The Effect of HiPIMS Pulse Conditions on the Microstructural, Mechanical, and Tribological Properties of TiB2 Coatings on Steel Substrates
Abstract
1. Introduction
2. Experimental Details
2.1. Coating Deposition
2.2. Coating Characterization
3. Results and Discussion
3.1. Thickness, Microstructure, Shape and Grain Size
3.2. Hardness, Young’s Modulus, Roughness and Adhesion
3.3. Chemical Composition
3.4. Coefficient of Friction and Wear
4. Conclusions
- (1)
- The grain size increased significantly with both increasing frequency (from 15.6 nm to 27.7 nm) and increasing pulse width (from 22.6 nm to 35.4 nm).
- (2)
- Both hardness and Young’s modulus showed a decrease as frequency and pulse width increased. The hardness ranged from approximately 25 GPa to 21 GPa, while Young’s modulus decreased from 450 GPa to 380 GPa. This suggests a strong correlation with the obtained compositions and internal stress.
- (3)
- All coatings demonstrated excellent adhesion, confirmed by Mercedes test ratings of HF1 to HF2. The coefficient of friction (CoF) showed a narrow range of 0.68 to 0.79, indicating stable tribological behavior. Wear, however, decreased with increasing frequency and increased with increasing pulse width, a behavior linked to the balance between hardness and surface roughness.
- (4)
- The coating thickness and roughness (Sa) increased with increasing frequency and pulse width, confirming that these parameters directly influence the deposition rate and surface morphology.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kataria, S.; Ramaseshan, R.; Dash, S.; Tyagi, A.K. Nanoindentation and Scratch Studies on Magnetron Sputtered Ti Thin Films. J. Nanosci. Nanotechnol. 2009, 9, 5476–5479. [Google Scholar] [CrossRef]
- Kataria, S.; Kumar, N.; Dash, S.; Tyagi, A.K. Tribological and deformation behaviour of titanium coating under different sliding contact conditions. Wear 2010, 269, 797–803. [Google Scholar] [CrossRef]
- Kim, G.S.; Lee, S.Y.; Hahn, J.H.; Lee, B.Y.; Han, J.G.; Lee, J.H.; Lee, S.Y. Effects of the thickness of Ti buffer layer on the mechanical properties of TiN coatings. Surf. Coat. Technol. 2003, 171, 83–90. [Google Scholar] [CrossRef]
- Xu, J.; Kamiko, M.; Sawada, H.; Zhou, Y.; Yamamoto, R.; Yu, L.; Kojima, I. Structure, hardness, and elastic modulus of Pd/Ti nanostructured multilayer films. J. Vac. Sci. Technol. B 2003, 21, 2584–2589. [Google Scholar] [CrossRef]
- Chu, K.; Lu, Y.H.; Shen, Y.G. Structural and mechanical properties of titanium and titanium diboride monolayers and Ti/TiB2 multilayers. Thin Solid Films 2008, 516, 5313–5317. [Google Scholar] [CrossRef]
- Vassallo, E.; Caniello, R.; Cremona, A.; Dellasega, D.; Miorin, E. Titanium interlayer to improve the adhesion of multilayer amorphous boron carbide coating on silicon substrate. Appl. Surf. Sci. 2013, 266, 170–175. [Google Scholar] [CrossRef]
- Bakhit, B.; Petrov, I.; Greene, J.E.; Hultman, L.; Rosén, J.; Greczynski, G. Controlling the B/Ti ratio of TiBx thin films grown by high-power impulse magnetron sputtering. J. Vac. Sci. Technol. A 2018, 36, 030604. [Google Scholar] [CrossRef]
- Holleck, H. Materials selection for hard coattings. J. Vac. Sci. Technol. A 1986, 4, 2261–2269. [Google Scholar] [CrossRef]
- Pfohl, C.; Bulak, A.; Rie, K.-T. Development of titanium diboride coatings deposited by PACVD. Surf. Coat. Technol. 2000, 131, 141–146. [Google Scholar] [CrossRef]
- Holzschuh, H. Deposition of Ti–B–N (single and multilayer) and Zr–B–N coatings by chemical vapor deposition techniques on cutting tools. Thin Solid Films 2004, 469–470, 92–98. [Google Scholar] [CrossRef]
- Zergioti, I.; Fotakis, C.; Haidemenopoulos, G.N. Growth of TiB2 and TiC coatings using pulsed laser deposition. Thin Solid Films 1997, 303, 39–46. [Google Scholar] [CrossRef]
- Berger, M.; Larsson, M.; Hogmark, S. Evaluation of magnetron-sputtered TiB2 intended for tribological applications. Surf. Coat. Technol. 2000, 124, 253–261. [Google Scholar] [CrossRef]
- Kunc, F.; Musil, J.; Mayrhofer, P.H.; Mitterer, C. Low-stress superhard Ti–B films prepared by magnetron sputtering. Surf. Coat. Technol. 2003, 174–175, 744–753. [Google Scholar] [CrossRef]
- Panich, N.; Sun, Y. Effect of substrate rotation on structure, hardness and adhesion of magnetron sputtered TiB2 coating on high speed steel. Thin Solid Films 2006, 500, 190–196. [Google Scholar] [CrossRef]
- Chu, K.; Shen, Y.G. Mechanical and tribological characterisation of nanostructured Ti/TiB2 films. Surf. Eng. 2008, 24, 402–409. [Google Scholar] [CrossRef]
- Mikula, M.; Grančič, B.; Buršíková, V.; Csuba, A.; Držík, M.; Kavecký, Š.; Plecenik, A.; Kúš, P. Mechanical properties of superhard TiB2 coatings prepared by DC magnetron sputtering. Vacuum 2008, 82, 278–281. [Google Scholar] [CrossRef]
- Mikula, M.; Grančič, B.; Roch, T.; Pleceník, T.; Vávra, I.; Dobročka, E.; Šatka, A.; Buršíková, V.; Držík, M.; Zahoran, M.; et al. The influence of low-energy ion bombardment on the microstructure development and mechanical properties of TiBx coatings. Vacuum 2011, 85, 866–870. [Google Scholar] [CrossRef]
- Lofaj, F.; Mikula, M.; Grančič, B.; Cempura, G.; Horňák, P.; Kúš, P.; Kottfer, D. Tribological properties of TiBx and WC/C coatings. Ceram. Silikáty 2011, 55, 305–311. [Google Scholar]
- Lofaj, F.; Moskalewicz, T.; Cempura, G.; Mikula, M.; Dusza, J.; Czyrska-Filemonowicz, A. Nanohardness and tribological properties of nc-TiB2 coatings. J. Eur. Ceram. Soc. 2013, 33, 2347–2353. [Google Scholar] [CrossRef]
- Ramos-Masana, A.; Colominas, C. Evaluation of DC-MS and HiPIMS TiB2 and TaN coatings as diffusion barriers against molten aluminum: An insight into the wetting mechanism. Surf. Coat. Technol. 2019, 375, 171–181. [Google Scholar] [CrossRef]
- Polyakov, M.N.; Morstein, M.; Maeder, X.; Nelisa, T.; Lundind, D.; Wehrs, J.; Best, J.P.; Edwards, T.E.J.; Döbeli, M.; Michler, J. Microstructure-driven strengthening of TiB2 coatings deposited by pulsed magnetron sputtering. Surf. Coat. Technol. 2019, 368, 88–96. [Google Scholar] [CrossRef]
- Wang, H.; Wang, B.; Li, S.; Xue, Q.; Huang, F. Toughening magnetron sputtered TiB2 coatings by Ni addition. Surf. Coat. Technol. 2013, 232, 767–774. [Google Scholar] [CrossRef]
- Stüber, M.; Riedl, H.; Wojcik, T.; Ulrich, S.; Leiste, H.; Mayrhofer, P.H. Microstructure of Al-containing magnetron sputtered TiB2 thin films. Thin Solid Films 2019, 688, 137361. [Google Scholar] [CrossRef]
- Asempah, I.; Xu, J.; Yu, L.; Ju, H.; Wu, F.; Luo, H. Microstructure, mechanical and tribological properties of magnetron sputtered Ti-B-N films. Surf. Eng. 2019, 35, 701–709. [Google Scholar] [CrossRef]
- Dong, C.; Gu, X.; Sun, W.; Wang, K.; Liu, M.; Wang, J.; Wen, M.; Zhang, K. Inhibiting low-dimensional defects of titanium diboride coatings by Si incorporation: Toward enhanced corrosion resistance and mechanical properties. Appl. Surf. Sci. 2022, 594, 153504. [Google Scholar] [CrossRef]
- Wu, Z.; Ye, R.; Bakhit, B.; Petrov, I.; Hultman, L.; Greczynski, G. Improving oxidation and wear resistance of TiB2 films by nano-multilayering with Cr. Surf. Coat. Technol. 2022, 436, 128337. [Google Scholar] [CrossRef]
- Zhang, T.F.; Gan, B.; Park, S.-M.; Wang, Q.M.; Kim, K.H. Influence of negative bias voltage and deposition temperature on microstructure and properties of superhard TiB2 coatings deposited by high power impulse magnetron sputtering. Surf. Coat. Technol. 2014, 253, 115–122. [Google Scholar] [CrossRef]
- Nedfors, N.; Mockute, A.; Palisaitis, J.; Persson, P.O.Å.; Näslund, L.-Å.; Rosen, J. Influence of pulse frequency and bias on microstructure and mechanical properties of TiB2 coatings deposited by high power impulse magnetron sputtering. Surf. Coat. Technol. 2016, 304, 203–210. [Google Scholar] [CrossRef]
- Hellgren, N.; Thörnberg, J.; Zhirkov, I.; Sortica, M.A.; Petrov, I.; Greene, J.E.; Hultman, L.; Rosen, J. High-power impulse magnetron sputter deposition of TiBx thin films: Effects of pressure and growth temperature. Vacuum 2019, 169, 108884. [Google Scholar] [CrossRef]
- Thörnberg, J.; Palisaitis, J.; Hellgren, N.; Klimashin, F.F.; Ghafoor, N.; Zhirkov, I.; Azina, C.; Battaglia, J.-L.; Kusiak, A.; Sortica, M.A.; et al. Microstructure and materials properties of understoichiometric TiBx thin films grown by HiPIMS. Surf. Coat. Technol. 2020, 404, 126537. [Google Scholar] [CrossRef]
- Thörnberg, J.; Bakhit, B.; Palisaitis, J.; Hellgren, N.; Hultman, L.; Greczynski, G.; Persson, P.O.Å.; Petrov, I.; Rosen, J. Improved oxidation properties from a reduced B content in sputter-deposited TiBx thin films. Surf. Coat. Technol. 2021, 420, 127353. [Google Scholar] [CrossRef]
- Fager, H.; Greczynski, G.; Jensen, J.; Lu, J.; Hultman, L. Growth and properties of amorphous Ti–B–Si–N thin films deposited by hybrid HIPIMS/DC-magnetron co-sputtering from TiB2 and Si targets. Surf. Coat. Technol. 2014, 259, 442–447. [Google Scholar] [CrossRef]
- Ding, J.C.; Lee, D.; Mei, H.; Zhang, T.F.; Kang, M.C.; Wang, Q.M.; Kim, K.H. Influence of Si addition on structure and properties of TiB2-Si nanocomposite coatings deposited by high-power impulse magnetron sputtering. Ceram. Int. 2019, 45, 6363–6372. [Google Scholar] [CrossRef]
- Sala, N.; Abad, M.D.; Sánchez-López, J.C.; Crugeira, F.; Ramos-Masana, A.; Colominas, C. Influence of the carbon incorporation on the mechanical properties of TiB2 thin films prepared by HiPIMS. Int. J. Ref. Met. Hard Mater. 2022, 107, 105884. [Google Scholar] [CrossRef]
- Ding, J.C.; Zhang, T.F.; Yun, J.M.; Kim, K.H.; Wang, Q.M. Effect of Cu addition on the microstructure and properties of TiB2 films deposited by a hybrid system combining high power impulse magnetron sputtering and pulsed dc magnetron sputtering. Surf. Coat. Technol. 2018, 344, 441–448. [Google Scholar] [CrossRef]
- Bai, H.; Li, J.; Gao, J.; Ni, J.; Bai, Y.; Jian, J.; Zhao, L.; Bai, B.; Cai, Z.; He, J.; et al. Comparison of CrN Coatings Prepared Using High-Power Impulse Magnetron Sputtering and Direct Current Magnetron Sputtering. Materials 2023, 16, 6303. [Google Scholar] [CrossRef]
- Zhang, H.; Cherng, J.-S.; Chen, Q. Recent progress on high power impulse magnetron sputtering (HiPIMS): The challenges and applications in fabricating VO2 thin film. AIP Adv. 2019, 9, 035242. [Google Scholar] [CrossRef]
- Anders, A. Tutorial: Reactive high power impulse magnetron sputtering (RHiPIMS). J. Appl. Phys. 2017, 121, 171101. [Google Scholar] [CrossRef]
- Wicher, B.; Rogoz, V.; Lu, J.; Kulikowski, K.; Lachowski, A.; Kolozsvári, S.; Polcik, P.; Greczynski, G. The crucial influence of Al on the high-temperature oxidation resistance of Ti1-xAlxBy diboride thin films (0.36 ≤ x ≤ 0.74, 1.83 ≤ y ≤ 2.03). Appl. Surf. Sci. 2025, 686, 162081. [Google Scholar] [CrossRef]
- Hirle, A.; Dörflinger, P.; Fuger, C.; Gutschka, C.; Wojcik, T.; Podsednik, M.; Andreas Limbeck, A.; Kolozsvári, S.; Polcik, P.; Jerg, C.; et al. Mechanical properties of DCMS and HiPIMS deposited Ti1-xMoxB2±z coatings. Surf. Coat. Technol. 2025, 497, 131750. [Google Scholar] [CrossRef]
- International Centre for Diffraction Data. PDF-2. Available online: https://www.icdd.com/pdf-2/ (accessed on 1 September 2025).
- Scherrer, P. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Math.-Phys. Kl. 1918, 2, 98–100. [Google Scholar]
- Thornton, J.A. High Rate Thick Film Growth. Annu. Rev. Mater. Res. 1977, 7, 239–260. [Google Scholar] [CrossRef]
- Tatarko, P.; Grasso, S.; Kovalčíková. A.; Medveď, D.; Dlouhý, I.; Reece, M.J. Highly textured and strongly anisotropic TiB2 ceramics prepared using magnetic field alignment (9T). J. Eur. Ceram. Soc. 2020, 40, 1111–1118. [Google Scholar] [CrossRef]
- Kitiwan, M.; Ito, A.; Goto, T. B deficiency in TiB2 and B solid solution in TiN in TiN-TiB2 composites prepared by spark plasma sintering. J. Eur. Ceram. Soc. 2012, 32, 4021–4024. [Google Scholar] [CrossRef]
- Panjan, P.; Cekada, M.; Panjan, M.; Kek-Merl, D. Growth defects in PVD hard coatings. Vacuum 2010, 84, 209–214. [Google Scholar] [CrossRef]
- Deambrosis, S.M.; Zin, V.; Montagner, F.; Mortalo, C.; Fabrizio, M.; Miorin, E. Effect of temperature and deposition technology on the microstructure, chemistry and tribo-mechanical characteristics of Ti-B based thin films by magnetron sputtering. Surf. Coat. Technol. 2021, 405, 126556. [Google Scholar] [CrossRef]
Elemental Composition | Frequency (Hz)—Constant Pulse Width 50 µs | ||||
---|---|---|---|---|---|
600 | 800 | 1000 | 2000 | 4000 | |
B (at.%) | 79.4 | 66.9 | 68 | 68.9 | 70.8 |
Ti (at.%) | 25.1 | 33.1 | 32 | 31.1 | 29.2 |
Elemental Composition | Pulse Width (Hz)—Constant Frequency 800 Hz | ||||
---|---|---|---|---|---|
50 | 70 | 100 | 150 | 200 | |
B (at.%) | 66.9 | 74.5 | 66.2 | 67.6 | 78.8 |
Ti (at.%) | 33.1 | 25.5 | 33.8 | 32.4 | 21.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kottfer, D.; Kyzioł, K.; Kaňuchová, M.; Kianicová, M.; Žitňan, M.; Durda, E.; Trebuňová, M.; Medveď, D.; Kľučiar, P. The Effect of HiPIMS Pulse Conditions on the Microstructural, Mechanical, and Tribological Properties of TiB2 Coatings on Steel Substrates. Materials 2025, 18, 4699. https://doi.org/10.3390/ma18204699
Kottfer D, Kyzioł K, Kaňuchová M, Kianicová M, Žitňan M, Durda E, Trebuňová M, Medveď D, Kľučiar P. The Effect of HiPIMS Pulse Conditions on the Microstructural, Mechanical, and Tribological Properties of TiB2 Coatings on Steel Substrates. Materials. 2025; 18(20):4699. https://doi.org/10.3390/ma18204699
Chicago/Turabian StyleKottfer, Daniel, Karol Kyzioł, Mária Kaňuchová, Marta Kianicová, Michal Žitňan, Ewa Durda, Marianna Trebuňová, Dávid Medveď, and Patrik Kľučiar. 2025. "The Effect of HiPIMS Pulse Conditions on the Microstructural, Mechanical, and Tribological Properties of TiB2 Coatings on Steel Substrates" Materials 18, no. 20: 4699. https://doi.org/10.3390/ma18204699
APA StyleKottfer, D., Kyzioł, K., Kaňuchová, M., Kianicová, M., Žitňan, M., Durda, E., Trebuňová, M., Medveď, D., & Kľučiar, P. (2025). The Effect of HiPIMS Pulse Conditions on the Microstructural, Mechanical, and Tribological Properties of TiB2 Coatings on Steel Substrates. Materials, 18(20), 4699. https://doi.org/10.3390/ma18204699