Aluminium Injection Mould Behaviour Using Additive Manufacturing and Surface Engineering
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Manufacturing Process
2.2. Post-Processing and Machining
2.3. Surface Treatments
2.4. Hardness and Microstructural Characterisation
2.5. Experimental Setup in Die Casting
3. Results and Discussion
3.1. Design and Procurement of Components
3.2. Chemical and Microstructural Analysis
3.3. Surface and Core Microhardness Behaviour
3.4. Functional Test of Printed Insert
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andronov, V.; Pitrmuc, Z.; Zajíc, J.; Šotka, P.; Beránek, L.; Bock, M. Conformal cooling as a support tool for eliminating local defects in high-pressure die casting series production. Prog. Addit. Manuf. 2024, 10, 1511–1528. [Google Scholar] [CrossRef]
- Fiorese, E.; Bonollo, F.; Battaglia, E.; Cavaliere, G. Improving Die Casting Processes Through Optimization of Lubrication. Int. J. Cast Met. Res. 2017, 30, 6–12. [Google Scholar] [CrossRef]
- Bhaskar, M.; Anand, G.; Nalluswamy, T.; Suresh, P. Die life in aluminium high-pressure die casting industries. J. Inst. Eng. Ser. D 2022, 103, 117–123. [Google Scholar] [CrossRef]
- Bonollo, F.; Gramegna, N.; Timelli, G. High-pressure die-casting: Contradictions and challenges. JOM 2015, 67, 901–908. [Google Scholar] [CrossRef]
- Brezinová, J.; Viňáš, J.; Džupon, M.; Jakubeczyová, D.; Brezina, J.; Sailer, H.; Hašuľ, J.; Považan, M. Use of Duplex PVD Coatings to Increase the Life of Moulds and Cores for die Casting of Aluminium Alloys in the Automotive Industry. Acta Mech. Slovaca 2022, 26, 42–51. [Google Scholar] [CrossRef]
- Medeiros, J.L.B.; Biehl, L.V.; Martins, C.O.D.; Pacheco, D.A.d.J.; de Souza, J.; Reguly, A. Assessment of Residual Stress Behavior and Material Properties in Steels Produced via Oxynitrocarburized Metal Injection Molding. J. Mater. Eng. Perform. 2024, 33, 7596–7601. [Google Scholar] [CrossRef]
- Muhammad, S.; Kashif, I.; Mudassar, R.; Saqib, A.; Mudassar, R. Investigation of the potential of nano-powder mixed surfactant based waste oil for reducing tool wear and dimensional errors in electro-erosion process. J. Mater. Res. Technol. 2025, 36, 8022–8036. [Google Scholar]
- Davis, W.; Lunetto, V.; Priarone, P.C.; Centea, D.; Settineri, L. An appraisal on the sustainability payback of additively manufactured molds with conformal cooling. Procedia CIRP 2020, 90, 516–521. [Google Scholar] [CrossRef]
- Ermis, K. Design and cooling performance of plastic injection mold. J. Eng. Res. Appl. Sci. 2024, 13, 2521–2526. [Google Scholar]
- Piekło, J.; Garbacz-Klempka, A. Use of maraging steel 1.2709 for implementing parts of pressure mold devices with conformal cooling system. Materials 2020, 13, 5533. [Google Scholar] [CrossRef]
- Feng, S.; Kamat, A.M.; Pei, Y. Design and fabrication of conformal cooling channels in molds: Review and progress updates. Int. J. Heat Mass Transf. 2021, 171, 121082. [Google Scholar] [CrossRef]
- Kwon, B.; Liebenberg, L.; Jacobi, A.M.; King, W.P. Heat transferenhancement of internal laminar flows using additively manufactured static mixers. Int. J. Heat Mass Transf. 2019, 137, 292–300. [Google Scholar] [CrossRef]
- Gobber, F.S.; Pisa, A.G.; Ugues, D.; Rosso, M. Design of a Test Rig for the Characterization of Thermal Fatigue and Soldering Resistance of the Surfaces of Tool Steels for High-Pressure Die-Casting Dies. Steel Res. Int. 2020, 91, 1900480. [Google Scholar] [CrossRef]
- Asnafi, N. Application of laser-based powder bed fusion for direct metal tooling. Metals 2021, 11, 458. [Google Scholar] [CrossRef]
- Grum, J.; Zupancic, M.; Ocana, J.; Morales, M.; Porro, J. Laser Shock Processing as a Method of Decreasing Fatigue of a Die-Casting Die Made of Maraging Steel. Int. J. Microstruct. Mater. Prop. 2008, 3, 271–281. [Google Scholar] [CrossRef]
- Horn, M.; Prestel, L.; Schmitt, M.; Binder, M.; Schlick, G.; Seidel, C.; Reinhart, G. Multi-Material additive manufacturing–recycling of binary metal powder mixtures by screening. Procedia CIRP 2020, 93, 50–55. [Google Scholar] [CrossRef]
- Tochetto, R.; Tochetto, R.; Biehl, L.V.; Medeiros, J.L.B.; Dos Santos, J.C.; De Souza, J. Evaluation of the Space Holders Technique Applied in Powder Metallurgy Process in the Use of Titanium as Biomaterial. Lat. Am. Appl. Res. 2019, 49, 261–268. [Google Scholar] [CrossRef]
- Hsu, F.; Wang, K.; Huang, C.; Chang, R. Investigation on Conformal Cooling System Design in Injection Molding. Adv. Prod. Eng. Manag. 2013, 8, 107–115. [Google Scholar] [CrossRef]
- Klobčar, D.; Tušek, J.; Taljat, B. Thermal Fatigue of Materials For Die-Casting Tooling. Mater. Sci. Eng. A 2008, 472, 198–207. [Google Scholar] [CrossRef]
- Kuo, C.C.; Jiang, Z.-F.; Lee, J.-H. Effects of Cooling Time of Molded Parts on Rapid Injection Molds with Different Layouts and Surface Roughness of Conformal Cooling Channels. Int. J. Adv. Manuf. Technol. 2019, 103, 2169–2182. [Google Scholar] [CrossRef]
- Kurtulus, K.; Bolatturk, A.; Coskun, A.; Gürel, B. An experimental investigation of the cooling and heating performance of a gravity die casting mold with conformal cooling channels. Appl. Therm. Eng. 2021, 194, 117105. [Google Scholar] [CrossRef]
- Majerník, J.; Podaril, M.; Majernikova, M. Evaluation of High Pressure Die Casting Mold Temperature Relations Depending on the Location of the Tempering Channels. Arch. Foundry Eng. 2024, 24, 115–120. [Google Scholar] [CrossRef]
- Mayer, A.R.; de Oliveira, W.R.; Fals, H.D.C.; Lima, M.J.; Gonçalves, C.S.; Munoz, N.; Corso, J.L.; Pukasiewicz, A.G.M. Die soldering and corrosion failure of high temperature tool steel for high-pressure die casting Al alloy. Eng. Fail. Anal. 2024, 161, 108314. [Google Scholar] [CrossRef]
- Molinetti, A.; Amorim, F.L.; Soares, P.C.; Czelusniak, T. Surface modification of AISI H13 tool steel with silicon or manganese powders mixed to the dielectric in electrical discharge machining process. Int. J. Adv. Manuf. Technol. 2016, 83, 1057–1068. [Google Scholar] [CrossRef]
- Monkova, K.; Zetkova, I.; Kučerová, L.; Zetek, M.; Monka, P.; Daňa, M. Study of 3D printing direction and effects of heat treatment on mechanical properties of MS1 maraging steel. Arch. Appl. Mech. 2019, 89, 791–804. [Google Scholar] [CrossRef]
- Nunes, V.; Silva, F.; Andrade, M.; Alexandre, R.; Baptista, A. Increasing the lifespan of high-pressure die cast molds subjected to severe wear. Surf. Coat. Technol. 2017, 332, 319–331. [Google Scholar] [CrossRef]
- Özkan, D.; Yilmaz, M.A.; Karakurt, D.; Szala, M.; Walczak, M.; Bakdemir, S.A.; Türküz, C.; Sulukan, E. Effect of AISI H13 steel substrate nitriding on AlCrN, ZrN, TiSiN, and TiCrN multilayer PVD coatings wear and friction behaviors at a different temperature level. Materials 2023, 16, 1594. [Google Scholar] [CrossRef]
- Phull, G.S.; Kumar, S.; Walia, R.S. Conformal cooling for molds produced by additive manufacturing: A review. Int. J. Mech. Eng. Technol. 2018, 9, 1162–1172. [Google Scholar]
- Shinde, M.S.; Ashtankar, K.M. Additive manufacturing–assisted conformal cooling channels in mold manufacturing processes. Adv. Mech. Eng. 2017, 9. [Google Scholar] [CrossRef]
- Silva, H.M.; Noversa, J.T.; Fernandes, L.; Rodrigues, H.L.; Pontes, A.J. Design optimization of conformal cooling channels for injection molds: 3D transient heat transfer analysis. Mech. Adv. Mater. Struct. 2024, 31, 4610–4621. [Google Scholar] [CrossRef]
- Singh, D.; Joshi, K.; Patil, B. Comparative economic analysis of injection-moulded component with conventional and conformal cooling channels. J. Inst. Eng. Ser. C 2022, 103, 307–317. [Google Scholar] [CrossRef]
- Sod, M.; Kahlert, M.; Arold, T.; Fros, A.P.; Vollmer, M.; Niendorf, T.; Fehlbier, M. Tailoring flow behavior and heat transfer in tempering channels for high-pressure die casting—Analysis of potentials of commercial static mixers and prospects of additive manufacturing. Int. J. Adv. Manuf. Technol. 2023, 125, 5463–5477. [Google Scholar] [CrossRef]
- Strakosova, A.; Průša, F.; Michalcová, A.; Kratochvíl, P.; Vojtěch, D. Annealing Response of Additively Manufactured High-Strength 1.2709 Maraging Steel Depending on Elevated Temperatures. Materials 2022, 15, 3753. [Google Scholar] [CrossRef]
- Sufiiarov, V.; Popovich, A.; Borisov, E.; Polozov, I.; Masaylo, D.; Orlov, A. The effect of layer thickness at selective laser melting. Procedia Eng. 2017, 174, 126–134. [Google Scholar] [CrossRef]
- Sukal, J.; Palousek, D.; Koutny, D. The effect of recycling powder steel on porosity and surface roughness of slm parts. MM Sci. J. 2018, 12, 2643–2647. [Google Scholar] [CrossRef]
- Sütőová, A.; Kočiško, R.; Petroušek, P.; Kotus, M.; Petryshynets, I.; Pylypenko, A. Study of PVD-Coated Inserts’ Lifetime in High-Pressure Die Casting Regarding the Requirements for Surface Quality of Castings. Coatings 2024, 14, 1043. [Google Scholar] [CrossRef]
- Zeng, T.; Abo-Serie, E.; Henry, M.; Jewkes, J. Cooling channel free surface optimisation for additively manufactured casting tools. Int. J. Adv. Manuf. Technol. 2023, 127, 1293–1315. [Google Scholar] [CrossRef]
- Chang, Y.-Y.; Amrutwar, S. Effect of Plasma Nitriding Pretreatment on the Mechanical Properties of AlCrSiN-Coated Tool Steels. Materials 2019, 12, 795. [Google Scholar] [CrossRef]
- Tavakoli, H.; Sayyedan, F.S.; Ebrahimzadeh, I. TiN-TiAlN-CrAlN Multilayer Coatings Applied by Duplex Process of Plasma Nitriding and Cathodic Arc Physical Vapor Deposition: A Survey on High Temperature Corrosion and Oxidation. J. Mater. Eng. Perform. 2025, 1, 1–16. [Google Scholar] [CrossRef]
- Medeiros, J.L.B.; Reguly, A.; Strohaecker, T.R. Applying Oxi-nitrocarburizing surface strengthening process to corrosion prevetion in MIM 17-4 PH stainless steel. Espacios 2015, 36, 21–26. [Google Scholar]
Steel | %C | %Mn | %Si | %S | %P | %Co | %Mo | %Ni | %Ti | %Al | %V | %Cr |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Maraging | 0.017 | 0.054 | 0.088 | 0.057 | 0.019 | 9.29 | 4.74 | 18.5 | 0.85 | 0.114 | 0.10 | 0.02 |
H13 | 0.40 | 0.5 | 0.8 | 0.01 | 0.01 | 0.03 | 1.10 | 0.3 | 0.003 | 0.003 | 0.8 | 5.0 |
Parameter | H13 Steel Inserts | AM 300-Grade Maraging Steel Inserts | Improvements/Notes |
---|---|---|---|
Thermal uniformity | Moderate | High | Optimised conformal cooling channels reduce thermal gradients |
Surface microhardness (HV0.05) | 1100 with nitriding and 2780 after PVD | 1230 with nitriding and 2850 after PVD | Significant increase due to duplex surface treatment |
Dimensional stability | Good | Excellent | Reduced deformation under repeated cycles |
Service life (cycles) | 30,000 | 80,000 | ~2.6× longer |
Residual aluminium adhesion | Moderate | Low | Improved surface finish and reduced temperature at the release agent interface |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Lima, M.J.; Medeiros, J.L.B.; de Souza, J.; Martins, C.O.D.; Biehl, L.V. Aluminium Injection Mould Behaviour Using Additive Manufacturing and Surface Engineering. Materials 2025, 18, 4216. https://doi.org/10.3390/ma18174216
de Lima MJ, Medeiros JLB, de Souza J, Martins COD, Biehl LV. Aluminium Injection Mould Behaviour Using Additive Manufacturing and Surface Engineering. Materials. 2025; 18(17):4216. https://doi.org/10.3390/ma18174216
Chicago/Turabian Stylede Lima, Marcelo José, Jorge Luis Braz Medeiros, José de Souza, Carlos Otávio Damas Martins, and Luciano Volcanoglo Biehl. 2025. "Aluminium Injection Mould Behaviour Using Additive Manufacturing and Surface Engineering" Materials 18, no. 17: 4216. https://doi.org/10.3390/ma18174216
APA Stylede Lima, M. J., Medeiros, J. L. B., de Souza, J., Martins, C. O. D., & Biehl, L. V. (2025). Aluminium Injection Mould Behaviour Using Additive Manufacturing and Surface Engineering. Materials, 18(17), 4216. https://doi.org/10.3390/ma18174216