Environmental Factors Influencing Stress Corrosion Cracking Behavior of Austenitic Stainless Steels in Simulated Seawater
Abstract
1. Introduction
2. Experimental Procedure
3. Results
3.1. Surface Morphology Examination
3.2. Investigation of EDS and EBSD
4. Discussions
5. Conclusions
- (1)
- In the 8000 h tests, discontinuous SCC cracks were observed only in the specimens subjected to white emery spray at 45 °C and 70% relative humidity with a 0.1 g/m2 chloride deposition density; at a 1 g/m2 chloride deposition density, the PTFE crevice former test specimens developed continuous SCC cracks under identical conditions. The extension of the test to 23,000 h at a 0.1 g/m2 chloride deposition density resulted in the formation of continuous cracks, even under the presence of white emery deposits. This observation indicates that the SCC initiation threshold is located within the range of 8000 h to 23,000 h.
- (2)
- When environmental conditions are constant, the duration of the tests is observed to affect the morphology of SCC cracks on the specimens. The cracks transition from a discontinuous to a continuous mode as the duration of the test increases. This finding suggests that the morphologically observed evolution from discrete to interconnected cracks is driven by a synergistic effect of increasing local stress intensity under crevice confinement, progressive chloride ion enrichment leading to passive film breakdown, and microstructural degradation marked by dislocation accumulation.
- (3)
- The specimens with a chloride deposition density of 1 g/m2 experienced significant crevice corrosion exclusively in regions where white emery was deposited.
- (4)
- The 304L stainless steel specimens exhibited cracking under TGSCC mode, which was confirmed by the EBSD analysis results.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jeon, C.; Kong, B.S.; Chen, J.; Xiao, Q.; Jang, C. The effect of microstructure of an advanced duplex stainless steel on the pitting corrosion and chloride-induced stress corrosion cracking resistance. Corros. Sci. 2024, 240, 112489. [Google Scholar] [CrossRef]
- Kim, S.; Ahn, K.; Kim, G.; Song, S.W. Synchrotron X-ray fluorescence imaging study on chloride-induced stress corrosion cracking behavior of austenitic stainless steel welds via selective corrosion of δ-ferrite. Corros. Sci. 2023, 218, 111176. [Google Scholar] [CrossRef]
- Spencer, D.T.; Edwards, M.R.; Wenman, M.R.; Tsitsios, C.; Scatigno, G.G.; Chard-Tuckey, P.R. The initiation and propagation pf chloride-induced transgranular stress corrosion cracking (TGSCC) of 304L austenitic stainless steel under atmospheric conditions. Corros. Sci. 2014, 88, 76–88. [Google Scholar] [CrossRef]
- Jeon, C.; Shin, J.H.; Kong, B.S.; Chen, J.; Xiao, Q.; Jang, C.; Kim, Y.J. Development of a duplex stainless steel for dry storage canister with improved chloride-induced stress corrosion cracking resistance. Nucl. Eng. Technol. 2024, 56, 2131–2140. [Google Scholar] [CrossRef]
- Kim, S.; Kim, G.; Kim, C.K.; Song, S.W. Effects of environmental parameters on chloride-induced stress corrosion cracking behavior of austenitic stainless steel welds for dry storage canister application. Nucl. Eng. Technol. 2024, 56, 317–327. [Google Scholar] [CrossRef]
- Qu, H.J.; Tatman, J.; Wharry, J.P. Chloride-induced stress corrosion cracking in Austenitic steels for SNF storage canisters -Recent understanding and advances in mitigation. J. Nucl. Mater. 2024, 596, 155080. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Cheng, C.Q.; Zhang, D.J.; Zhao, Y.N.; Cao, T.S.; Zhong, S.; Zhang, L.; Zhao, J. Effect of U-bending deformation on pitting corrosion of 2205 duplex stainless steel under wet-dry cycling of chloride salt droplets. Corros. Sci. 2023, 218, 111185. [Google Scholar] [CrossRef]
- Dhaiveegan, P.; Elangovan, N.; Nishimura, T.; Rajendran, N. Corrosion behavior of 316L and 304 stainless steels exposed to industrial-marine-urban environment: Field study. RSC Adv. 2016, 6, 47314–47324. [Google Scholar] [CrossRef]
- Burkert, A.; Müller, T.; Lehmann, J.; Mietz, J. Long-term corrosion behavior of stainless steels in marine atmosphere. Mater. Corros. 2018, 69, 20–28. [Google Scholar] [CrossRef]
- Lv, W.; Pan, C.; Su, W.; Wang, Z.; Liu, S.; Wang, C. A study on atmospheric corrosion of 304 stainless steel in a simulated marine atmosphere. J. Mater. Eng. Perform. 2015, 24, 2597–2604. [Google Scholar] [CrossRef]
- Wang, W.Y.; Tseng, Y.S.; Yeh, T.K. Tolerance assessment and crack growth of chloride-induced stress corrosion cracking for Chinshan dry storage system. Prog. Nucl. Energy 2022, 147, 104210. [Google Scholar] [CrossRef]
- Jensen, P.J.; Suffield, S.; Grant, C.L.; Spitz, C.; Hanson, B.; Ross, S.; Durbin, S.; Bryan, C.; Saltzstein, S. Preliminary modeling of chloride deposition on spent nuclear fuel canisters in dry storage relevant to stress corrosion cracking. Nucl. Technol. 2022, 208, 586–601. [Google Scholar] [CrossRef]
- Li, Y.Z.; Wang, X.; Zhang, G.A. Corrosion behavior of 13Cr stainless steel under stress and crevice in 3.5 wt.% NaCl solution. Corros. Sci. 2020, 163, 108290. [Google Scholar] [CrossRef]
- Han, D.; Jiang, Y.; Shi, C.; Deng, B.; Li, J. Effect of temperature, chloride ion and pH on the crevice corrosion behavior of SAF 2205 duplex stainless steel in chloride solutions. J. Mater. Sci. 2012, 47, 1018–1025. [Google Scholar] [CrossRef]
- Meyer, R.M.; Pardini, A.; Cuta, J.; Adkins, H.; Casella, A.; Qiao, A.; Larche, M.R.; Diaz, A.; Doctor, S.R. NDE to Manage Atmospheric SCC in Canister for Dry Storage of Spent Fuel: An Assessment; PNNL-22495 401001060; Pacific Northwest National Laboratory: Richland, WA, USA, 2013. [Google Scholar]
- Machuca, L.L.; Bailey, S.I.; Gubner, R.; Watkin, E.L.; Ginige, M.P.; Kaksonen, A.H.; Heidersbach, K. Effect of oxygen and biofilms on crevice corrosion of UNS S31803 and UNS N08825 in natural seawater. Corros. Sci. 2013, 67, 242–255. [Google Scholar] [CrossRef]
- Kennel, G.F.; Evitts, R.W.; Heppner, K.L. A Critical crevice solution and IR drop crevice corrosion model. Corros. Sci. 2008, 50, 1716–1725. [Google Scholar] [CrossRef]
- Schoell, R.; Xi, L.; Zhao, Y.; Wu, X.; Yu, Z.; Kenesei, P.; Almer, J.; Shayer, Z.; Kaoumi, D. In situ synchrotron X-ray tomography of 304 stainless steels undergoing chloride-induced stress corrosion cracking. Corros. Sci. 2020, 170, 108687. [Google Scholar] [CrossRef]
- Yeom, H.; Dabney, T.; Pocquette, N.; Ross, K.; Pfefferkorn, F.E.; Sridharan, K. Cold spray deposition of 304L stainless steel to mitigate chloride-induced stress corrosion cracking in canisters for used nuclear fuel storage. J. Nucl. Mater. 2020, 538, 152254. [Google Scholar] [CrossRef]
- Wu, X. On residual stress analysis and microstructural evolution for stainless steel type 304 spent nuclear fuel canisters weld joint: Numerical and experimental studies. J. Nucl. Mater. 2020, 534, 152131. [Google Scholar] [CrossRef]
- Mayuzumi, M.; Arai, T.; Hide, K. Chloride induced stress corrosion cracking of type 304 and 304L stainless steels in air. Zair. Kankyo 2003, 52, 166–170. [Google Scholar] [CrossRef]
- Tani, J.I.; Mayuzumi, M.; Hara, N. Stress corrosion cracking of stainless-steel canister for concrete cask storage of spent fuel. J. Nucl. Mater. 2008, 379, 42–47. [Google Scholar] [CrossRef]
- Guo, L.; Mi, N.; Mohammed-Ali, H.; Ghahari, M.; Plessis, A.D.; Cook, A.; Street, S.; Reinhard, C.; Atwood, R.C.; Rayment, T.; et al. Effect of mixed salts on atmospheric corrosion of 304 stainless steel. J. Electrochem. Soc. 2019, 166, C3010–C3014. [Google Scholar] [CrossRef]
- Dong, P.; Scatigno, G.G.; Wenman, M.R. Effect of salt composition and microstructure on stress corrosion cracking of 316L austenitic stainless steel for dry storage canisters. J. Nucl. Mater. 2021, 545, 152572. [Google Scholar] [CrossRef]
- Scatigno, G.G.; Dong, P.; Ryan, M.P.; Wenman, M.R. The effects of salt loading on chloride-induced stress corrosion cracking of 304L austenitic stainless steel under atmospheric conditions. Materialia 2019, 8, 100509. [Google Scholar] [CrossRef]
- Shoji, S.; Ohnaka, N.; Furutani, Y.; Saitoh, T. Effects of relative humidity on atmospheric stress corrosion cracking of stainless steels. Corros. Eng. 1986, 35, 559–565. [Google Scholar] [CrossRef]
- Scatigno, G.G.; Ryan, M.P.; Giuliani, F.; Wenman, M.R. The effects of prior cold work on the chloride stress corrosion cracking of 304 L austenitic stainless steel under atmospheric condition. Mater. Sci. Eng. A 2016, 668, 20–29. [Google Scholar] [CrossRef]
- Cook, A.B.; Lyon, S.B.; Stevens, N.P.C.; Gunther, M.; McFiggans, G.; Newman, R.C.; Engelberg, D.L. Assessing the risk of under-deposit chloride-induced stress corrosion cracking in austenitic stainless steel nuclear waste containers. Corros. Eng. Sci. Technol. 2014, 49, 529–534. [Google Scholar] [CrossRef]
- Prosek, T.; Iverson, A.; Taxsen, C.; Thierry, D. Low-temperature stress corrosion cracking of stainless steels in the atmosphere in the presence of chloride deposits. Corrosion 2009, 65, 105–117. [Google Scholar] [CrossRef]
- Ornek, C.; Engelberg, D.L. Toward understanding the effects of strain and chloride deposition density on atmospheric chloride-induced stress corrosioncracking of type 304 austenitic stainless steel under MgCl2 and FeCl3: MgCl2 Droplets. Corrosion 2009, 75, 167–182. [Google Scholar] [CrossRef]
- Oberson, G.; Dunn, D.; Mintz, T.; He, X.; Pabalan, R.; Miller, L. US NRC-sponsored research on stress corrosion cracking susceptibility of dry storage canister materials in marine environments-13344. In Proceedings of the WM2013 Conference, Phoenix, AZ, USA, 24–28 February 2013. [Google Scholar]
- He, X.; Mintz, T.S.; Pabalan, R.; Miller, L.; Oberson, G. Assessment of Stress Corrosion Cracking Susceptibility for Austenitic Stainless Steels Exposed to Atmospheric Chloride and Non-Chloride Salts; NUREG/CR-7170; U.S. Nuclear Regulatory Commission: Rockville, MD, USA, 2014.
- Shirai, K.; Tani, J.; Saegusa, T. Study on Interim Storage of Spent Nuclear Fuel by Concrete Cask for Practical Use—Feasibility Study on Prevention of Chloride Induced Stress Corrosion Cracking for Type304L Stainless Steel Canister; CRIEPI N10035; Central Research Institute of Electric Power Industry: Chiyoda-Ku, Japan, 2014. [Google Scholar]
- Takeda, H.; Wataru, M.; Shirai, K.; Saegusa, T. Heat removal verification tests using concrete casks under normal condition. Nucl. Eng. Des. 2008, 238, 1196–1205. [Google Scholar] [CrossRef]
- Qiao, L.J.; Gao, K.W.; Volinsky, A.A.; Li, X.Y. Discontinuous surface cracks during stress corrosion cracking of stainless steel single crystal. Corros. Sci. 2011, 53, 3509–3514. [Google Scholar] [CrossRef]
- Masuda, H. SKFM observation of SCC on SUS304 stainless steel. Corros. Sci. 2007, 49, 120–129. [Google Scholar] [CrossRef]
- Acharyya, S.G.; Khandelwal, A.; Kain, V.; Kumar, A.; Samajdar, I. Surface working of 304L stainless steel: Impact on microstructure, electrochemical behavior and SCC resistance. Mater. Charact. 2012, 72, 68–76. [Google Scholar] [CrossRef]
- D1141-98; Standard Practice for the Preparation of Substitute Ocean Water. ASTM International: West Conshohocken, PA, USA, 2013.
- Yeh, C.P.; Tsai, K.C.; Huang, J.Y. The effect of deposited dust on SCC and crevice corrosion of AISI 304L stainless steel in saline environment. Materials 2021, 14, 6834. [Google Scholar] [CrossRef]
- Truman, J.E. The influence of chloride content, pH and temperature of test solution on the occurrence of stress corrosion cracking with austenitic stainless steel. Corros. Sci. 1977, 17, 737–746. [Google Scholar] [CrossRef]
- Li, J.X.; Chu, W.Y.; Wang, Y.B.; Qiao, L.J. In situ TEM study of stress corrosion cracking of austenitic stainless steel. Corros. Sci. 2003, 45, 1355–1365. [Google Scholar] [CrossRef]
- Oldfield, J.W. Test techniques for pitting and crevice corrosion resistance of stainless steels and nickel-base alloys in chloride-containing environments. Int. Mater. Rev. 1987, 32, 153–172. [Google Scholar] [CrossRef]














| Element | C | Si | S | Cr | Ni | Mn | Fe |
|---|---|---|---|---|---|---|---|
| Wt% | 0.017 | 0.450 | 0.029 | 18.000 | 9.000 | 1.540 | Bal. |
| Composition | MgCl2 | NaCl | Na2SO4 | KCl | CaCl2 | KBr | NaHCO3 | SrCl2 | NaF | H3BO3 |
|---|---|---|---|---|---|---|---|---|---|---|
| wt% | 26.460 | 58.490 | 9.750 | 1.645 | 2.765 | 0.238 | 0.477 | 0.095 | 0.007 | 0.071 |
| Parameter | Unit | Value |
|---|---|---|
| Temperature | °C | 35, 45 |
| Relative humidity | % | 45, 55, 70 |
| Chloride deposition density | g/m2 | 0.1, 1 |
| Test duration | Hours | 8000, 23,000 |
| Testing method for sample surface | N/A | White emery deposition, crevice former |
| Location | Fe | Cr | Ni | Mn | O | S | Cl |
|---|---|---|---|---|---|---|---|
| A | 69.9 | 18.9 | 8.00 | 1.80 | 1.40 | 0.00 | 0.00 |
| B | 23.6 | 46.5 | 3.60 | 1.50 | 23.0 | 1.50 | 0.30 |
| C | 14.1 | 35.6 | 3.90 | 0.50 | 43.2 | 2.30 | 0.50 |
| D | 19.6 | 28.5 | 2.40 | 0.70 | 46.2 | 2.30 | 0.40 |
| E | 15.1 | 29.6 | 3.90 | 0.60 | 47.8 | 2.80 | 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeh, C.-P.; Tsai, K.-C.; Huang, J.-Y. Environmental Factors Influencing Stress Corrosion Cracking Behavior of Austenitic Stainless Steels in Simulated Seawater. Materials 2025, 18, 4317. https://doi.org/10.3390/ma18184317
Yeh C-P, Tsai K-C, Huang J-Y. Environmental Factors Influencing Stress Corrosion Cracking Behavior of Austenitic Stainless Steels in Simulated Seawater. Materials. 2025; 18(18):4317. https://doi.org/10.3390/ma18184317
Chicago/Turabian StyleYeh, Chun-Ping, Kun-Chao Tsai, and Jiunn-Yuan Huang. 2025. "Environmental Factors Influencing Stress Corrosion Cracking Behavior of Austenitic Stainless Steels in Simulated Seawater" Materials 18, no. 18: 4317. https://doi.org/10.3390/ma18184317
APA StyleYeh, C.-P., Tsai, K.-C., & Huang, J.-Y. (2025). Environmental Factors Influencing Stress Corrosion Cracking Behavior of Austenitic Stainless Steels in Simulated Seawater. Materials, 18(18), 4317. https://doi.org/10.3390/ma18184317
