [Google Scholar] [CrossRef]
- Gottfridsson, M.; Zhang, Y. Environmental Impacts of Shoe Consumption. Master’s Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2015. [Google Scholar]
- Chakraborty, K.; Sudhakar, S.; Sarma, K.K.; Raju, P.L.N.; Das, A.K. Recognizing the Rapid Expansion of Rubber Plantation—A Threat to Native Forest in Parts of Northeast India. Curr. Sci. 2018, 114, 207. [Google Scholar] [CrossRef]
- Khan, M. Study About Polymer Applications in Footwear. Master’s Thesis, Arcada University of Applied Science, Helsinki, Finland, 2015. [Google Scholar]
- Muñoz, Z. Water, Energy and Carbon Footprints of a Pair of Leather Shoes. Master’s Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2013. [Google Scholar]
- Lee, M.J.; Rahimifard, S. An Air-Based Automated Material Recycling System for Postconsumer Footwear Products. Resour. Conserv. Recycl. 2012, 69, 90–99. [Google Scholar] [CrossRef]
- Pringle, T. Establishing a Circular Economy Approach for the Leather Industry. Doctoral Thesis, Loughborough University, Leicestershire, England, 2017. [Google Scholar]
- Kowalik-Klimczak, A.; Łożyńska, M.; Życki, M.; Woźniak, B. The Effect of the Pyrolysis Temperature of a Leather–Textile Mixture from Post-Consumer Footwear on the Composition and Structure of Carbonised Materials. Materials 2024, 17, 5649. [Google Scholar] [CrossRef] [PubMed]
- Alves, D.I.; Barreiros, M.; Fangueiro, R.; Ferreira, D.P. Valorization of Textile Waste: Non-Woven Structures and Composites. Front. Environ. Sci. 2024, 12, 1365162. [Google Scholar] [CrossRef]
- Muthu, S.S. End-of-Life Management of Textile Products. In Assessing the Environmental Impact of Textiles and the Clothing Supply Chain; Elsevier: Amsterdam, The Netherlands, 2020; pp. 143–160. ISBN 978-0-12-819783-7. [Google Scholar]
- Joseph, K.; Nithya, N. Material Flows in the Life Cycle of Leather. J. Clean. Prod. 2009, 17, 676–682. [Google Scholar] [CrossRef]
- Gent, M.; Mario, M.; Javier, T.; Susana, T. Optimization of the Recovery of Plastics for Recycling by Density Media Separation Cyclones. Resour. Conserv. Recycl. 2011, 55, 472–482. [Google Scholar] [CrossRef]
- Alves, D.I.; Carvalho, Ó.; Fernandes, N.A.T.C.; Cosentino, L.T.; Junior, A.C.P.; Fangueiro, R.; Ferreira, D.P. Upcycling of Industrial Footwear Waste into Nonwoven Fibrous Structures with Thermal and Acoustic Insulation Properties. J. Environ. Manag. 2024, 363, 121363. [Google Scholar] [CrossRef]
- Alexandrescu, L.; Georgescu, M.; Sönmez, M.; Nițuică, M.; Stelescu, M.D.; Gurău, D. Biodegradable Polymeric Composites Based on Natural Rubber and Functionalized Post-Consumer Leather Waste. Leather Footwear J. 2022, 22, 223–235. [Google Scholar] [CrossRef]
- Ouda, M.; Sanad, A.A.A.; Abdelaal, A.; Krishna, A.; Kandah, M.; Kurdi, J. A Comprehensive Review of Sustainable Thermal and Acoustic Insulation Materials from Various Waste Sources. Buildings 2025, 15, 2876. [Google Scholar] [CrossRef]
- Hahad, O.; Kuntic, M.; Al-Kindi, S.; Kuntic, I.; Gilan, D.; Petrowski, K.; Daiber, A.; Münzel, T. Noise and Mental Health: Evidence, Mechanisms, and Consequences. J. Expo. Sci. Environ. Epidemiol. 2025, 35, 16–23. [Google Scholar] [CrossRef]
- Yap, Z.S.; Khalid, N.H.A.; Haron, Z.; Mohamed, A.; Tahir, M.M.; Hasyim, S.; Saggaff, A. Waste Mineral Wool and Its Opportunities—A Review. Materials 2021, 14, 5777. [Google Scholar] [CrossRef]
- Raja, P.; Murugan, V.; Ravichandran, S.; Behera, L.; Mensah, R.A.; Mani, S.; Kasi, A.; Balasubramanian, K.B.N.; Sas, G.; Vahabi, H.; et al. A Review of Sustainable Bio-Based Insulation Materials for Energy-Efficient Buildings. Macromol. Mater. Eng. 2023, 308, 2300086. [Google Scholar] [CrossRef]
- Raza, M.U.; Butt, F.; Ahmad, F.; Waqas, R.M. Seismic Safety Assessment of Buildings and Perceptions of Earthquake Risk among Communities in Mingora, Swat, Pakistan. Innov. Infrastruct. Solut. 2025, 10, 124. [Google Scholar] [CrossRef]
- ISO 9073-1:2023; Nonwovens—Test Methods—Part 1: Determination of Mass per Unit Area. International Organization for Standardization ISO: Geneva, Switzerland, 2023.
- ISO 9073-2:1995; Textiles—Test Methods for Nonwovens—Part 2: Determination of Thickness. International Organization for Standardization ISO: Geneva, Switzerland, 1995.
- ISO 9237:1995; Textiles—Determination of the Permeability of Fabrics to Air. International Organization for Standardization ISO: Geneva, Switzerland, 1995.
- ISO 9073-3:2023; Nonwovens—Test Methods—Part 3: Determination of Tensile Strength and Elongation at Break Using the Strip Method. International Organization for Standardization ISO: Geneva, Switzerland, 2023.
- ASTM D3039/D3039M-17; Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International: West Conshohocken, PA, USA, 2017. [CrossRef]
- Mishra, P.K.; Izrayeel, A.M.D.; Mahur, B.K.; Ahuja, A.; Rastogi, V.K. A Comprehensive Review on Textile Waste Valorization Techniques and Their Applications. Environ. Sci. Pollut. Res. 2022, 29, 65962–65977. [Google Scholar] [CrossRef]
- ISO 5085-1; Textiles—Determination of Thermal Resistance, International Organization for Standardization. International Organization for Standardization ISO: Geneva, Switzerland, 1989.
- ISO 10534-2:1998; Acoustics—Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes—Part 2: Transfer-Function Method. International Organization for Standardization ISO: Geneva, Switzerland, 1998.
- Fernández-Rodríguez, J.; Lorea, B.; González-Gaitano, G. Biological Solubilisation of Leather Industry Waste in Anaerobic Conditions: Effect of Chromium (III) Presence, Pre-Treatments and Temperature Strategies. Int. J. Mol. Sci. 2022, 23, 13647. [Google Scholar] [CrossRef]
- Narayanan, P.; Janardhanan, S.K. An Approach towards Identification of Leather from Leather-like Polymeric Material Using FTIR-ATR Technique. Collagen Leather 2024, 6, 1. [Google Scholar] [CrossRef]
- Liu, J.; Luo, L.; Hu, Y.; Wang, F.; Zheng, X.; Tang, K. Kinetics and Mechanism of Thermal Degradation of Vegetable-Tanned Leather Fiber. J. Leather Sci. Eng. 2019, 1, 9. [Google Scholar] [CrossRef]
- Bañón, E.; Marcilla, A.; García, A.N.; Martínez, P.; León, M. Kinetic Model of the Thermal Pyrolysis of Chrome Tanned Leather Treated with NaOH under Different Conditions Using Thermogravimetric Analysis. Waste Manag. 2016, 48, 285–299. [Google Scholar] [CrossRef] [PubMed]
- Thakur, M.; Sharma, A.; Ahlawat, V.; Bhattacharya, M.; Goswami, S. Process Optimization for the Production of Cellulose Nanocrystals from Rice Straw Derived α-Cellulose. Mater. Sci. Energy Technol. 2020, 3, 328–334. [Google Scholar] [CrossRef]
- Whba, F.; Mohamed, F.; Idris, M.I.; Yahya, M.S. Surface Modification of Cellulose Nanocrystals (CNCs) to Form a Biocompatible, Stable, and Hydrophilic Substrate for MRI. Appl. Sci. 2023, 13, 6316. [Google Scholar] [CrossRef]
- Peets, P.; Kaupmees, K.; Vahur, S.; Leito, I. Reflectance FT-IR Spectroscopy as a Viable Option for Textile Fiber Identification. Herit. Sci. 2019, 7, 93. [Google Scholar] [CrossRef]
- Silva, R.C.L.; Alves, C.; Nascimento, J.H.; Neves, J.R.O.; Teixeira, V. Surface Modification of Polyester Fabric by Non-Thermal Plasma Treatment. J. Phys. Conf. Ser. 2012, 406, 012017. [Google Scholar] [CrossRef]
- López, B.L.; Pérez, L.D.; Mesa, M.; Sierra, L.; Devaux, E.; Camargo, M.; Campagne, C.; Giraud, S. Use of Mesoporous Silica as a Reinforcing Agent in Rubber Compounds. e-Polymers 2005, 5, 182. [Google Scholar] [CrossRef]
- Yeng, L.C.; Wahit, M.U.; Othman, N. Thermal and Flexural Properties of Regenerated Cellulose(Rc)/Poly(3-Hydroxybutyrate)(Phb)Biocomposites. J. Teknol. 2015, 75, 107–112. [Google Scholar] [CrossRef]
- Sreekumar, P.A.; Saiah, R.; Saiter, J.M.; Leblanc, N.; Joseph, K.; Unnikrishnan, G.; Thomas, S. Thermal Behavior of Chemically Treated and Untreated Sisal Fiber Reinforced Composites Fabricated by Resin Transfer Molding. Compos. Interfaces 2008, 15, 629–650. [Google Scholar] [CrossRef]
- Prochon, M.; Bieliński, D.; Stepaniak, P.; Makowicz, M.; Pietrzak, D.; Dzeikala, O. Use of Ashes from Lignite Combustion as Fillers in Rubber Mixtures to Reduce VOC Emissions. Materials 2021, 14, 4986. [Google Scholar] [CrossRef]
- Stanković, S.B.; Popović, D.; Poparić, G.B. Thermal Properties of Textile Fabrics Made of Natural and Regenerated Cellulose Fibers. Polym. Test. 2008, 27, 41–48. [Google Scholar] [CrossRef]
- Ahmad, F.; Qureshi, M.I.; Rawat, S.; Alkharisi, M.K.; Alturki, M. E-Waste in Concrete Construction: Recycling, Applications, and Impact on Mechanical, Durability, and Thermal Properties—A Review. Innov. Infrastruct. Solut. 2025, 10, 246. [Google Scholar] [CrossRef]
- Ahmad, Z.; Qureshi, M.I.; Ahmad, F.; El Ouni, M.H.; Asghar, M.Z.; Ghazouani, N. Effect of Macro Synthetic Fiber (MSF) on the Behavior of Conventional Concrete and the Concrete Containing e-Waste Aggregates. Mater. Struct. 2025, 58, 234. [Google Scholar] [CrossRef]
- Roobankumar, R.; SenthilPandian, M. A Review of Utilization of Waste Polyurethane Foam as Lightweight Aggregate in Concrete. Heliyon 2024, 10, e40479. [Google Scholar] [CrossRef]
- Wazna, M.E.; Gounni, A.; Bouari, A.E.; Alami, M.E.; Cherkaoui, O. Development, Characterization and Thermal Performance of Insulating Nonwoven Fabrics Made from Textile Waste. J. Ind. Text. 2019, 48, 1167–1183. [Google Scholar] [CrossRef]
- Trajković, D.; Jordeva, S.; Tomovska, E.; Zafirova, K. Polyester Apparel Cutting Waste as Insulation Material. J. Text. Inst. 2017, 108, 1238–1245. [Google Scholar] [CrossRef]
- Zach, J.; Hroudová, J.; Korjenic, A. Environmentally Efficient Thermal and Acoustic Insulation Based on Natural and Waste Fibers: Environmentally Efficient Insulations Based on Natural and Waste Fibers. J. Chem. Technol. Biotechnol. 2016, 91, 2156–2161. [Google Scholar] [CrossRef]
- Patnaik, A.; Mvubu, M.; Muniyasamy, S.; Botha, A.; Anandjiwala, R.D. Thermal and Sound Insulation Materials from Waste Wool and Recycled Polyester Fibers and Their Biodegradation Studies. Energy Build. 2015, 92, 161–169. [Google Scholar] [CrossRef]
- Rubino, C.; Bonet Aracil, M.; Liuzzi, S.; Stefanizzi, P.; Martellotta, F. Wool Waste Used as Sustainable Nonwoven for Building Applications. J. Clean. Prod. 2021, 278, 123905. [Google Scholar] [CrossRef]
- Bogale, M.; Sakthivel, S.; Senthil Kumar, S.; Senthil Kumar, B. Sound Absorbing and Thermal Insulating Properties of Recycled Cotton/Polyester Selvedge Waste Chemical Bonded Nonwovens. J. Text. Inst. 2023, 114, 134–141. [Google Scholar] [CrossRef]
- Lin, J.-H.; Li, T.-T.; Lou, C.-W. Puncture-Resisting, Sound-Absorbing and Thermal-Insulating Properties of Polypropyl-ene-Selvages Reinforced Composite Nonwovens. J. Ind. Text. 2016, 45, 1477–1489. [Google Scholar] [CrossRef]
- Ricciardi, P.; Belloni, E.; Cotana, F. Innovative Panels with Recycled Materials: Thermal and Acoustic Performance and Life Cycle Assessment. Appl. Energy 2014, 134, 150–162. [Google Scholar] [CrossRef]
- Smith, D.S.; Alzina, A.; Bourret, J.; Nait-Ali, B.; Pennec, F.; Tessier-Doyen, N.; Otsu, K.; Matsubara, H.; Elser, P.; Gonzenbach, U.T. Thermal Conductivity of Porous Materials. J. Mater. Res. 2013, 28, 2260–2272. [Google Scholar] [CrossRef]
Sample | Residue | % Residue | Compression Molding |
---|---|---|---|
A | Leather | 30% | No |
B | Leather | Yes | |
C | Footwear mixture | 40% | No |
D | Footwear mixture | Yes |
Sample | Thickness (m) | Area Weight (kg/m2) | Bulk Density (kg/m3) | Air Permeability (l × (m2/s)) |
---|---|---|---|---|
A | (4.40 ± 0.19)·10−3 | 0.160 | 36.3 ± 1.5 | 687 ± 34 |
B | (4.18 ± 0.04)·10−3 | 2.40 | 574.0 ± 6.0 | 9.24 ± 1.5 |
C | (5.94 ± 0.25)·10−3 | 0.490 | 82.4 ± 3.2 | 741 ± 151 |
D | (5.40 ± 0.05)·10−3 | 2.40 | 444.0 ± 4.0 | 14.47 ± 1.51 |
Sample | Thermal Resistance (m2·K/W) | |
---|---|---|
A | 0.040 ÷ 0.007 | 0.110 ÷ 0.004 |
B | 0.060 ÷ 0.002 | 0.069 ÷ 0.002 |
C | 0.046 ÷ 0.003 | 0.127 ÷ 0.002 |
D | 0.058 ÷ 0.003 | 0.061 ÷ 0.005 |
Rock Wool | 0.039 ÷ 0.006 | --- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves, D.I.; Guimarães, R.; Costa, S.M.; Fernandes, N.A.T.C.; Carvalho, Ó.; Fangueiro, R.; Ferreira, D.P. An Innovative Solution for Post-Consumer Footwear Waste: Nonwoven Fibrous Structures with Thermal and Acoustic Insulation Properties. Materials 2025, 18, 4765. https://doi.org/10.3390/ma18204765
Alves DI, Guimarães R, Costa SM, Fernandes NATC, Carvalho Ó, Fangueiro R, Ferreira DP. An Innovative Solution for Post-Consumer Footwear Waste: Nonwoven Fibrous Structures with Thermal and Acoustic Insulation Properties. Materials. 2025; 18(20):4765. https://doi.org/10.3390/ma18204765
Chicago/Turabian StyleAlves, Diana I., Renato Guimarães, Sofia M. Costa, Nuno A. T. C. Fernandes, Óscar Carvalho, Raul Fangueiro, and Diana P. Ferreira. 2025. "An Innovative Solution for Post-Consumer Footwear Waste: Nonwoven Fibrous Structures with Thermal and Acoustic Insulation Properties" Materials 18, no. 20: 4765. https://doi.org/10.3390/ma18204765
APA StyleAlves, D. I., Guimarães, R., Costa, S. M., Fernandes, N. A. T. C., Carvalho, Ó., Fangueiro, R., & Ferreira, D. P. (2025). An Innovative Solution for Post-Consumer Footwear Waste: Nonwoven Fibrous Structures with Thermal and Acoustic Insulation Properties. Materials, 18(20), 4765. https://doi.org/10.3390/ma18204765