Abstract
Timely detection of leaks is essential for the safe and reliable operation of pressure vessels used in superconducting systems, aerospace, and medical equipment. To address the lack of efficient online leak detection methods for such vessels, this paper proposes a quasi-distributed fiber Bragg grating (FBG) sensing network combined with theoretical stress analysis to diagnose vessel conditions. We analyze the stress–strain distributions of vacuum vessels under varying pressures and examine stress concentration effects induced by small holes; these analyses guided the design and placement of quasi-distributed FBG sensors around the vacuum valve for online leakage monitoring. To improve measurement accuracy, we introduce a vibration correction algorithm that mitigates pump-induced vibration interference. Comparative tests under three leakage scenarios demonstrate that when leakage occurs during vacuum extraction, the proposed system can reliably detect the approximate leak location. The results indicate that combining an FBG sensing network with stress concentration analysis enables initial localization and assessment of leak severity, providing valuable support for the safe operation and rapid maintenance of vacuum pressure vessels.