Effect of Cementitious Capillary Crystalline Waterproof Material on the Resistance of Concrete to Sulfate Erosion
Abstract
1. Introduction
2. Experimental Materials and Methods
2.1. Experimental Materials
2.2. Experimental Process
3. Results and Analysis
3.1. Variations in Concrete Quality
3.2. Variation in Concrete Compressive Strength
3.3. Variation in Ultrasonic Velocity
3.4. Variation in Dynamic Elastic Modulus of Concrete
3.5. Characterization of Microstructure
3.6. X-Ray Diffraction Analysis
4. Diffusion of Sulfate Ions in Concrete
4.1. Sulfate Ion Concentration Distribution Characteristics
4.2. Determination of the Diffusion Coefficient of Sulfate Attack in Concrete
5. Conclusions
- (1)
- CCCW significantly improves ultrasonic pulse velocity, and dynamic elastic modulus, and enhances long-term performance. Under sulfate attack, CCCW-admixed specimens exhibit higher dynamic elastic moduli with reduced declines.
- (2)
- CCCW incorporation markedly enhances concrete density and sulfate resistance. It promotes increased formation of calcium silicate hydrate (C-S-H) through reactions with hydration products, leading to a denser pore structure and reduced generation of corrosion products.
- (3)
- The diffusion coefficients decrease with increasing CCCW dosage and with higher concrete strength, albeit at a decelerating rate over time. The developed diffusion model provides a robust framework for evaluating sulfate resistance and guiding engineering optimizations.
- (4)
- A reasonable amount of CCCW admixture can significantly improve the durability and mechanical stability of concrete in sulfate environments. In addition, a surface application of CCCW can also effectively reduce sulfate erosion damage, and the combined effect of internal addition and external spray of permeable crystallization waterproofing material on sulfate resistance of concrete requires further investigation.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gao, R.; Li, Q.; Zhao, S. Concrete deterioration mechanisms under combined sulfate attack and flexural loading. J. Mater. Civ. Eng. 2013, 25, 39–44. [Google Scholar] [CrossRef]
- Yu, X.T.; Chen, D.; Feng, J.; Zhang, Y.; Liao, Y. Behavior of mortar exposed to different exposure conditions of sulfate attack. Ocean. Eng. 2018, 157, 1–12. [Google Scholar] [CrossRef]
- Ragoug, R.; Metalssi, O.O.; Barberon, F.; Torrenti, J.-M.; Roussel, N.; Divet, L.; de Lacaillerie, J.-B.D. Durability of cement pastes exposed to external sulfate attack and leaching: Physical and chemical aspects. Cem. Concr. Res. 2019, 116, 134–145. [Google Scholar] [CrossRef]
- Wu, Q.; Ma, Q.; Huang, X. Mechanical properties and damage evolution of concrete materials considering sulfate attack. Materials 2021, 14, 2343. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, J.; Yu, M.; Lu, Y.; Liu, S. Mechanism and performance control methods of sulfate attack on concrete: A review. Materials 2024, 17, 4836. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Niu, D.-T.; Sun, Y.-Z.; Fei, Q.-N. Ultrasonic testing and microscopic analysis on concrete under sulfate attack and cyclic environment. J. Cent. South Univ. 2014, 21, 4723–4731. [Google Scholar] [CrossRef]
- Liu, Z.; Li, X.; Deng, D.; De Schutter, G. The damage of calcium sulfoaluminate cement paste partially immersed in MgSO4 solution. Mater. Struct. 2016, 49, 719–727. [Google Scholar] [CrossRef]
- Li, Y.; Ye, L.; Gu, Z.; Liu, Y. Study on resistance of basalt fiber reinforced concrete to sulfate erosion after cryogenic freeze-thaw cycles. J. Build. Eng. 2024, 98, 111123. [Google Scholar] [CrossRef]
- Huang, G.; Su, L.; Xue, C.; Zhang, Y.; Qiao, H.; Wang, C. Study on the deterioration mechanism of hybrid basalt-polypropylene fiber-reinforced concrete under sulfate freeze-thaw cycles. Constr. Build. Mater. 2024, 449, 138560. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, R.; Li, Y.; Guan, X. Effect of crystalline admixtures on mechanical, self-healing and transport properties of engineered cementitious composite. Cem. Concr. Compos. 2021, 124, 104256. [Google Scholar] [CrossRef]
- Lee, H.W.; Meng, L.; Ashkpour, A.; Sadighi, A.; Iqbal, M.I.; Pour-Ghaz, M.; Hubler, M.H.; Sales, C.M.; Farnam, Y.; Najafi, A.R. Sensitivity of embedded channel for self-healing agent delivery on splitting tensile strength of concrete. J. Build. Eng. 2025, 102, 111838. [Google Scholar] [CrossRef]
- Sisomphon, K.; Copuroglu, O.; Koenders, E.A.B. Effect of exposure conditions on self healing behavior of strain hardening cementitious composites incorporating various cementitious materials. Constr. Build. Mater. 2013, 42, 217–224. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, J.; Xu, W.; Ding, Y.; Ren, Q.; Sun, Q.; Zhu, Y. Development of cementitious capillary crystalline waterproofing agents and durability study of concrete in the presence of chloride with sulfate in aqueous environment. J. Build. Eng. 2023, 79, 107798. [Google Scholar] [CrossRef]
- Wang, M.; Yang, X.; Zheng, K.; Chen, R. Properties and microstructure of a cement-based capillary crystalline waterproofing grouting material. Buildings 2024, 14, 1439. [Google Scholar] [CrossRef]
- Zhang, C.; Guan, X.; Lu, R.; Li, J.; Li, Y. Effect of cementitious capillary crystalline waterproof material on the various transport properties of cracked cementitious composites. Constr. Build. Mater. 2023, 365, 130138. [Google Scholar] [CrossRef]
- Li, G.; Huang, X.; Lin, J.; Jiang, X.; Zhang, X. Activated chemicals of cementitious capillary crystalline waterproofing materials and their self-healing behaviour. Constr. Build. Mater. 2019, 200, 36–45. [Google Scholar] [CrossRef]
- Wang, C.; Xiao, J.; Long, C.; Zhang, Q.; Shi, J.; Zhang, Z. Influences of the joint action of sulfate erosion and cementitious capillary crystalline waterproofing materials on the hydration products and properties of cement-based materials: A review. J. Build. Eng. 2023, 68, 106061. [Google Scholar] [CrossRef]
- Jiang, L.; Wu, M.; Du, F.; Chen, D.; Xiao, L.; Chen, W.; Du, W.; Ding, Q. State-of-the-art review of microcapsule self-repairing concrete: Principles, applications, test methods, prospects. Polymers 2024, 16, 3165. [Google Scholar] [CrossRef]
- Liu, P.; Liu, M.; Sha, F.; Chen, Y.; Zhi, W.; He, S.; Yu, Z. Preparation and performance investigation of a high efficiency cement permeation type waterproofing materials. Constr. Build. Mater. 2023, 365, 130140. [Google Scholar] [CrossRef]
- Hu, X.; Xiao, J.; Zhang, Z.; Wang, C.; Long, C.; Dai, L. Effects of CCCW on properties of cement-based materials: A review. J. Build. Eng. 2022, 50, 104184. [Google Scholar] [CrossRef]
- Ferrara, L.; Krelani, V.; Moretti, F. On the use of crystalline admixtures in cement based construction materials: From porosity reducers to promoters of self healing. Smart Mater. Struct. 2016, 25, 084002. [Google Scholar] [CrossRef]
- Žižková, N.; Nevřivová, L.; Lédl, M. Durability of cement based mortars containing crystalline additives. In Defect and Diffusion Forum; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2018; Volume 382, pp. 246–253. [Google Scholar]
- Zhang, L.Q.; Yu, J.L.; Wang, Y.Y.; Han, B.G.; Chen, M.C.; Xu, K.C. Study on Cementitious Composites with Permeable Crystalline Agent: A Review. Mater. Rep. 2024, 38, 122–137. [Google Scholar]
- Bassuoni, M.T.; Nehdi, M.L. Durability of self-consolidating concrete to different exposure regimes of sodium sulfate attack. Mater. Struct. 2009, 42, 1039–1057. [Google Scholar] [CrossRef]
- Güneyisi, E.; Gesoğlu, M.; Mermerdaş, K. Strength deterioration of plain and metakaolin concretes in aggressive sulfate environments. J. Mater. Civ. Eng. 2010, 22, 403–407. [Google Scholar] [CrossRef]
- Yao, A.; Xu, J.; Xia, W. An experimental study on mechanical properties for the static and dynamic compression of concrete eroded by sulfate solution. Materials 2021, 14, 5387. [Google Scholar] [CrossRef] [PubMed]
- Roig-Flores, M.; Moscato, S.; Serna, P.; Ferrara, L. Self-healing capability of concrete with crystalline admixtures in different environments. Constr. Build. Mater. 2015, 86, 1–11. [Google Scholar] [CrossRef]
- Zuquan, J.; Xia, Z.; Tiejun, Z.; Jianqing, L. Chloride ions transportation behavior and binding capacity of concrete exposed to different marine corrosion zones. Constr. Build. Mater. 2018, 177, 170–183. [Google Scholar] [CrossRef]
- Gospodinov, P.N. Numerical simulation of 3D sulfate ion diffusion and liquid push out of the material capillaries in cement composites. Cem. Concr. Res. 2005, 35, 520–526. [Google Scholar] [CrossRef]
- Sun, D.; Wu, K.; Shi, H.; Miramini, S.; Zhang, L. Deformation behaviour of concrete materials under the sulfate attack. Constr. Build. Mater. 2019, 210, 232–241. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, L.; Dong, Q.; Sun, G. Prediction of the effective diffusion coefficient on sulfate ions in heterogeneous concrete based on Mori-Tanaka scheme. Constr. Build. Mater. 2024, 449, 138326. [Google Scholar] [CrossRef]
- Li, T.; Wang, S.S. Modeling diffusion coefficient of sulfate ion in concrete using probabilistic approach. Constr. Build. Mater. 2019, 215, 435–446. [Google Scholar] [CrossRef]
- Zhenxin, Y.; Jianming, G.; Luguang, S.; Wang, T. Damage process of concrete exposed to sulfate attack under drying-wetting cycles and loading. J. Southeast Univ. (Nat. Sci. Ed.) 2012, 42, 487–491. [Google Scholar]
- ikalsky, P.J.; Carrasquillo, R.L. Fly ash evaluation and selection for use in sulfate-resistant concrete. Mater. J. 1993, 90, 545–551. [Google Scholar]
- Torii, K.; Kawamura, M. Effects of fly ash and silica fume on the resistance of mortar to sulfuric acid and sulfate attack. Cem. Concr. Res. 1994, 24, 361–370. [Google Scholar] [CrossRef]
Specimen Number | Strength | W/C | Cement (kg/m3) | Water (kg/m3) | Sand (kg/m3) | Coarse Aggregate (kg/m3) | CCCW(kg/m3) |
---|---|---|---|---|---|---|---|
L0 | C20 | 0.79 | 267 | 211 | 769 | 1153 | 0 |
L6 | 0.79 | 267 | 211 | 769 | 1153 | 6 | |
L12 | 0.79 | 267 | 211 | 769 | 1153 | 12 | |
M0 | C30 | 0.58 | 362 | 210 | 676 | 1152 | 0 |
M3 | 0.58 | 362 | 210 | 676 | 1152 | 3 | |
M6 | 0.58 | 362 | 210 | 676 | 1152 | 6 | |
M9 | 0.58 | 362 | 210 | 676 | 1152 | 9 | |
M12 | 0.58 | 362 | 210 | 676 | 1152 | 12 | |
N0 | C45 | 0.45 | 467 | 210 | 594 | 1080 | 0 |
N6 | 0.45 | 467 | 210 | 594 | 1080 | 6 | |
N12 | 0.45 | 467 | 210 | 594 | 1080 | 12 |
Concrete Grade | CCCW (kg/m3) | Erosion Day (d) | Total | |||||
---|---|---|---|---|---|---|---|---|
0 | 30 | 60 | 90 | 120 | 150 | |||
C20 | 0 | 3 | 3 | 3 | 3 | 3 | 3 | 18 |
6 | 3 | 3 | 3 | 3 | 3 | 3 | 18 | |
12 | 3 | 3 | 3 | 3 | 3 | 3 | 18 | |
C30 | 0 | 3 | 3 | 3 | 3 | 3 | 3 | 18 |
3 | 3 | 3 | 3 | 3 | 3 | 3 | 18 | |
6 | 3 | 3 | 3 | 3 | 3 | 3 | 18 | |
9 | 3 | 3 | 3 | 3 | 3 | 3 | 18 | |
12 | 3 | 3 | 3 | 3 | 3 | 3 | 18 | |
C45 | 0 | 3 | 3 | 3 | 3 | 3 | 3 | 18 |
6 | 3 | 3 | 3 | 3 | 3 | 3 | 18 | |
12 | 3 | 3 | 3 | 3 | 3 | 3 | 18 |
Number | V1/mL | V2/mL | ΔV/mL | c (SO42−)/mL | ε/% |
---|---|---|---|---|---|
1 | 7.57 | 0.01 | 7.56 | 0.00488 | 2.4 |
2 | 7.54 | 0.01 | 7.53 | 0.00494 | 1.2 |
3 | 7.55 | 0.01 | 7.54 | 0.00492 | 1.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, G.; Tang, K.; Zheng, D.; Zhao, B.; Li, P.; Yao, G.; Li, X. Effect of Cementitious Capillary Crystalline Waterproof Material on the Resistance of Concrete to Sulfate Erosion. Materials 2025, 18, 4659. https://doi.org/10.3390/ma18204659
Fu G, Tang K, Zheng D, Zhao B, Li P, Yao G, Li X. Effect of Cementitious Capillary Crystalline Waterproof Material on the Resistance of Concrete to Sulfate Erosion. Materials. 2025; 18(20):4659. https://doi.org/10.3390/ma18204659
Chicago/Turabian StyleFu, Guangchuan, Ke Tang, Dan Zheng, Bin Zhao, Pengfei Li, Guoyou Yao, and Xinxin Li. 2025. "Effect of Cementitious Capillary Crystalline Waterproof Material on the Resistance of Concrete to Sulfate Erosion" Materials 18, no. 20: 4659. https://doi.org/10.3390/ma18204659
APA StyleFu, G., Tang, K., Zheng, D., Zhao, B., Li, P., Yao, G., & Li, X. (2025). Effect of Cementitious Capillary Crystalline Waterproof Material on the Resistance of Concrete to Sulfate Erosion. Materials, 18(20), 4659. https://doi.org/10.3390/ma18204659