Damage Assessment of Through-Cracked-Bending Laminated Glass Elements Under Low-Velocity Hard-Body Impacts
Abstract
1. Introduction
2. Experiments
2.1. Quasi-Static TCB Tests
2.2. Hard-Body Impact Tests
2.3. Pre- and Post-Impact Roving Hammer Tests and Modal Analysis
3. Experimental Results
3.1. Quasi-Static TCB Tests
3.2. Hard-Body Impact Tests
3.3. Roving Hammer Tests and Modal Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feldmann, M.; Laurs, M.; Belis, J.; Buljan, N.; Criaud, A.; Dupont, E.; Eliasova, M.; Galuppi, L.; Hassinen, P.; Kasper, R.; et al. The new CEN/TS 19100: Design of glass structures. Glass Struct. Eng. 2023, 8, 317–337. [Google Scholar] [CrossRef]
- Bedon, C.; Kozlowski, M.; Cella, N. Gaps in the post-breakage out-of-plane bending stiffness assessment of 2-ply partially damaged laminated glass elements under short-term quasi-static loads. Eng. Struct. 2025, 327, 119617. [Google Scholar] [CrossRef]
- CNR-DT 210/2013; Guide for the Design, Construction and Control of Buildings with Structural Glass Elements. Consiglio Nazionale delle Ricerche: Rome, Italy, 2013.
- Fourton, P.; Piroird, K.; Ciccotti, M.; Barthel, E. Adhesion rupture in laminated glass: Influence of adhesion on the energy dissipation mechanisms. Glass Struct. Eng. 2020, 5, 397–410. [Google Scholar] [CrossRef]
- Zhou, S.; Cattaneo, S.; Biolzi, L. Review of the Main Mechanical Testing Methods for Interlayer Characterization in Laminated Glass. Appl. Sci. 2023, 13, 8733. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Y.; Wang, X.-e.; Hou, X.; Zhao, C.; Ye, J. Local bridging effect of fractured laminated glass with EVA based hybrid interlayers under weathering actions. Constr. Build. Mater. 2022, 314, 125595. [Google Scholar] [CrossRef]
- Callewaert, D.; Delincé, D.; Sonck, D.; Belis, J.; van Impe, R. Experimental investigation of the influence of temperature on local bridging behaviour in laminated glass elements in post-breakage state. In Engineering Plasticity and Its Applications, Proceedings of the 10th Asia-Pacific Conference, AEPA 2010, Wuhan, China, 15–17 November 2010; Word Scientific: Singapore, 2011; pp. 91–95. [Google Scholar] [CrossRef]
- Elkilani, A.; Elsisi, A.; Elemem, H.; Elbelbisi, A.; Helal, Z.; Salim, H. Interlaminar bond strength of laminated glass composites under accelerated environmental effects. Constr. Build. Mater. 2025, 487, 142005. [Google Scholar] [CrossRef]
- Knight, J.T.; El-Sisi, A.A.; Elbelbisi, A.H.; Newberry, M.; Salim, H.A. Mechanical Behavior of Laminated Glass Polymer Interlayer Subjected to Environmental Effects. Polymers 2022, 14, 5113. [Google Scholar] [CrossRef]
- Offereins, D.; Pauli, A.; Siebert, G. Mechanical performance of liquid cold-poured interlayer adhesives in comparison to PVB, EVA, and ionomers. Glass Struct. Eng. 2024, 9, 569–586. [Google Scholar] [CrossRef]
- El-Sisi, A.; Mahmoud, M.E.; El-Emam, H.; Elbelbisi, A.; Salim, H. Environmental Bond Degradation of Different Laminated Glass Panels. Polymers 2024, 16, 2040. [Google Scholar] [CrossRef] [PubMed]
- Martín, M.; Centelles, X.; Solé, A.; Barreneche, C.; Fernández, A.I.; Cabeza, L.F. Polymeric interlayer materials for laminated glass: A review. Constr. Build. Mater. 2020, 230, 116897. [Google Scholar] [CrossRef]
- Biolzi, L.; Cattaneo, S.; Orlando, M.; Piscitelli, L.R.; Spinelli, P. Post-failure behavior of laminated glass beams using different interlayers. Compos. Struct. 2018, 202, 578–589. [Google Scholar] [CrossRef]
- Biolzi, L.; Cattaneo, S.; Rosati, G. Progressive damage and fracture of laminated glass beams. Constr. Build. Mater. 2010, 24, 577–584. [Google Scholar] [CrossRef]
- Zhao, C.; Yang, J.; Wang, X.; Azim, I. Experimental investigation into the post-breakage performance of pre-cracked laminated glass plates. Constr. Build. Mater. 2019, 224, 996–1006. [Google Scholar] [CrossRef]
- Biolzi, L.; Simoncelli, M. Overall response of 2-ply laminated glass plates under out-of-plane loading. Eng. Struct. 2022, 256, 113967. [Google Scholar] [CrossRef]
- Belis, J.; Depauw, J.; Callewaert, D.; Delincé, D.; van Impe, R. Failure mechanisms and residual capacity of annealed glass/SGP laminated beams at room temperature. Eng. Fail. Anal. 2009, 16, 1866–1875. [Google Scholar] [CrossRef]
- Wang, X.-e.; Yang, J.; Chong, W.T.A.; Qiao, P.; Peng, S.; Huang, X. Post-fracture performance of laminated glass panels under consecutive hard body impacts. Compos. Struct. 2020, 254, 112777. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, S.; Chen, X. Experimental Study on the Post-fracture Property of Laminated Glass. In Proceedings of the 17th East Asian-Pacific Conference on Structural Engineering and Construction, 2022; Lecture Notes in Civil Engineering, LNCE; Springer: Singapore, 2023; Volume 302, pp. 1316–1326. [Google Scholar] [CrossRef]
- Elzière, P.; Dalle-Ferrier, C.; Creton, C.; Barthel, É.; Ciccotti, M. Large strain viscoelastic dissipation during interfacial rupture in laminated glass. Soft Matter 2017, 13, 1624–1633. [Google Scholar] [CrossRef]
- Delincé, D. Experimental Approaches for Assessing Time and Temperature Dependent Performances of Fractured Laminated Safety Glass. Ph.D. Thesis, Ghent University, Gent, Belgium, 2014. Available online: https://biblio.ugent.be/publication/4346098 (accessed on 12 September 2025).
- Chen, S.; Chen, Z.; Chen, X.; Schneider, J. Evaluation of the delamination performance of polyvinyl-butyral laminated glass by through-cracked tensile tests. Constr. Build. Mater. 2022, 341, 127914. [Google Scholar] [CrossRef]
- Ferretti, D.; Rossi, M.; Royer-Carfagni, G. Through-cracked tensile delamination tests with photoelastic measurements. In Challenging Glass 3: Conference on Architectural and Structural Applications of Glass, CGC 2012; IOS Press: Amsterdam, The Netherlands, 2012; pp. 641–652. [Google Scholar] [CrossRef]
- Angelides, S.C.; Talbot, J.P.; Overend, M. The influence of fracture pattern on the residual resistance of laminated glass at high strain-rates: An experimental investigation of the post-fracture bending moment capacity based on time-temperature mapping of interlayer yield stress. Glass Struct. Eng. 2022, 7, 549–568. [Google Scholar] [CrossRef]
- Lenci, S.; Consolini, L.; Clementi, F. On the experimental determination of dynamical properties of laminated glass. Ann. Solid Struct. Mech. 2015, 7, 27–43. [Google Scholar] [CrossRef]
- Bedon, C.; Fasan, M.; Amadio, C. Vibration Analysis and Dynamic Characterization of Structural Glass Elements with Different Restraints Based on Operational Modal Analysis. Buildings 2019, 9, 13. [Google Scholar] [CrossRef]
- Bedon, C. Vibration Analysis and Characterization of Damaged Structural Glass Elements. In Security-Related Advanced Technologies in Critical Infrastructure Protection; NATO Science for Peace and Security Series C: Environmental Security; Kovács, T.A., Nyikes, Z., Fürstner, I., Eds.; Springer: Dordrecht, The Netherlands, 2022. [Google Scholar] [CrossRef]
- Zemanová, A.; Plachý, T.; Schmidt, J.; Janda, T.; Zeman, J.; Šejnoha, M. Numerical and Experimental Modal Analysis of Laminated Glass Beams. In Dynamical Systems in Applications; Springer Proceedings in Mathematics & Statistics; Awrejcewicz, J., Ed.; Springer: Cham, Switzerland, 2018; Volume 249. [Google Scholar] [CrossRef]
- Bedon, C. Frequency-Based Early Crack Detection and Damage Severity Measure in Structural Glass Members: Application to Beams in Bending. J. Archit. Eng. 2024, 30, 04024031. [Google Scholar] [CrossRef]
- Bedon, C.; Noè, S. Post-Breakage Vibration Frequency Analysis of In-Service Pedestrian Laminated Glass Modular Units. Vibration 2021, 4, 836–852. [Google Scholar] [CrossRef]
- Bedon, C. Diagnostic analysis and dynamic identification of a glass suspension footbridge via on-site vibration experiments and FE numerical modelling. Compos. Struct. 2019, 216, 366–378. [Google Scholar] [CrossRef]
- Pelayo, F.; López-Aenlle, M. Natural frequencies and damping ratios of multi-layered laminated glass beams using a dynamic effective thickness. J. Sandw. Struct. Mater. 2017, 21, 439–463. [Google Scholar] [CrossRef]
- López-Aenlle, M.; Pelayo, F. Frequency Response of Laminated Glass Elements: Analytical Modelling and Effective Thickness. Appl. Mech. Rev. 2013, 65, 020802. [Google Scholar] [CrossRef]
- Galuppi, L.; Royer-Carfagni, G. Effective Thickness of Laminated Glass Beams: New Expression via a Variational Approach. J. Struct. Eng. 2012, 38, 53–67. [Google Scholar] [CrossRef]
- Hála, P.; Zemanová, A.; Plachy, T.; Konrád, P.; Sovják, R. Experimental modal analysis of glass and laminated glass large pane with EVA or PVB interlayer at room temperature. Mater. Today Proc. 2022, 62, 2421–2428. [Google Scholar] [CrossRef]
- Hána, T.; Janda, T.; Schmidt, J.; Zemanová, A.; Šejnoha, M.; Eliášová, M.; Vokáč, M. Experimental and Numerical Study of Viscoelastic Properties of Polymeric Interlayers Used for Laminated Glass: Determination of Material Parameters. Materials 2019, 12, 2241. [Google Scholar] [CrossRef]
- Bedon, C.; Fasan, M. Post-Fracture Stiffness and Residual Capacity Assessment of Film-Retrofitted Monolithic Glass Elements by Frequency Change. Math. Probl. Eng. 2024, 8922303. [Google Scholar] [CrossRef]
- Bedon, C.; Santos, F. Effects of post-fracture repeated impacts and short-term temperature gradients on monolithic glass elements bonded by safety films. Compos. Struct. 2023, 319, 117166. [Google Scholar] [CrossRef]
- EN 572-8:2004; Glass in Building—Basic Soda Lime Silicate Glass Products—Part 8: Supplied and Final Cut Sizes. CEN: Brussels, Belgium, 2004.
- Dewesoft® Manuals. Available online: https://dewesoft.com/download/manuals (accessed on 12 September 2025).
Series | tg,nom [mm] | tg,real [mm] | tint [mm] | Interlayer | Eint [MPa] | η | Displacement Rate [mm/min] | n. of Specimens |
---|---|---|---|---|---|---|---|---|
EVA bond | 4 | 3.814 | 1.52 | EVA | 4.2 * | 0.171 | 25 | 3 |
SG bond | 10 | 9.766 | 0.76 | SG | 147.2 * | 0.784 | 25 | 3 |
Eint MPa | f1 Hz | Rf,TCB | a/t | |||||
---|---|---|---|---|---|---|---|---|
Series | Dynamic * | Intact/ Continuous | TCB (n = 0) | TCB (n = 10) | n = 0 | n = 10 | n = 0 | n = 10 |
EVA bond | 9.7 | 142.67 ** | 60.91 | 25.52 | 0.43 | 0.18 | 0.851 | 0.945 |
SG bond | 198 | 285.29 ** | 73.93 | 67.98 | 0.25 | 0.23 | 0.857 | 0.870 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bedon, C.; Cella, N.; Del Bello, R. Damage Assessment of Through-Cracked-Bending Laminated Glass Elements Under Low-Velocity Hard-Body Impacts. Materials 2025, 18, 4454. https://doi.org/10.3390/ma18194454
Bedon C, Cella N, Del Bello R. Damage Assessment of Through-Cracked-Bending Laminated Glass Elements Under Low-Velocity Hard-Body Impacts. Materials. 2025; 18(19):4454. https://doi.org/10.3390/ma18194454
Chicago/Turabian StyleBedon, Chiara, Nicola Cella, and Riccardo Del Bello. 2025. "Damage Assessment of Through-Cracked-Bending Laminated Glass Elements Under Low-Velocity Hard-Body Impacts" Materials 18, no. 19: 4454. https://doi.org/10.3390/ma18194454
APA StyleBedon, C., Cella, N., & Del Bello, R. (2025). Damage Assessment of Through-Cracked-Bending Laminated Glass Elements Under Low-Velocity Hard-Body Impacts. Materials, 18(19), 4454. https://doi.org/10.3390/ma18194454