The Influence of Rolling Direction and Dynamic Strengthening on the Properties of Steel
Abstract
1. Introduction
2. Materials and Methods
2.1. Material—S700MC Steel
2.2. Microstructure Investigations
2.3. Samples for Tensile Test
2.4. Cross-Section Measurements
2.5. Tensile Tests and DIC Measurements
2.6. Fracture Analysis
3. Results and Discussion
3.1. Microstructure Analysis
3.2. Cross-Section Area Measurements
3.3. Tensile Tests and DIC Measurements
3.4. Fracture Analysis
4. Conclusions
- The rolling direction should be considered a key design parameter in structural elements made from S700MC steel. Aligning load paths with the rolling direction can improve tensile strength and reduce the risk of premature plastic deformation.
- In dynamic applications (e.g., crash scenarios, impact zones), S700MC exhibits an over 10% increase in strength. However, this is accompanied by a reduction in ductility and a brittle-like fracture, which should be accounted for in safety margin calculations.
- Microstructural defects, such as internal pores from rolling, may act as crack initiation sites. Their minimization during production is essential for components subjected to cyclic or high-rate loading.
- The use of DIC in design validation can support the detection of local strain concentrations and should be considered in advanced prototyping of safety-critical components.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quaranta, E.; Davies, P. Emerging and Innovative Materials for Hydropower Engineering Applications: Turbines, Bearings, Sealing, Dams and Waterways, and Ocean Power. Engineering 2022, 8, 148–158. [Google Scholar] [CrossRef]
- Nie, J.; Wang, J.; Gou, S.; Zhu, Y.; Fan, J. Technological Development and Engineering Applications of Novel Steel-Concrete Composite Structures. Front. Struct. Civ. Eng. 2019, 13, 1–14. [Google Scholar] [CrossRef]
- Jorge, J.C.F.; de Souza, L.F.G.; Mendes, M.C.; Bott, I.S.; Araújo, L.S.; dos Santos, V.R.; Rebello, J.M.A.; Evans, G.M. Microstructure Characterization and Its Relationship with Impact Toughness of C–Mn and High Strength Low Alloy Steel Weld Metals—A Review. J. Mater. Res. Technol. 2021, 10, 471–501. [Google Scholar] [CrossRef]
- Zhao, M.; Huang, L.; Li, C.; Li, J.; Li, P. Evaluation of the Deformation Behaviors and Hot Workability of a High-Strength Low-Alloy Steel. Mater. Sci. Eng. A 2021, 810, 141031. [Google Scholar] [CrossRef]
- Perka, A.K.; John, M.; Kuruveri, U.B.; Menezes, P.L. Zaawansowane Stale o Wysokiej Wytrzymałości do Zastosowań Motoryzacyjnych: Proces Spawania Łukowego i Laserowego, Właściwości i Wyzwania. Metals 2022, 12, 1051. [Google Scholar] [CrossRef]
- Szczucka-Lasota, B.; Węgrzyn, T.; Jurek, A. Formation of Oxides and Sulfides during the Welding Process of S700MC Steel by Using New Electrodes Wires. Materials 2024, 17, 2974. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Gomes, F.M.; Warchomicka, F.G.; Ernst, W.; Vallant, R.; Poletti, M.C.; Enzinger, N. The Effect of Thermomechanical Welding on the Microstructure and Mechanical Properties of S700MC Steel Welds. Weld. World 2024, 68, 1053–1069. [Google Scholar] [CrossRef]
- Görtan, M.O.; Yüksel, B.; Çağırankaya, F. Control of the Martensitic Transformation During Resistance Spot Welding of High Strength S700MC Steel. Shape Mem. Superelasticity 2023, 9, 485–491. [Google Scholar] [CrossRef]
- Moravec, J.; Sobotka, J.; Novakova, I.; Bukovska, S. Assessment of the Partial Welding Influences on Fatigue Life of S700MC Steel Fillet Welds. Metals 2021, 11, 334. [Google Scholar] [CrossRef]
- Pak, A.; Shams, H.; Rezaei Ashtiani, H.R.; Choopani, Y. Experimental and Statistical Study on Mechanical Properties of Ultrasonic Vibration-Assisted Gas Metal Arc Welded Joint of S700MC Steel. Int. J. Interact. Des. Manuf. 2025, 19, 6243–6257. [Google Scholar] [CrossRef]
- Węgrzyn, T.; Szymczak, T.; Szczucka-Lasota, B.; Łazarz, B. MAG Welding Process with Micro-Jet Cooling as the Effective Method for Manufacturing Joints for S700MC Steel. Metals 2021, 11, 276. [Google Scholar] [CrossRef]
- Shakil, S.; Lu, W.; Puttonen, J. Experimental Studies on Mechanical Properties of S700 MC Steel at Elevated Temperatures. Fire Saf. J. 2020, 116, 103157. [Google Scholar] [CrossRef]
- Vuorinen, E.; Hosseini, N.; Hedayati, A.; Kornacker, E.; Fernandez, M.T.; Sanz, J.; Gonzalez, M.I.; Cañibano, E. Mechanical and Microstructural Evaluation of High Performance Steel (S700MC) for Road Restraint Systems. Eng. Fail. Anal. 2020, 108, 104251. [Google Scholar] [CrossRef]
- Available online: https://www.confer.cz/metal/2018/read/1038-evaluation-of-the-effects-of-different-manufacturing-methods-on-tensile-properties-of-s700mc-steel.pdf (accessed on 8 February 2025).
- Ling, C.; Ren, X.; Wang, X.; Li, Y.; Liu, Z.; Wang, B.; Zhao, J. Dynamic Mechanical Properties and Modified Johnson-Cook Model Considering Recrystallization Softening for Nickel-Based Powder Metallurgy Superalloys. Materials 2024, 17, 670. [Google Scholar] [CrossRef]
- Jain, A.; Mishra, A.; Tiwari, V.; Singh, G.; Singh, R.P.; Singh, S. Deformation Measurement of a SS304 Stainless Steel Sheet Using Digital Image Correlation Method. Photonics 2022, 9, 912. [Google Scholar] [CrossRef]
- Romanowicz, P.J.; Szybiński, B.; Wygoda, M. Assessment of Digital Image Correlation Effectiveness and Quality in Determination of Surface Strains of Hybrid Steel/Composite Structures. Materials 2024, 17, 3561. [Google Scholar] [CrossRef] [PubMed]
- Shokry, A.; Gowid, S.; Mulki, H.; Kharmanda, G. On the Prediction of the Flow Behavior of Metals and Alloys at a Wide Range of Temperatures and Strain Rates Using Johnson–Cook and Modified Johnson–Cook-Based Models: A Review. Materials 2023, 16, 1574. [Google Scholar] [CrossRef]
- Available online: https://aseestant.ceon.rs/index.php/jmm/article/view/36774/21876 (accessed on 8 February 2025).
- EN-10083; Steels for Quenching and Tempering-Part 3: Technical Delivery Conditions for Alloy Steels. European Committee for Standardization: Brussels, Belgium, 2007.
- Precision Steel Product Information for Hot-Rolled Precision Strip Made in Hohenlimburg Precidur® Precidur® Engineering.Tomorrow.Together. Available online: https://www.thyssenkrupp-steel.com/en/publications/ (accessed on 8 February 2025).
- ASTM E8/E8M-2016a; Test Methods for Tension Testing of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2013. [CrossRef]
- Bayock, F.N.; Kah, P.; Mvola, B.; Layus, P. Effect of heat input and undermatched filler wire on the microstructure and mechanical properties of dissimilar S700MC/S960QC high-strength steels. Metals 2019, 9, 883. [Google Scholar] [CrossRef]
- Jain, A.; Varshney, A. Effect of Grain Size and Dislocation Density on the Work Hardening Behavior of SS 304. J. Mater. Eng. Perform. 2024, 34, 3008–3025. [Google Scholar] [CrossRef]
- ASTM E112-24; Standard Test Methods for Determining Average Grain Size. ASTM International: West Conshohocken, PA, USA, 2024.
- Singh, M.; Mudgal, D.M.N.; Kartikeya, K.; Kasana, S.S.; Bhatnagar, N. Experimental study on dynamic behaviour of High Strength Low Alloy Steels at cryogenic temperatures. Thin-Walled Struct. 2023, 190, 110960. [Google Scholar] [CrossRef]
- Song, K.; Lin, Z.; Fa, Y.; Zhao, X.; Zhu, Z.; Ya, W.; Sun, Z.; Yu, X. Microstructure and Mechanical Properties of High-Strength, Low-Alloy Steel Thin-Wall Fabricated with Wire and Arc Additive Manufacturing. Metals 2023, 13, 764. [Google Scholar] [CrossRef]
- Jenicek, Š.; Jirková, H.; Kučerová, L. The Behaviour of Low-Alloy High-Strength Steel After Different Types of Processing for Dynamic Load; Katalinic, B., Ed.; DAAAM International: Vienna, Austria, 2011; Volume 22, no. 1. [Google Scholar]
- Uenishi, A.; Yoshida, H.; Yonemura, S.; Hiwatashi, S.; Hirose, S.; Suzuki, N. High Strain Rate Properties of High Strength Steel Sheets. Int. J. Automot. Eng. 2009, 2, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Borodin, E.N.; Gruzdkov, A.A.; Mayer, A.E.; Selyutina, N.S. Physical nature of strain rate sensitivity of metals and alloys at high strain rates. J. Phys. Conf. Ser. Inst. Phys. Publ. 2018, 991, 012012. [Google Scholar] [CrossRef]
- Branco, R.; Berto, F. Mechanical Behavior of High-Strength, Low-Alloy Steels. Metals 2018, 8, 610. [Google Scholar] [CrossRef]
- Sun, Y.; Li, X.; Yu, X.; Ge, D.; Chen, J.; Chen, J. Fracture morphologies of advanced high strength steel during deformation. Acta Metall. Sin. 2014, 27, 101–106. [Google Scholar] [CrossRef]
Element | Weight [%] |
---|---|
C | <0.06 |
Si | <0.15 |
Mn | <1.80 |
P | <0.020 |
S | <0.008 |
Al | 0.015–0.060 |
Ti | <0.15 |
Nb | <0.08 |
V | <0.05 |
Mo | <0.30 |
B | <0.005 |
Property | - |
Yield strength ReH [MPa] | 700 |
Tensile strength Rm [MPa] | 750–900 |
Elongation [A5] | 16 |
Elongation [A80] | 12 |
Test Sample | Measuring Point | Thickness [mm] | Average Thickness “t” [mm] | Standard Deviation [mm] | Width [mm] | Average Width “w” [mm] | Standard Deviation [mm] | Cross-Sectional Area “a” [mm2] | Standard Deviation [mm2] |
---|---|---|---|---|---|---|---|---|---|
SX1 | D1 | 3.05 | 3.047 | 0.0058 | 6.04 | 6.037 | 0.0058 | 18.3947 | 0.0390 |
D2 | 3.05 | 6.04 | |||||||
D3 | 3.05 | 6.03 | |||||||
SX2 | D1 | 3.12 | 3.117 | 0.0058 | 6.06 | 6.057 | 0.0058 | 18.8797 | 0.0393 |
D2 | 3.11 | 6.05 | |||||||
D3 | 3.12 | 6.06 | |||||||
SX3 | D1 | 3.12 | 3.123 | 0.0058 | 6.08 | 6.073 | 0.0058 | 18.9660 | 0.0394 |
D2 | 3.12 | 6.07 | |||||||
D3 | 3.13 | 6.07 | |||||||
SX4 | D1 | 3.12 | 3.123 | 0.0058 | 6.08 | 6.080 | 0 | 18.9878 | 0.3510 |
D2 | 3.12 | 6.08 | |||||||
D3 | 3.13 | 6.08 | |||||||
SX5 | D1 | 3.05 | 3.057 | 0.0058 | 6.04 | 6.043 | 0.0058 | 18.4735 | 0.0391 |
D2 | 3.06 | 6.05 | |||||||
D3 | 3.06 | 6.04 |
Test Sample | Measuring Point | Thickness [mm] | Average [mm] | Standard Deviation [mm] | Width [mm] | Average [mm] | Standard Deviation [mm] | Cross-Sectional Area [mm2] | Standard Deviation [mm2] |
---|---|---|---|---|---|---|---|---|---|
SY1 | D1 | 3.02 | 3.013 | 0.0058 | 6.04 | 6.033 | 0.0058 | 18.1774 | 0.0389 |
D2 | 3.01 | 6.03 | |||||||
D3 | 3.01 | 6.03 | |||||||
SY2 | D1 | 3.07 | 3.067 | 0.0058 | 6.04 | 6.040 | 0 | 18.5247 | 0.0349 |
D2 | 3.06 | 6.04 | |||||||
D3 | 3.07 | 6.04 | |||||||
SY3 | D1 | 3.08 | 3.077 | 0.0058 | 6.09 | 6.087 | 0.0058 | 18.7297 | 0.0394 |
D2 | 3.08 | 6.08 | |||||||
D3 | 3.07 | 6.09 | |||||||
SY4 | D1 | 3.10 | 3.090 | 0.0100 | 6.06 | 6.063 | 0.0058 | 18.7347 | 0.0632 |
D2 | 3.08 | 6.07 | |||||||
D3 | 3.09 | 6.06 | |||||||
SY5 | D1 | 3.02 | 3.023 | 0.0058 | 6.05 | 6.063 | 0.0058 | 18.3284 | 0.0391 |
D2 | 3.03 | 6.05 | |||||||
D3 | 3.02 | 6.06 |
Test Sample | ReH [MPa] | Strain εReH [%] | Rm [MPa] | Strain εRM [%] |
---|---|---|---|---|
SX1 | 730.25 | 0.41 | 781.48 | 3.49 |
SX2 | 714.98 | 0.39 | 764.44 | 3.70 |
SX3 | 709.26 | 0.38 | 760.42 | 3.54 |
SX4 | 706.42 | 0.43 | 757.75 | 3.57 |
SX5 | 720.89 | 0.38 | 776.10 | 3.68 |
Average | 716.36 | 0.40 | 768.04 | 3.60 |
Standard deviation | 9.55 | 0.02 | 10.28 | 0.09 |
Test Sample | ReH [MPa] | Strain εReH [%] | Rm [MPa] | Strain εRm [%] |
---|---|---|---|---|
SY1 | 781.01 | 0.32 | 820.21 | 3.07 |
SY2 | 759.30 | 0.37 | 801.68 | 3.02 |
SY3 | 762.14 | 0.36 | 801.53 | 3.21 |
SY4 | 751.22 | 0.37 | 794.34 | 3.24 |
SY5 | 771.89 | 0.36 | 810.28 | 3.24 |
Average | 765.11 | 0.36 | 805.61 | 3.16 |
Standard deviation | 11.56 | 0.02 | 9.93 | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pokropek, J.; Kluczyński, J.; Sarzyński, B.; Jasik, K.; Szachogłuchowicz, I.; Łuszczek, J.; Joska, Z.; Małek, M.; Torzewski, J. The Influence of Rolling Direction and Dynamic Strengthening on the Properties of Steel. Materials 2025, 18, 3808. https://doi.org/10.3390/ma18163808
Pokropek J, Kluczyński J, Sarzyński B, Jasik K, Szachogłuchowicz I, Łuszczek J, Joska Z, Małek M, Torzewski J. The Influence of Rolling Direction and Dynamic Strengthening on the Properties of Steel. Materials. 2025; 18(16):3808. https://doi.org/10.3390/ma18163808
Chicago/Turabian StylePokropek, Jakub, Janusz Kluczyński, Bartłomiej Sarzyński, Katarzyna Jasik, Ireneusz Szachogłuchowicz, Jakub Łuszczek, Zdeněk Joska, Marcin Małek, and Janusz Torzewski. 2025. "The Influence of Rolling Direction and Dynamic Strengthening on the Properties of Steel" Materials 18, no. 16: 3808. https://doi.org/10.3390/ma18163808
APA StylePokropek, J., Kluczyński, J., Sarzyński, B., Jasik, K., Szachogłuchowicz, I., Łuszczek, J., Joska, Z., Małek, M., & Torzewski, J. (2025). The Influence of Rolling Direction and Dynamic Strengthening on the Properties of Steel. Materials, 18(16), 3808. https://doi.org/10.3390/ma18163808