Strength Tests of Selected Ropes Used in Mining Shaft Hoists After Their Replacement in Stochastic Interpretation
Abstract
1. Introduction
2. Materials and Methods
3. Methodology and Objective of the Study, Results and Analysis
3.1. Description of Steel Rope Design Selected for Testing
3.2. Analysis of Random Distributions of the Tensile Strength Rm of All Wires Taken from New and Worn Ropes
3.3. Analysis of the Number of Bends and Twists in Individual Rope Strand Layers and in the Wire Layers of These Strands for New and Worn Ropes
4. Conclusions
- 1.
- The investigated rope, made of strands using compacting technology, shows a higher fatigue life than a rope made of strands traditionally made of round wires, but the characteristics of the distributions of the strength parameters of the compacted strand wires, despite their high quality, are more variable. This is probably due to the new random variable that is introduced into the wires by the additional surface stresses during the plastic deformation of the strands.
- 2.
- Strength tests on the wires of the individual strand layers of both selected CASAR-type rope designs confirm very different rates of wear. The fastest and greatest wear is experienced by the wires of the strands of the outer layers, with slightly slower wear of the strands of the middle and inner layers. Practically no wear is recorded on the core layers of the rope.
- 3.
- In the rope designs studied, the share of the cross-sectional area of the outer layer strand wires in the total cross-sectional area of the rope is the greatest. It is the wear of the strand wires of this layer that has the greatest impact on the strength degradation of the ropes in question. This is an important observation and an important indication for experts carrying out the obligatory statutory tests of this type of rope.
- 4.
- The analyzed case of the 61 mm diameter rope, made of compact strands, confirms that the criterion for the deposition of hoisting ropes of mining shaft hoists, defined as a permissible strength degradation of 20% should not be exceeded in any case. Strength tests on the wires of the outer, middle and, to a lesser extent, inner strand layers indicate that their fatigue life is almost completely exhausted.
- 5.
- The analyzed case of a 60 mm diameter rope, made of strands of round wires, and disqualified due to the occurrence of corrosion changes visible on the surface of the wires and deformation (floating out) of the interstrand polymer filling, indicates that this rope was prematurely put down. It should be noted here that, apart from the magnetic test results in the form of regular noise recorded on the channels of LD-type inductive sensors, the appraiser has no more precise indicators of wear. He must therefore rely on experience, and this is best gained by carrying out strength tests on the wires of these ropes after the ropes have been put down.
- 6.
- The results of tests carried out on selected CASAR rope structures and presented in this analysis show that even when these ropes reach the permitted 20% strength degradation regulations, they do not cause degradation of the core layers and full degradation of the inner strand layers. The condition of the ropes is determined by the wires of the outer layers, and these are also assessable by visual methods, including a 3D visual method based on scanning the rope surface with a laser camera system [45]. It should also be noted that none of the ropes tested entered the phase of accelerated wire breakage. This is particularly true of the 61 mm diameter rope, whose actual strength degradation exceeded the regulatory limit of 20%.
- 7.
- The results of tests of the tensile bending and torsional strengths of all wires of two selected similar CASAR-type rope designs and operating under similar operating and environmental conditions of mine shaft hoists confirm that operating time and conditions are the primary factor in their degradation and, consequently, the progressive decline in fatigue life.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feyrer, K. Wire Ropes, Tension, Endurance, Reliability; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Fiołek, P.; Jakubowski, J. Structural safety assessment of shaft steelwork—A review. Arch. Min. Sci. 2023, 68, 655–670. [Google Scholar] [CrossRef]
- Żółtowski, B. Podstawy Diagnostyki Technicznej; Wydawnictwo Uczelniane ATR: Bydgoszcz, Poland, 1996. [Google Scholar]
- Chang, X.; Peng, Y.; Zhu, Z.; Cheng, D.-Q.; Lu, H.; Tang, W.; Chen, G.-A. Tribological behavior and mechanical properties of transmission wire rope bending over sheaves under different sliding conditions. Wear 2023, 514–515, 204582. [Google Scholar] [CrossRef]
- Zhang, D.; Feng, C.; Chen, K.; Wang, D.; Ni, X. Effect of broken wire on bending fatigue characteristics of wire ropes. Int. J. Fatigue 2017, 103, 456–465. [Google Scholar] [CrossRef]
- Fontanari, V.; Benedetti, M.; Monelli, B.D. Elasto-plastic behavior of a Warrington-Seale rope: Experimental analysis and finite element modeling. Eng. Struct. 2015, 82, 113–120. [Google Scholar] [CrossRef]
- Rozporządzenie Ministra Energii w Sprawie Szczegółowych Wymagań Dotyczących Prowadzenia Ruchu w Podziemnych Zakładach Górniczych z Dnia 23 Listopada 2016 [Dz U.2017 poz 1118]. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20170001118/O/D20171118.pdf (accessed on 15 July 2025).
- Olszyna, G.; Gašić, V.; Tytko, A. Some aspects on quantification of the wear at steel wire ropes. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2021, 236, 2032–2041. [Google Scholar] [CrossRef]
- Tytko, A.; Olszyna, G.; Kocór, G.; Szot, M. Some Stochastic Aspects of Safety Work of Steel Wire Ropes Used in Mining-Shaft Hoists. Sustainability 2023, 15, 7590. [Google Scholar] [CrossRef]
- Xia, D.-H.; Song, S.; Tao, L.; Qin, Z.; Wu, Z.; Gao, Z.; Wang, J.; Hu, W.; Behnamian, Y.; Luo, J.-L. Review-material degradation assessed by digital image processing: Fundamentals, progresses, and challenges. J. Mater. Sci. Technol. 2020, 53, 146–162. [Google Scholar] [CrossRef]
- Jordon, J.B.; Rao, H.; Amaro, R.; Allison, P. Chapter 1—Introduction to Fatigue in Friction Stir Welding. In Friction Stir Welding and Processing. Fatigue in Friction Stir Welding; Butterworth-Heinemann: Oxford, UK, 2019; pp. 1–8. [Google Scholar] [CrossRef]
- Kaimkuriya, A.; Sethuraman, B.; Gupta, M. Effect of Physical Parameters on Fatigue Life of Materials and Alloys: A Critical Review. Technologies 2024, 12, 100. [Google Scholar] [CrossRef]
- Sivaranjani, T.; Yadav, A.K.; Gajendra, D.; Sahoo, P.K.; Rao, P.S.S.; Raja, S. Fatigue life estimation of aircraft structural component using FE approach and validation through analytical and experimental methods. Mater. Today Proc. 2024, 108, 27–35. [Google Scholar] [CrossRef]
- Da Silva, F.A.C. Steel Wire Ropes Service Life. J. Fail. Anal. Prev. 2022, 22, 1924–1935. [Google Scholar] [CrossRef]
- Abnahmeprüfzeugnis Nach DIN EN 10204 3.1. Konstruktion: STARPLAST MF 60 35(W)x7-ESWCS, CASAR Drahtseilwerk Saar Gmbh: Kirkel, Deutschland, 2016; PDF document in German not published.
- Abnahmeprüfzeugnis Nach DIN EN 10204 3.1. Konstruktion: STARPLAST VMF 61 35(W)xK7-WCS, CASAR Drahtseilwerk Saar Gmbh: Kirkel, Deutschland, 2017; PDF document in German not published.
- Tobys, J.; Kocór, G.; Garczyński, S. Badania po Odłożeniu Odcinka Liny Nośnej o Średnicy 60 mm Typu “STARPLAST” Firmy CASAR, Zespół Rzeczoznawców Urządzeń Technicznych “AUTORYTET”: Polkowice, Poland, 2020; PDF document not published.
- Zhao, D.; Gao, C.; Zhou, Z.; Liu, S.; Chen, B.; Gao, J. Fatigue life prediction of the wire rope based on grey theory under small sample condition. Eng. Fail. Anal. 2020, 107, 104237. [Google Scholar] [CrossRef]
- Tatarczak, A. Statystyka. Podręcznik. Studia Przypadków; Wyższej Szkoły Ekonomii i Innowacji: Lublin, Poland, 2021. [Google Scholar]
- Zhou, P.; Zhou, G.; Zhu, Z.; He, Z.; Ding, X.; Tang, C. A Review of Non-Destructive Damage Detection Methods for Steel Wire Ropes. Appl. Sci. 2019, 9, 2771. [Google Scholar] [CrossRef]
- SABS 0293; Code of Practice for the Condition Assessment of Steel Wire Ropes on Mine Winders. The South African Bureau of Standards: Pretoria, South Africa, 1999.
- PN-EN ISO 6892-1:2020-05; Metale—Próba Rozciągania—Część 1: Metoda Badania w Temperaturze Pokojowej. Polski Komitet Normalizacyjny: Warszawa, Poland, 2020.
- PN-ISO 7800:1996; Metale—Drut—Próba Jednokierunkowego Skręcania. Polski Komitet Normalizacyjny: Warszawa, Poland, 1996.
- PN-ISO 7801:1996; Metale—Drut—Próba Przeginania Dwukierunkowego. Polski Komitet Normalizacyjny: Warszawa, Poland, 1996.
- Tytko, A. Liny Stalowe: Budowa, Właściwości, Eksploatacje, Zastosowania; Wydawnictwo PWN: Warszawa, Poland, 2021. [Google Scholar]
- Bas, E.; Egrioglu, E.; Yolcu, U. Bootstrapped Holt Method with Autoregressive Coefficients Based on Harmony Search Algorithm. Forecasting 2021, 3, 839–849. [Google Scholar] [CrossRef]
- Rahmawati, A.; Ramadhanti, C.N.; Ismia, F.H.; Nurcahyo, R. Comparing the Accuracy of Holt’s and Brown’s Double Exponential Smoothing Method in Forecasting The Coal Demand Of Company X. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Bangalore, India, 16–18 August 2021. [Google Scholar]
- Pan, Y.; Jing, Y.; Wu, T.; Kong, X. Knowledge-based data augmentation of small samples for oil condition prediction. Reliab. Eng. Syst. Saf. 2022, 218, 108114. [Google Scholar] [CrossRef]
- Cartiaux, F.B.; Ehrlacher, A.; Legoll, F.; Libal, A.; Reygner, J. Probabilistic formulation of Miner’s rule and application to structural fatigue with Weibull–Basquin modeling. Probabilistic Eng. Mech. 2023, 74, 103500. [Google Scholar] [CrossRef]
- Jokiel-Rokita, A.; Pia̧tek, S. Estimation of parameters and quantiles of the Weibull distribution. Stat. Pap. 2024, 65, 1–18. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, Y.-X.; Ren, X.-T.; Gao, J.-Z.; Liu, S.-G.; Dong, L.-Q.; Cheng, M.-S. Fatigue life prediction of wire rope based on grey particle filter method under small sample condition. Eksploat. i Niezawodn.—Maint. Reliab. 2021, 23, 454–467. [Google Scholar] [CrossRef]
- Huang, T.; Xiahou, T.; Li, Y.-F.; Qian, H.-M.; Liu, Y.; Huang, H.-Z. Assessment of wind turbine generators by fuzzy universal generating function. Eksploat. i Niezawodn.—Maint. Reliab. 2021, 23, 308–314. [Google Scholar] [CrossRef]
- Li, Y.-F.; Huang, H.-Z.; Mi, J.; Peng, W.; Han, X. Reliability analysis of multi-state systems with common cause failures based on Bayesian network and fuzzy probability. Ann. Oper. Res. 2019, 311, 195–209. [Google Scholar] [CrossRef]
- Li, Y.-F.; Liu, Y.; Huang, T.; Huang, H.-Z.; Mi, J. Reliability assessment for systems suffering common cause failure based on Bayesian networks and proportional hazards model. Qual. Reliab. Eng. Int. 2020, 36, 2509–2520. [Google Scholar] [CrossRef]
- Mi, J.; Li, Y.-F.; Peng, W.; Huang, H.-Z. Reliability analysis of complex multi-state system with common cause failure based on evidential networks. Reliab. Eng. Syst. Saf. 2018, 174, 71–81. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, B.; Wang, Y.; Xiao, S. A hybrid distribution characteristics of equivalent structural stress method for fatigue evaluation of welded structures. Int. J. Fatigue 2024, 179, 108057. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, S.; Xu, Q.; Shi, F.; Sun, W.; Chai, L. Fatigue life prediction of wire rope based on stress field intensity method. Eng. Fail. Anal. 2017, 81, 1–9. [Google Scholar] [CrossRef]
- Weihong, X.; Xiadong, Z.; Qing, Y. An fatigue life estimation of cable for crane based on nominal stress method. Ind. Saf. Environ. Prot. 2014, 40, 23–25. [Google Scholar]
- Weihong, X.; Xiadong, Z.; Qing, Y. Fracture estimation of cable life of cable crane based on local stress and strain method. J. Mech. Sci. Technol. 2015, 34, 47–50. [Google Scholar] [CrossRef]
- Guo, Z.; Huang, D.; Yan, X.; Zhang, X.; Qi, M.; Fan, J. A damage coupled elastic-plastic constitutive model and its application on low cycle fatigue life prediction of turbine blade. Int. J. Fatigue 2020, 131, 105298. [Google Scholar] [CrossRef]
- Yuan, G.-J.; Zhang, X.-C.; Chen, B.; Tu, S.-T.; Zhang, C.-C. Low-cycle fatigue life prediction of a polycrystalline nickel-base superalloy using crystal plasticity modelling approach. J. Mater. Sci. Technol. 2020, 38, 28–38. [Google Scholar] [CrossRef]
- Miao, Y.; Soltani, M.N.; Hajizadeh, A. A Machine Learning Method for Modeling Wind Farm Fatigue Load. Appl. Sci. 2022, 12, 7392. [Google Scholar] [CrossRef]
- Gao, J.; Heng, F.; Yuan, Y.; Liu, Y. A novel machine learning method for multiaxial fatigue life prediction: Improved adaptive neuro-fuzzy inference system. Int. J. Fatigue 2023, 178, 108007. [Google Scholar] [CrossRef]
- Liu, G.; Wei, P.; Chen, K.; Liu, H.; Lu, Z. Polymer gear contact fatigue reliability evaluation with small data set based on machine learning. J. Comput. Des. Eng. 2022, 9, 583–597. [Google Scholar] [CrossRef]
- Olszyna, G.; Sioma, A.; Tytko, A. Assessment of the condition of hoisting ropes by measuring their geometric parameters in a three-dimensional image of their surface. Arch. Min. Sci. 2013, 58, 643–654. [Google Scholar] [CrossRef]
Description | Parameter and Its Value |
---|---|
Manufacturer | CASAR Drahtseilwerk Saar GmbH Deutschland |
Rope certificate number, drum number | W6 00627243, 6270602 |
Rope design | 16 (1 × 3.35 + 6 × 3.10) + 6 (1 × 3.45 + 6 × 3.20) + 6 (1 × 2.60 + 6 × 2.30) + 6 (1 × 3.50 + 6 × 3.25) + 3 (1 × 1.80 + 6 × 1.60) |
Durability Rm | 1770 MPa |
Metallic cross-section | 1791.4 mm2 |
Design | Wright co-wound Z/z |
Galvanization | Type B (BEZINAL coating—strands of the outer layer). |
Mass of 1 m | 15.82 kg |
Grease | ELASKON II STAR |
Total rope breaking load | 337,576 daN |
Actual force breaking the rope as a whole | 254,750 daN |
Endurance performance | 0.754 |
Rope working area | KWK “Mysłowice-Wesoła”, “Piotr” shaft |
Safety factors of the rope assuming | Human driving: 8.34 > 6.97 Material transport: 7.0 > 5.97 |
Rope working time | 50 months |
Reason for discontinuation | Surface corrosion visible on all wires of the 16 strands of the outer layer, plastic filling was also observed squeezed out in the grooves between the strands, lack of grease in the grooves between the strands was observed |
Weakness at the time of discontinuation | 7.9%—decrease in total breaking force of all wires |
Description | Parameter and Its Value |
---|---|
Manufacturer | CASAR Drahtseilwerk Saar GmbH Deutschland |
Rope certificate number, drum number | W600751141 dated 14.02.2017, 701-750231-1 |
Rope design | 16 (1 × 3.60 + 6 × 3.20) + 6 (1 × 2.05 + 7 × 1.50 + 7 × 3.15) + 6 (1 × 2.10 + 6 × 1.50) + 6 (1 × 2.1 + 7 × 1.5 + 7 × 3.15) + 3 (1 × 1.75 + 6 × 1.60) |
Durability Rm | 1610 MPa |
Metallic cross-section | 2045.48 mm2 |
Design | right co-wound Z/z |
Galvanization | Type B (BEZINAL coating—strands of the outer layer) |
Mass of 1 m | 18.2 kg |
Grease | ELASKON II STAR |
Total rope breaking load | 332,020 daN |
Actual force breaking the rope as a whole | 272,810 daN |
Endurance performance | 0.821 |
Rope working area | Mine Salt “Klodawa”, “Barbara” shaft |
Safety factors of the rope assuming | Human driving: 9.72 > 7.096 Material transport: 6.99 > 6.096 |
Rope working time | 48 months |
Reason for discontinuation | Surface corrosion and numerous pitting corrosion points were visible on the outer wires of all 16 strands of this layer, plastic filling was observed squeezed out of the grooves between the strands, a lack of lubricants was observed in the grooves between the strands |
Weaknesses at the time of discontinuation | 20%—total rope breaking load of the entire rope 23.25%—actual force breaking the rope in ENTIRETY |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tytko, A.; Olszyna, G.; Rokita, T.; Skrzypkowski, K. Strength Tests of Selected Ropes Used in Mining Shaft Hoists After Their Replacement in Stochastic Interpretation. Materials 2025, 18, 4217. https://doi.org/10.3390/ma18174217
Tytko A, Olszyna G, Rokita T, Skrzypkowski K. Strength Tests of Selected Ropes Used in Mining Shaft Hoists After Their Replacement in Stochastic Interpretation. Materials. 2025; 18(17):4217. https://doi.org/10.3390/ma18174217
Chicago/Turabian StyleTytko, Andrzej, Grzegorz Olszyna, Tomasz Rokita, and Krzysztof Skrzypkowski. 2025. "Strength Tests of Selected Ropes Used in Mining Shaft Hoists After Their Replacement in Stochastic Interpretation" Materials 18, no. 17: 4217. https://doi.org/10.3390/ma18174217
APA StyleTytko, A., Olszyna, G., Rokita, T., & Skrzypkowski, K. (2025). Strength Tests of Selected Ropes Used in Mining Shaft Hoists After Their Replacement in Stochastic Interpretation. Materials, 18(17), 4217. https://doi.org/10.3390/ma18174217