Advanced Stainless Steel—From Making, Shaping, Treating to Products
Abstract
1. Introduction
2. An Overview of Published Articles
3. Summary
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Lai, J.K.L.; Lo, K.H.; Shek, C.H. Stainless Steels: An Introduction and Their Recent Developments; Bentham Science Publishers: Sharjah, United Arab Emirates, 2012; p. 4. [Google Scholar] [CrossRef]
- San-Martin, D.; Celada-Casero, C.; Vivas, J.; Capdevila, C. Stainless steels. In High-Performance Ferrous Alloys; Rana, R., Ed.; Springer Nature: Cham, Switzerland, 2021; pp. 459–566. [Google Scholar] [CrossRef]
- Li, J.M.; Liang, J.X.; Liu, Y.P. Chinese Stainless Steel; Metallurgical Industry Press: Beijing, China, 2021; pp. 3–5. (In Chinese) [Google Scholar]
- Lo, K.H.; Shek, C.H.; Lai, J.K.L. Recent developments in stainless steels. Mater. Sci. Eng. R Rep. 2009, 65, 39–104. [Google Scholar] [CrossRef]
- Patra, S.; Agrawal, A.; Mandal, A.; Podder, A.S. Characteristics and Manufacturability of Duplex Stainless Steel: A Review. Trans. Indian Inst. Metals 2021, 74, 1089–1098. [Google Scholar] [CrossRef]
- Liu, Z.B.; Liang, J.X.; Yang, Z.; Wang, X.H.; Sun, Y.Q.; Wang, C.J.; Yang, Z.Y. Progress of application and research on high strength stainless steel. China Metall. 2022, 32, 42–53. (In Chinese) [Google Scholar] [CrossRef]
- Liu, W.Q.; Wang, L.J.; Zhang, F.C.; Zhao, A.M.; Li, J.M. Review on development and second phase regulation of super austenitic stainless steel. J. Iron Steel Res. 2023, 35, 907–927. (In Chinese) [Google Scholar] [CrossRef]
- Liu, S.; Guo, H.J. A short review of antibacterial Cu-bearing stainless steel: Antibacterial mechanisms, corrosion resistance, and novel preparation techniques. J. Iron Steel Res. Int. 2024, 31, 24–45. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, Y.; Yang, S.; Ma, J.; Zhang, C.; Jiang, Z.; Li, H.; Han, P. Effect of Boron Addition on the Oxide Scales Formed on 254SMO Super Austenitic Stainless Steels in High-Temperature Air. Metals 2023, 13, 258. [Google Scholar] [CrossRef]
- Yang, S.; Ma, J.Y.; Chen, C.; Zhang, C.L.; Ren, J.Y.; Jiang, Z.H.; Fan, G.W.; Han, P.D. Effects of B and Ce Grain Boundary Segregation on Precipitates in Super Austenitic Stainless Steel. Metals 2023, 13, 326. [Google Scholar] [CrossRef]
- Yan, X.; Xu, P.; Han, P.; Dong, N.; Wang, J.; Zhang, C. The Effect of B on the Co-Segregation of C-Cr at Grain Boundaries in Austenitic Steels. Metals 2023, 13, 1044. [Google Scholar] [CrossRef]
- Liao, L.; Zhao, Z.; Zhang, W.; Li, J.; Chen, Y.; Pan, L. Unveiling Hot Deformation Behavior and Dynamic Recrystallization Mechanism of 654SMO Super-Austenitic Stainless Steel. Metall. Mater. Trans. A 2023, 54, 2554–2575. [Google Scholar] [CrossRef]
- Tian, H.; Wang, J.; Liu, Z.; Han, P. Effect of Nitrogen on the Corrosion Resistance of 6Mo Super Austenitic Stainless Steel. Metals 2024, 14, 391. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Wang, J.; Chen, C.; Tian, H.Y.; Han, P.D. Effect of boron on the solidification characteristics and constitutive equation of S31254 superaustenitic stainless steel. Steel Res. Int. 2024, 95, 2400050. [Google Scholar] [CrossRef]
- Chen, F.; Bai, K.; Wang, Y.; Liu, C.; Mu, W.; Zhang, H.; Ni, H. Effect of Ce on the Segregation and Secondary-Phase Precipitation During the Solidification of S31254 Super-Austenitic Stainless Steel. Metall. Mater. Trans. B 2024, 55, 2097–2114. [Google Scholar] [CrossRef]
- Xu, S.G.; He, J.S.; Zhang, R.Z.; Zhang, F.C.; Wang, X.T. Static recrystallization behaviors and mechanisms of 7Mo super-austenitic stainless steel with undissolved sigma precipitates during double-stage hot deformation. J. Iron Steel Res. Int. 2024, 31, 475–487. [Google Scholar] [CrossRef]
- Chen, S.H.; Xie, A.; Lv, X.L.; Chen, S.H.; Yan, C.G.; Jiang, H.C.; Rong, L.J. Tailoring Microstructure of Austenitic Stainless Steel with Improved Performance for Generation-IV Fast Reactor Application: A Review. Crystals 2023, 13, 268. [Google Scholar] [CrossRef]
- Xie, A.; Chen, S.H.; Chen, S.H.; Jiang, H.C.; Rong, L.J. Austenite decomposition behavior adjacent to δ-ferrite in a Si-modified Fe-Cr-Ni austenitic stainless steel during thermal aging at 550 °C. Acta Mater. 2024, 272, 119948. [Google Scholar] [CrossRef]
- Chen, S.H.; Wang, Q.Y.; Jiang, H.C.; Rong, L.J. Effect of δ-ferrite on Hot Deformation and Recrystallization of 316KD Austenitic Stainless Steel for Sodium-Cooled Fast Reactor Application. Acta Metall. Sin. 2024, 60, 367–376. (In Chinese) [Google Scholar] [CrossRef]
- Li, X.; Gao, F.; Jiao, J.H.; Cao, G.M.; Wang, Y.; Liu, Z.Y. Influences of cooling rates on delta ferrite of nuclear power 316H austenitic stainless steel. Mater. Charact. 2021, 174, 111029. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, C.; Ren, R.J.; Xue, Z.X.; Wang, H.Z.; Zhang, Y.Z.; Wang, J.X.; Wang, J.; Chen, L.; Mu, W.Z. Ferrite formation and decomposition in 316H austenitic stainless steel electro slag remelting ingot for nuclear power applications. Mater. Charact. 2024, 218, 114581. [Google Scholar] [CrossRef]
- Kumar, A.; Ganesh, P.; Sharma, V.K.; Manekar, M.; Gupta, R.K.; Singh, R.; Singh, M.K.; Mundar, G.; Kaul, R. Development of Low-Magnetic-Permeability Welds of 316L Stainless Steel. Weld. J. 2021, 100, 323. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.; Li, Y.F.; Zhang, Z.R.; Xue, Z.X.; Ban, X.Y.; Hu, C.H.; Li, H.X.; Tian, J.; Mu, W.Z.; et al. Effect of Nickel Content and Cooling Rate on the Microstructure of as Cast 316 Stainless Steels. Crystals 2025, 15, 168. [Google Scholar] [CrossRef]
- Mani, G.; Feldman, M.D.; Patel, D.; Agrawal, C.M. Coronary stents: A materials perspective. Biomaterials 2007, 28, 1689–1710. [Google Scholar] [CrossRef]
- Bharani Chandar, J.; Lenin, N.; Rathinasuriyan, C. Exploring surface integrity Experimental investigation into abrasive waterjet deep hole drilling on ss 316L for biomedical applications. J. Alloys Metall. Syst. 2024, 8, 100109. [Google Scholar] [CrossRef]
- Chu, H.Y.; Shiue, R.K.; Cheng, S.Y. The Effect of Homogenization Heat Treatment on 316L Stainless Steel Cast Billet. Materials 2024, 17, 232. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, L.; Mu, W.Z.; Zhang, Z.R.; Wang, J.; Chen, C. Solidification mode and residual ferrite characteristics of high nickel 316L stainless steel continuous casting billet. Iron Steel 2024, 59, 80–91. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Y.; Chen, C.; Yang, X.Y.; Zhang, Z.R.; Wang, J.; Li, Z.; Chen, L.; Mu, W.Z. Solidification modes and delta-ferrite of two types 316L stainless steels: A combination of as-cast microstructure and HT-CLSM research. J. Iron Steel Res. Int. 2025, 32, 426–436. [Google Scholar] [CrossRef]
- Zhao, J.W.; Xie, Q.Z.; Ma, L.N.; Zhou, C.L.; Jiang, Z.Y.; Liao, X.; Ma, X.G. Effect of rolling schedules on ridging resistance of ultra-thin ferritic stainless steel foil. J. Iron Steel Res. Int. 2025, 32, 198–214. [Google Scholar] [CrossRef]
- Chen, L.; Cao, Z.R.; Wang, J.; Wang, T.; Wang, Z.G.; Zhang, Y.J.; Ma, B.; Jiang, Y.Q. Study on static load performance of FMLs based on ultra-thin stainless-steel foils and cross-ply thin CFRP. J. Manuf. Process. 2024, 119, 425–435. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, W.; Zhang, Q.; Zhang, Y.J.; Zhao, C.C.; Wang, T.; Huang, Q.X. Influence of surface modification on the interfacial properties of ultra-thin steel foils and CFRP co-curing without adhesive film: A comparative study of different techniques. Compos. Part B Eng. 2025, 301, 112517. [Google Scholar] [CrossRef]
- Zhu, L.; Sun, C.Y.; Wang, B.Y.; Zhou, J. Cross wedge rolling deformation law and bonding mechanism of 304 stainless steel/Q235 carbon steel bimetallic shaft. J. Iron Steel Res. Int. 2024, 31, 2423–2437. [Google Scholar] [CrossRef]
- Hao, P.J.; Liu, Y.M.; Zhang, Y.Y.; Wang, T.; Huang, Q.X. Effect of heating temperature on microstructure and properties of Ti/steel clad plates with corrugated interfaces. J. Iron Steel Res. Int. 2024, 31, 2997–3006. [Google Scholar] [CrossRef]
- Guo, X.W.; Ren, Z.K.; Wu, H.; Chai, Z.; Zhang, Q.; Wang, T.; Huang, Q.X. Effect of annealing on microstructure and synergistic deformation of 304/TC4 composite plates with corrugated interface. J. Iron Steel Res. Int. 2025, 32, 2434–2451. [Google Scholar] [CrossRef]
- Hou, C.; Xue, L.; Li, J.; Ma, W.; Wang, J.; Dai, Y.; Chen, C.; Dang, J. Unlocking the potential of lattice oxygen evolution in stainless steel to achieve efficient OER catalytic performance. Acta Mater. 2024, 277, 120176. [Google Scholar] [CrossRef]
- Hou, C.; Xue, L.; Zhou, L.; Chen, C.; Lv, X.; Dang, J. Efficient stainless steel-based bifunctional water electrolysis electrode: Activating the OPM mechanism in OER and enhancing HER performance. Acta Mater. 2025, 297, 121361. [Google Scholar] [CrossRef]
- Ramaswamy, V. Modern Developments in Stainless Steel Making. In Advances in Stainless Steels; Raj, B., Ed.; CRC press: Boca Raton, FL, USA, 2009; pp. 383–395. [Google Scholar]
- Das, S.K.; Mehrotra, S.P.; Godiwalla, K.M. Technological Advances in Refining and Processing of Stainless Steel—A Brief Overview. In Advances in Stainless Steels; Raj, B., Ed.; CRC press: Boca Raton, FL, USA, 2009; pp. 431–451. [Google Scholar]
- Conejo, A.N. Electric Arc Furnace: Methods to Decrease Energy Consumption; Springer Nature: Singapore, 2024; p. 699. [Google Scholar]
- Pitkälä, J.; Holappa, L.; Jokilaakso, A. Nitrogen Control in Production of N-Alloyed Stainless Steels in AOD Converter: Application of Sieverts’ Law. Metall. Mater. Trans. B 2024, 55, 524–536. [Google Scholar] [CrossRef]
- Chanouian, S.; Pitkälä, J.; Larsson, H.; Ersson, M. Modeling Decarburization in the AOD Converter: A Practical CFD-Based Approach With Chemical Reactions. Metall. Mater. Trans. B 2024, 55, 480–494. [Google Scholar] [CrossRef]
- Singha, P. Refining Contribution at Hotspot and Emulsion Zones of Argon Oxygen Decarburization: Fundamental Analysis Based upon the FactSage-Macro Program Approach. Metall. Mater. Trans. B 2024, 55, 2181–2193. [Google Scholar] [CrossRef]
- Yang, W.; Wang, L.; Zhang, W.; Li, J. Deep Neural Network Prediction Model of Hydrogen Content in VOD Process Based on Small Sample Dataset. Metall. Mater. Trans. B 2022, 53, 3124–3135. [Google Scholar] [CrossRef]
- Schade, J. Tundish Design and Practice Issues in the Production of Specialty Steels. In Continuous Casting, Volume Ten Tundish Operations; Baker, M.A., Ed.; Iron & Steel Society: Warrendale, PA, USA, 2003; p. 282. [Google Scholar]
- Chen, C.; Cheng, G.; Sun, H.; Wang, X.; Zhang, J. Optimization of flow control devices in a stainless steel tundish. Adv. Mater. Res. 2012, 476, 156–163. [Google Scholar] [CrossRef]
- Pang, J.C.; Qian, G.Y.; Pang, S.; Ma, W.H.; Cheng, G.G. Design of a submerged entry nozzle for optimizing continuous casting of stainless steel slab. J. Iron Steel Res. Int. 2023, 30, 2229–2241. [Google Scholar] [CrossRef]
- Li, P.C.; Wang, T.; Zhao, C.C.; Liu, Q.; Huang, Q.X. Effect of ceramic work rolls on surface roughness of rolled SUS304 ultra-thin strips. J. Iron Steel Res. Int. 2024, 31, 1704–1718. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Liao, X.; Ren, Z.K.; Wang, Z.H.; Liu, Y.X.; Wang, T.; Huang, Q.X. Effect of two-pass rolling of textured roll and polished roll on surface topography and mechanical properties of 316L stainless steel ultra-thin strip. J. Iron Steel Res. Int. 2025, 32, 186–197. [Google Scholar] [CrossRef]
- Park, J.H.; Kang, Y. Inclusions in stainless steels—A review. Steel Res. Int. 2017, 88, 1700130. [Google Scholar] [CrossRef]
- Kim, W.Y.; Nam, G.J.; Kim, S.Y. Evolution of Non-Metallic Inclusions in Al-Killed Stainless Steelmaking. Metall. Mater. Trans. B 2021, 52, 1508–1520. [Google Scholar] [CrossRef]
- Liu, Q.; Zhan, Z.; Gao, M.; Xing, L.; Yin, Y.; Zhang, J. Investigation of Evolution of Inclusions in 15-5PH Stainless Steel During Hot Compression Using 3D X-Ray Microscopy. Metall. Mater. Trans. B 2023, 54, 2852–2863. [Google Scholar] [CrossRef]
- Liu, C.S.; Li, F.K.; Zhang, H.; Li, J.; Wang, Y.; Lu, Y.Y.; Xiong, L.; Ni, H.W. Mechanisms of interfacial reactions between 316L stainless steel and MnO–SiO2 oxide during isothermal heating. J. Iron Steel Res. Int. 2023, 30, 1511–1523. [Google Scholar] [CrossRef]
- Quan, Q.; Zhang, Z.X.; Qu, T.P.; Li, X.L.; Tian, J.; Wang, D.Y. Physical and numerical investigation on fluid flow and inclusion removal behavior in a single-strand tundish. J. Iron Steel Res. Int. 2023, 30, 1182–1198. [Google Scholar] [CrossRef]
- Zhao, M.; Shi, C.; Li, L.; Yan, W. Crystallization and Structure Characteristics of CaO–SiO2–Al2O3–MgO–CaF2 Melts Representing the Slag Inclusions in Stainless Steel. Metall. Mater. Trans. B 2025, 56, 4593–4602. [Google Scholar] [CrossRef]
- Lindenberg, H.U.; Knackstedt, W.; Koehler, H.J.; Biesterfeld, W.; Unger, K.D.; Thielmann, R. Metallurgie des Stranggießens nichtrostender Stähle. Stahl Eisen 1984, 104, 227–234. (In German) [Google Scholar]
- Wolf, M. Strand Surface Quality of Austenitic Stainless Steels: Part I—Macroscopic Shell Growth and Ferrite Distribution. Ironmak. Steelmak. 1986, 13, 248–257. [Google Scholar]
- Ciuffini, A.F.; Di Giovanni, F.; Mombelli, D. Utilizzo di un sistema di ispezione ottica automatica atto al rilevamento dei difetti di colata continua basato su algoritmi di Machine Learning per l’analisi dell’incidenza delle marche di oscillazione su bramme di acciaio inossidabile austenitico AISI 316L e 316LI. La Metall. Ital. 2022, 59, 59–68. Available online: https://www.aimnet.it/eng/prodotto.php?id=730&idc=11 (accessed on 30 September 2025). (In Italian).
- Yan, Y.; Shang, G.H.; Zhang, L.P.; Li, S.Y.; Guo, H.J. A deoxidation thermodynamic model for 304 stainless steel considering multiple-components coupled reactions. J. Iron Steel Res. Int. 2024, 31, 74–91. [Google Scholar] [CrossRef]
- Bi, Y.; Karasev, A.V.; Jönsson, P.G. Evolution of Different Inclusions during Ladle Treatment and Continuous Casting of Stainless Steel. ISIJ Int. 2013, 53, 2099–2109. [Google Scholar] [CrossRef]
- Dou, G.X.; Guo, H.J.; Guo, J.; Peng, X.C.; Chen, Q.Y. Effect of slag composition on kinetic behavior of deep deoxidation of 5 wt.% Si high-silicon austenitic stainless steel. J. Iron Steel Res. Int. 2024, 31, 1873–1885. [Google Scholar] [CrossRef]
- Yin, X.; Sun, Y.H.; Yang, Y.D.; Bai, X.F.; Barati, M.; Mclean, A. Formation of inclusions in Ti-stabilized 17Cr austenitic stainless steel. Metall. Mater. Trans. B 2016, 47, 3274–3284. [Google Scholar] [CrossRef]
- Fu, J.W.; Qiu, W.X.; Nie, Q.Q.; Wu, Y.C. Precipitation of TiN during solidification of AISI 439 stainless steel. J. Alloys Compd. 2017, 699, 938–946. [Google Scholar] [CrossRef]
- Bi, Y.; Karasev, A.V.; Jönsson, P.G. Three Dimensional Evaluations of REM Clusters in Stainless Steel. ISIJ Int. 2014, 54, 1266–1273. [Google Scholar] [CrossRef]
- Nabeel, M.; Karasev, A.; Jönsson, P.G. Formation and Growth Mechanism of Clusters in Liquid REM-alloyed Stainless Steels. ISIJ Int. 2015, 55, 2358–2364. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, J.C.; Fu, X.Y. Effect of Ce content on modification behavior of inclusions and corrosion resistance of 316L stainless steel. Materials 2025, 18, 69. [Google Scholar] [CrossRef]
- Hu, J.Z.; Li, S.; Zhang, J.; Ren, Y.; Zhang, L.F. Pitting corrosion initiated by SiO2–MnO–Cr2O3–Al2O3-based inclusions in a 304 stainless steel. J. Iron Steel Res. Int. 2024, 31, 2281–2293. [Google Scholar] [CrossRef]
- Li, F.K.; Liu, C.S.; Wang, Y.; Zhang, H.; Li, J.; Lu, Y.Y.; Xiong, L.; Ni, H.W. Effect of inclusion and microstructure transformation on corrosion resistance of 316L stainless steel after isothermal heat treatment. J. Iron Steel Res. Int. 2025, 32, 2133–2151. [Google Scholar] [CrossRef]
- Park, J.H. Effect of inclusions on the solidification structures of ferritic stainless steel: Computational and experimental study of inclusion evolution. Calphad 2011, 35, 455–462. [Google Scholar] [CrossRef]
- Chen, C.; Cheng, G.G. Delta-ferrite distribution in a continuous casting slab of Fe-Cr-Mn austenitic stainless steel. Metall. Mater. Trans. B 2017, 48, 2324–2333. [Google Scholar] [CrossRef]
- Li, Y.; Zou, D.; Li, M.; Tong, L.; Zhang, Y.; Zhang, W. Effect of cooling rate on δ-Ferrite formation and sigma precipitation behavior of 254SMO super-austenitic stainless steel during solidification. Metall. Mater. Trans. B 2023, 54, 3497–3507. [Google Scholar] [CrossRef]
- Chen, X.; Qiao, T.; Cheng, G.; Bao, D.; Pan, J. Sigma-Phase Distribution in 2507 Super Duplex Stainless Steel Continuous Casting Slabs. Steel Res. Int. 2024, 95, 2300433. [Google Scholar] [CrossRef]
- Chu, H.Y.; Wu, M.C.; Shiue, R.K.; Cheng, S.Y. Investigating the sigma formation in homogenization treatment of the 309L stainless cast billet. J. Mater. Res. Technol. 2025, 35, 2354–2368. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Wang, C.J.; Liu, C. Effect of heat treatment on microstructure and mechanical properties of selective laser-melted PH13-8Mo stainless steel. J. Iron Steel Res. Int. 2024, 31, 945–955. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, Z.F.; Zhang, Z. EBSD parameter assessment and constitutive models of crept HR3C austenitic steel. J. Iron Steel Res. Int. 2023, 30, 772–781. [Google Scholar] [CrossRef]
- Song, Y.; Li, Y.; Lu, J.; Hua, L.; Gu, Y.; Yang, Y. Strengthening and toughening mechanisms of martensite-bainite microstructure in 2 GPa ultra-high strength steel during hot stamping. Sci. China Technol. Sci. 2025, 68, 1520201. [Google Scholar] [CrossRef]
- Wang, T.H.; Wang, J.; Bai, J.G.; Wang, S.J.; Chen, C.; Han, P.D. The effect of boron addition on the dissolution and repair behavior of passive film on S31254 superaustenitic stainless steels immersed in H2SO4 solution. J. Iron Steel Res. Int. 2022, 29, 1012–1025. [Google Scholar] [CrossRef]
- Dai, Z.X.; Jiang, S.L.; Ning, L.K.; Xu, X.D.; Li, S.; Duan, D.L. Effect of friction on corrosion behaviors of AISI 304 and Cr26Mo1 stainless steels in different solutions. J. Iron Steel Res. Int. 2023, 30, 2541–2556. [Google Scholar] [CrossRef]
- Dong, C.; Qu, S.; Fu, C.M.; Zhang, Z.F. Failure analysis of crevice corrosion on 304 stainless steel tube heat exchanger. J. Iron Steel Res. Int. 2023, 30, 1490–1498. [Google Scholar] [CrossRef]
- Gao, W.B.; Gu, Y.; Han, Q.L.; Gu, X.Y.; Guan, W.; Zhao, S.B.; Li, W.H. Corrosion and passivation behavior of sensitized SAF 2507 super-duplex stainless steel in hot concentrated seawater. J. Iron Steel Res. Int. 2025, 32, 3026–3045. [Google Scholar] [CrossRef]
- Xing, Y.C.; Sun, Z.B.; Han, Y.Q.; Zhang, D.X. Influence of alternating magnetic field on corrosion and microstructure of 2205 duplex stainless steel welded joints. J. Iron Steel Res. Int. 2025, 32, 1341–1355. [Google Scholar] [CrossRef]
- Feng, Z.; Zhang, G.; Li, P.; Yan, P. Numerical Simulation of Fluid Flow, Solidification, and Solute Distribution in Billets under Combined Mold and Final Electromagnetic Stirring. Materials 2024, 17, 530. [Google Scholar] [CrossRef]
- Feng, G.; Ren, L.; Yang, J. Study on Influence of Rare Earth Ce on Micro and Macro Properties of U75V Steel. Materials 2024, 17, 579. [Google Scholar] [CrossRef]
- Mroziński, S.; Piotrowski, M.; Egner, H. Effect of Testing Conditions on Low-Cycle Fatigue Durability of Pre-Strained S420M Steel Specimens. Materials 2024, 17, 1833. [Google Scholar] [CrossRef]
- Zhang, M.; Li, X.; Guo, Z.; Sun, Y. Research on the Size and Distribution of TiN Inclusions in High-Titanium Steel Cast Slabs. Materials 2025, 18, 3527. [Google Scholar] [CrossRef]
- Xue, Z.; Yang, K.; Li, Y.; Pei, C.; Hou, D.; Zhao, Q.; Wang, Y.; Chen, L.; Chen, C.; Mu, W. The Influence of Heat Treatment Process on the Residual Ferrite in 304L Austenitic Stainless Steel Continuous Casting Slab. Materials 2025, 18, 3724. [Google Scholar] [CrossRef]
- Jung, K.-H.; Kim, S.-J. Statistical and ANN Modeling of Corrosion Behavior of Austenitic Stainless Steels in Aqueous Environments. Materials 2025, 18, 4390. [Google Scholar] [CrossRef]
- Xiao, H.; Zhang, H.; Guo, Y.; Hao, H.; Chang, H.; Li, Y. Formation of Akaganeite in Atmospheric Corrosion of Carbon Steel Induced by NaCl Particles in an 85% RH Environment. Materials 2025, 18, 4462. [Google Scholar] [CrossRef]
- Song, S.; Qin, G.; Lan, T.; Li, Z.; Xing, G.; Liu, Y. Study on Multi-Factor Coupling Fatigue Properties of Weathering Steel Welded Specimens. Materials 2025, 18, 4551. [Google Scholar] [CrossRef]
No. of Contribution | Research Area | Focus | Type of Research |
---|---|---|---|
1 [81] | Continuous casting | Model comparison on the performance of combined mold and final electromagnetic stirring (M-EMS, F-EMS) | Numerical model study |
2 [82] | Inclusions modification | Effect of the addition of Ce in U75V steel on the inclusion precipitation and mechanical properties | Experimental study |
3 [83] | Fatigue of steel specimen | The low-cycle fatigue of S420M steel under undeformed and pre-strained conditions | Experimental study |
4 [84] | Inclusions in continuous casting slab | A full section comparative analysis of the inclusions in a high-titanium steel | Experimental study |
5 [85] | Continuous casting and heat treatment of stainless steel | Residual ferrite distribution in 304L austenitic stainless steel slab and the effect of heat treatment on it | Experimental study |
6 [86] | Corrosion of stainless steel | Predict the corrosion behavior of austenitic stainless steels (316L, 904L, and AL-6XN) under various environmental conditions | Experimental study and artificial neural network models |
7 [87] | Corrosion of steel | Formation of akaganeite in atmospheric corrosion induced by NaCl deliquescence | Experimental study |
8 [88] | Fatigue of steel | Fatigue tests on Q500qENH weathering steel V-groove welded joints and finite element model study | Experimental study and numerical model study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Xue, Z.; Mu, W. Advanced Stainless Steel—From Making, Shaping, Treating to Products. Materials 2025, 18, 4730. https://doi.org/10.3390/ma18204730
Chen C, Xue Z, Mu W. Advanced Stainless Steel—From Making, Shaping, Treating to Products. Materials. 2025; 18(20):4730. https://doi.org/10.3390/ma18204730
Chicago/Turabian StyleChen, Chao, Zhixuan Xue, and Wangzhong Mu. 2025. "Advanced Stainless Steel—From Making, Shaping, Treating to Products" Materials 18, no. 20: 4730. https://doi.org/10.3390/ma18204730
APA StyleChen, C., Xue, Z., & Mu, W. (2025). Advanced Stainless Steel—From Making, Shaping, Treating to Products. Materials, 18(20), 4730. https://doi.org/10.3390/ma18204730