Environmental Fate of 4-Methylbenzylidene Camphor: Adsorption Behavior on Textile-Derived Microplastic Fibers in Wastewater and Surface Water Systems
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Drying Garment Conditions
2.1.2. Microplastic Fiber Characterization
2.1.3. Contamination Prevention in Laboratory Settings
2.2. Adsorption Experiments
2.2.1. Adsorption Kinetics
2.2.2. Adsorption Isotherms
2.2.3. Analytical Conditions
2.2.4. Data Analysis
3. Results
3.1. Kinetic Modeling and Adsorption Behavior
3.2. Adsorption Isotherms and the Influence of Fiber Origin and Water Matrix Composition
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Horton, A.A.; Walton, A.; Spurgeon, D.J.; Lahive, E.; Svendsen, C. Microplastics in Freshwater and Terrestrial Environments: Evaluating the Current Understanding to Identify the Knowledge Gaps and Future Research Priorities. Sci. Total Environ. 2017, 586, 127–141. [Google Scholar] [CrossRef]
- Yu, Q.; Hu, X.; Yang, B.; Zhang, G.; Wang, J.; Ling, W. Distribution, Abundance and Risks of Microplastics in the Environment. Chemosphere 2020, 249, 126059. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, X.; Huang, W.; Li, J.; Wang, C.; Zhang, D.; Zhang, C. Microplastic Pollution in Deep-Sea Sediments and Organisms of the Western Pacific Ocean. Environ. Pollut. 2020, 259, 113948. [Google Scholar] [CrossRef]
- Mao, R.; Hu, Y.; Zhang, S.; Wu, R.; Guo, X. Microplastics in the Surface Water of Wuliangsuhai Lake, Northern China. Sci. Total Environ. 2020, 723, 137820. [Google Scholar] [CrossRef]
- Thompson, R.C.; Olson, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.G.; McGonigle, D.; Russell, A.E. Lost at Sea: Where Is All the Plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef]
- Allen, S.J.; McKay, G.; Khader, K.Y.H. Intraparticle Diffusion of a Basic Dye during Adsorption onto Sphagnum Peat. Environ. Pollut. 1989, 56, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, X.; Hong, H.; Shi, D. Multigenerational Effects of 4-Methylbenzylidene Camphor (4-MBC) on the Survival, Development and Reproduction of the Marine Copepod Tigriopus Japonicus. Aquat. Toxicol. 2018, 194, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Pang, J.; Chen, S.; Jia, H. Sorption Properties of Tylosin on Four Different Microplastics. Chemosphere 2018, 209, 240–245. [Google Scholar] [CrossRef]
- Tang, G.; Liu, M.; Zhou, Q.; He, H.; Chen, K.; Zhang, H.; Hu, J.; Huang, Q.; Luo, Y.; Ke, H.; et al. Microplastics and Polycyclic Aromatic Hydrocarbons (PAHs) in Xiamen Coastal Areas: Implications for Anthropogenic Impacts. Sci. Total Environ. 2018, 634, 811–820. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Chen, M.; Zhang, L.; Wang, K.; Yu, X.; Zheng, Z.; Zheng, R. Sorption Behaviors of Phenanthrene on the Microplastics Identified in a Mariculture Farm in Xiangshan Bay, Southeastern China. Sci. Total Environ. 2018, 628–629, 1617–1626. [Google Scholar] [CrossRef]
- Wang, F.F.; Wong, C.S.; Chen, D.; Lu, X.; Wang, F.F.; Zeng, E.Y. Interaction of Toxic Chemicals with Microplastics: A Critical Review. Water Res. 2018, 139, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Lončarski, M.; Gvoić, V.; Prica, M.; Cveticanin, L.; Agbaba, J.; Tubić, A. Sorption Behavior of Polycyclic Aromatic Hydrocarbons on Biodegradable Polylactic Acid and Various Nondegradable Microplastics: Model Fitting and Mechanism Analysis. Sci. Total Environ. 2021, 785, 147289. [Google Scholar] [CrossRef]
- Tubić, A.; Lončarski, M.; Maletić, S.; Molnar Jazić, J.; Watson, M.; Tričković, J.; Agbaba, J. Significance of Chlorinated Phenols Adsorption on Plastics and Bioplastics during Water Treatment. Water 2019, 11, 2358. [Google Scholar] [CrossRef]
- Tubić, A.; Lončarski, M.; Apostolović, T.; Kragulj Isakovski, M.; Tričković, J.; Molnar Jazić, J.; Agbaba, J. Adsorption Mechanisms of Chlorobenzenes and Trifluralin on Primary Polyethylene Microplastics in the Aquatic Environment. Environ. Sci. Pollut. Res. 2021, 28, 59416–59429. [Google Scholar] [CrossRef]
- Lin, D.; Xing, B. Adsorption of Phenolic Compounds by Carbon Nanotubes: Role of Aromaticity and Substitution of Hydroxyl Groups. Environ. Sci. Technol. 2008, 42, 7254–7259. [Google Scholar] [CrossRef]
- Ma, J.; Zhao, J.; Zhu, Z.; Li, L.; Yu, F. Effect of Microplastic Size on the Adsorption Behavior and Mechanism of Triclosan on Polyvinyl Chloride. Environ. Pollut. 2019, 254, 113104. [Google Scholar] [CrossRef]
- Andrady, A.L. The Plastic in Microplastics: A Review. Mar. Pollut. Bull. 2017, 119, 12–22. [Google Scholar] [CrossRef]
- Galloway, T.S.; Cole, M.; Lewis, C. Interactions of Microplastic Debris throughout the Marine Ecosystem. Nat. Ecol. Evol. 2017, 1, 116. [Google Scholar] [CrossRef]
- Hartmann, N.B.; Rist, S.; Bodin, J.; Jensen, L.H.S.; Schmidt, S.N.; Mayer, P.; Meibom, A.; Baun, A. Microplastics as Vectors for Environmental Contaminants: Exploring Sorption, Desorption, and Transfer to Biota. Integr. Environ. Assess Manag. 2017, 13, 488–493. [Google Scholar] [CrossRef]
- Rochman, C.M.; Hoh, E.; Kurobe, T.; Teh, S.J. Ingested Plastic Transfers Hazardous Chemicals to Fish and Induces Hepatic Stress. Sci. Rep. 2013, 3, 3263. [Google Scholar] [CrossRef]
- Rios, L.M.; Jones, P.R.; Moore, C.; Narayan, U.V. Quantitation of Persistent Organic Pollutants Adsorbed on Plastic Debris from the Northern Pacific Gyre’s “Eastern Garbage Patch”. J. Environ. Monit. 2010, 12, 2226–2236. [Google Scholar] [CrossRef]
- Wright, S.L.; Kelly, F.J. Plastic and Human Health: A Micro Issue? Env. Sci. Technol. 2017, 51, 6634–6647. [Google Scholar] [CrossRef]
- Bakir, A.; O’Connor, I.A.; Rowland, S.J.; Hendriks, A.J.; Thompson, R.C. Relative Importance of Microplastics as a Pathway for the Transfer of Hydrophobic Organic Chemicals to Marine Life. Environ. Pollut. 2016, 219, 56–65. [Google Scholar] [CrossRef]
- Cesa, F.S.; Turra, A.; Checon, H.H.; Leonardi, B.; Baruque-Ramos, J. Laundering and Textile Parameters Influence Fibers Release in Household Washings. Environ. Pollut. 2020, 257, 113553. [Google Scholar] [CrossRef]
- Barthel, C.; Götz, T.; Durand, A. Bottom-up Scenario Calculations for 10 World Regions Reveal Worldwide Efficiency Potentials of about 50% for Refrigeration and Washing. In Proceedings of the EEDAL 2013: 7th International Conference on Energy Efficiency in Domestic Appliances and Lighting, Coimbra, Portugal, 11–13 September 2013. [Google Scholar]
- Group of Experts on the Scientific Aspects of Marine Environmental Protectio (GESAMP). Sources, Fate and Effects of MP in the Marine Environment. J. Ser. GESAMP Rep. Stud. 2015, 90, 98. [Google Scholar]
- Browne, M.A.; Crump, P.; Niven, S.J.; Teuten, E.; Tonkin, A.; Galloway, T.; Thompson, R. Accumulation of Microplastic on Shorelines Woldwide: Sources and Sinks. Environ. Sci. Technol. 2011, 45, 9175–9179. [Google Scholar] [CrossRef]
- Talvitie, J.; Mikola, A.; Setälä, O.; Heinonen, M.; Koistinen, A. How Well Is Microlitter Purified from Wastewater?—A Detailed Study on the Stepwise Removal of Microlitter in a Tertiary Level Wastewater Treatment Plant. Water Res. 2017, 109, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Birch, Q.T.; Potter, P.M.; Pinto, P.X.; Dionysiou, D.D.; Al-Abed, S.R. Sources, transport, measurement and impact of nano and microplastics in urban watersheds. Rev. Environ. Sci. Bio/Technol. 2020, 19, 275–336. [Google Scholar] [CrossRef] [PubMed]
- Carney Almroth, B.M.; Åström, L.; Roslund, S.; Petersson, H.; Johansson, M.; Persson, N.K. Quantifying Shedding of Synthetic Fibers from Textiles; a Source of Microplastics Released into the Environment. Environ. Sci. Pollut. Res. 2018, 25, 1191–1199. [Google Scholar] [CrossRef]
- Bhat, S.U.; Qayoom, U. Implications of Sewage Discharge on Freshwater Ecosystems; IntechOpen: London, UK, 2021; pp. 1–17. [Google Scholar] [CrossRef]
- Xu, X.; Jian, Y.; Xue, Y.; Hou, Q.; Wang, L. Microplastics in the Wastewater Treatment Plants (WWTPs): Occurrence and Removal. Chemosphere 2019, 235, 1089–1096. [Google Scholar] [CrossRef]
- Zubris, K.A.V.; Richards, B.K. Synthetic Fibers as an Indicator of Land Application of Sludge. Environ. Pollut. 2005, 138, 201–211. [Google Scholar] [CrossRef] [PubMed]
- De Falco, F.; Cocca, M.; Avella, M.; Thompson, R.C. Microfiber Release to Water, Via Laundering, and to Air, via Everyday Use: A Comparison between Polyester Clothing with Differing Textile Parameters. Environ. Sci. Technol. 2020, 54, 3288–3296. [Google Scholar] [CrossRef]
- De Falco, F.; Gullo, M.P.; Gentile, G.; Di Pace, E.; Cocca, M.; Gelabert, L.; Brouta-Agn Esa, M.; Rovira, A.; Escudero, R.; Villalba, R.; et al. Evaluation of Microplastic Release Caused by Textile Washing Processes of Synthetic Fabrics. Environ. Pollut. 2018, 236, 916–925. [Google Scholar] [CrossRef] [PubMed]
- Zambrano, M.C.; Pawlak, J.J.; Daystar, J.; Ankeny, M.; Cheng, J.J.; Venditti, R.A. Microfibers Generated from the Laundering of Cotton, Rayon and Polyester Based Fabrics and Their Aquatic Biodegradation. Mar. Pollut. Bull. 2019, 142, 394–407. [Google Scholar] [CrossRef]
- Dris, R.; Gasperi, J.; Saad, M.; Mirande, C.; Tassin, B. Synthetic Fibers in Atmospheric Fallout: A Source of Microplastics in the Environment? Mar. Pollut. Bull. 2016, 104, 290–293. [Google Scholar] [CrossRef]
- Hernandez, E.; Nowack, B.; Mitrano, D.M. Polyester Textiles as a Source of Microplastics from Households: A Mechanistic Study to Understand Microfiber Release during Washing. Environ. Sci. Technol. 2017, 51, 7036–7046. [Google Scholar] [CrossRef]
- Sait, S.T.L.; Sørensen, L.; Kubowicz, S.; Vike-Jonas, K.; Gonzalez, S.V.; Asimakopoulos, A.G.; Booth, A.M. Microplastic Fibres from Synthetic Textiles: Environmental Degradation and Additive Chemical Content. Environ. Pollut. 2021, 268, 115745. [Google Scholar] [CrossRef]
- Cadena-Aizaga, M.I.; Montesdeoca-Esponda, S.; Torres-Padrón, M.E.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. Organic UV Filters in Marine Environments: An Update of Analytical Methodologies, Occurrence and Distribution. Trends Environ. Anal. Chem. 2020, 25, e00079. [Google Scholar] [CrossRef]
- Kook, H.; Cha, M.; Park, C. Transport of Emerging Organic Ultraviolet (UV) Filters in Ceramic Membranes: Role of Polyethylene (PE) Microplastics. Chemosphere 2022, 309, 136570. [Google Scholar] [CrossRef] [PubMed]
- Mitchelmore, C.L.; Burns, E.E.; Conway, A.; Heyes, A.; Davies, I.A. A Critical Review of Organic Ultraviolet Filter Exposure, Hazard, and Risk to Corals. Environ. Toxicol. Chem. 2021, 40, 967–988. [Google Scholar] [CrossRef]
- Santana-Viera, S.; Montesdeoca-Esponda, S.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. UV Filters and UV Stabilisers Adsorbed in Microplastic Debris from Beach Sand. Mar. Pollut. Bull. 2021, 168, 112434. [Google Scholar] [CrossRef]
- Celeiro, M.; Facorro, R.; Dagnac, T.; Vilar, V.J.P.; Llompart, M. Photodegradation Behaviour of Multiclass Ultraviolet Filters in the Aquatic Environment: Removal Strategies and Photoproduct Identification by Liquid Chromatography–High Resolution Mass Spectrometry. J. Chromatogr. A 2019, 1596, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Conway, A.J.; Gonsior, M.; Clark, C.; Heyes, A.; Mitchelmore, C.L. Acute Toxicity of the UV Filter Oxybenzone to the Coral Galaxea Fascicularis. Sci. Total Environ. 2021, 796, 148666. [Google Scholar] [CrossRef] [PubMed]
- Simetić, T.; Nikić, J.; Kuč, M.; Tamindžija, D.; Tubić, A.; Agbaba, J.; Molnar Jazić, J. New Insight into the Degradation of Sunscreen Agents in Water Treatment Using UV-Driven Advanced Oxidation Processes. Processes 2024, 12, 1156. [Google Scholar] [CrossRef]
- Benedé, J.L.; Chisvert, A.; Lucena, R.; Cárdenas, S. A paper-based polystyrene/nylon Janus platform for the microextraction of UV filters in water samples as proof-of-concept. Microchim. Acta 2021, 188, 391. [Google Scholar] [CrossRef]
- Kim, K.T.; Park, S. Enhancing Microplastics Removal from Wastewater Using Electro-Coagulation and Granule-Activated Carbon with Thermal Regeneration. Processes 2021, 9, 617. [Google Scholar] [CrossRef]
- Xing, Y.; Yu, Y.; Men, Y. Emerging Investigators Series: Occurrence and Fate of Emerging Organic Contaminants in Wastewater Treatment Plants with an Enhanced Nitrification Step. Environ. Sci. Water Res. Technol. 2018, 4, 1412–1426. [Google Scholar] [CrossRef]
- Krause, M.; Klit, A.; Blomberg Jensen, M.; Søeborg, T.; Frederiksen, H.; Schlumpf, M.; Lichtensteiger, W.; Skakkebaek, N.E.; Drzewiecki, K.T. Sunscreens: Are They Beneficial for Health? An Overview of Endocrine Disrupting Properties of UV-Filters. Int. J. Androl. 2012, 35, 424–436. [Google Scholar] [CrossRef]
- Moreno-Ortiz, G.; Aguilar, L.; Caamal-Monsreal, C.; Noreña-Barroso, E.; Rosas, C.; Rodríguez-Fuentes, G. Benzophenone-3 does not Cause Oxidative Stress or B-esterase Inhibition During Embryo Development of Octopus maya (Voss and Solís Ramírez, 1966). Bull. Environ. Contam. Toxicol. 2023, 111, 60. [Google Scholar] [CrossRef]
- Ho, W.K.; Leung, K.S.Y. Sorption and Desorption of Organic UV Filters onto Microplastics in Single and Multi-Solute Systems. Environ. Pollut. 2019, 254, 113066. [Google Scholar] [CrossRef]
- Lax, C.; Wicksell, E.; Grip, A.; Niemi, J.V.L.; Liu, W.; Rafeletou, A.; Kudłak, B.; Schiöth, H.B. The Effect of Sunscreen 4-Methylbenzylidene Camphor in Different and Reproductive Models, Its Bioaccumulation and Molecular Effects on Ligand-Receptor Interaction, and Protein Expression. Basic Clin. Pharmacol. Toxicol. 2023, 133, 130–141. [Google Scholar] [CrossRef]
- Balázs, A.; Krifaton, C.; Orosz, I.; Szoboszlay, S.; Kovács, R.; Csenki, Z.; Urbányi, B.; Kriszt, B. Hormonal Activity, Cytotoxicity and Developmental Toxicity of UV Filters. Ecotoxicol. Environ. Saf. 2016, 131, 45–53. [Google Scholar] [CrossRef]
- Araújo, M.J.; Rocha, R.J.M.; Soares, A.M.V.M.; Benedé, J.L.; Chisvert, A.; Monteiro, M.S. Effects of UV Filter 4-Methylbenzylidene Camphor during Early Development of Solea Senegalensis Kaup, 1858. Sci. Total Environ. 2018, 628–629, 1395–1404. [Google Scholar] [CrossRef]
- Hsieh, S.-C.; Lai, W.-P.; Lin, A.Y.-C. Kinetics and Mechanism of 4-Methylbenzylidene Camphor Degradation by UV-Activated Persulfate Oxidation. Environ. Sci. Pollut. Res. 2021, 28, 18021–18034. [Google Scholar] [CrossRef]
- Lai, W.W.P.; Chen, K.L.; Lin, A.Y.C. Solar Photodegradation of the UV Filter 4-Methylbenzylidene Camphor in the Presence of Free Chlorine. Sci. Total Environ. 2020, 722, 137860. [Google Scholar] [CrossRef] [PubMed]
- Vujić, M.; Vasiljević, S.; Simetić, T.; Kordić, B.; Molnar Jazić, J.; Agbaba, J.; Tubić, A. Assessing the Interaction between 4-Methylbenzylidene Camphor and Microplastic Fibers in Aquatic Environments: Adsorption Kinetics and Mechanisms. Sci. Total Environ. 2024, 956, 177383. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, D.; Chu, W. Adsorption of Highly Toxic Chlorophenylacetonitriles on Typical Microplastics in Aqueous Solutions: Kinetics, Isotherm, Impact Factors and Mechanism. Sci. Total Environ. 2023, 880, 163261. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Guo, X. Adsorption Kinetic Models: Physical Meanings, Applications, and Solving Methods. J. Hazard. Mater. 2020, 390, 122156. [Google Scholar] [CrossRef]
- Xu, B.; Liu, F.; Brookes, P.C.; Xu, J. The Sorption Kinetics and Isotherms of Sulfamethoxazole with Polyethylene Microplastics. Mar. Pollut. Bull. 2018, 131, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Kumar, A. Removal of Nickel (II) from Aqueous Solution by Biosorption on A. Barbadensis Miller Waste Leaves Powder. Appl. Water Sci. 2019, 9, 96. [Google Scholar] [CrossRef]
- Atugoda, T.; Vithanage, M.; Wijesekara, H.; Bolan, N.; Sarmah, A.K.; Bank, M.S.; You, S.; Ok, Y.S. Interactions between Microplastics, Pharmaceuticals and Personal Care Products: Implications for Vector Transport. Environ. Int. 2021, 149, 106367. [Google Scholar] [CrossRef]
- Lin, L.; Tang, S.; Wang, X.; Sun, X.; Liu, Y. Sorption of Tetracycline onto Hexabromocyclododecane/Polystyrene Composite and Polystyrene Microplastics: Statistical Physics Models, Influencing Factors, and Interaction Mechanisms. Environ. Pollut. 2021, 284, 117164. [Google Scholar] [CrossRef]
- Pal, D.; Prabhakar, R.; Barua, V.B.; Zekker, I.; Burlakovs, J.; Krauklis, A.; Hogland, W.; Vincevica-Gaile, Z. Microplastics in Aquatic Systems: A Comprehensive Review of Its Distribution, Environmental Interactions, and Health Risks. Environ. Sci. Pollut. Res. 2024, 32, 56–88. [Google Scholar] [CrossRef] [PubMed]
- Torres-Agullo, A.; Karanasiou, A.; Moreno, T.; Lacorte, S. Overview on the Occurrence of Microplastics in Air and Implications from the Use of Face Masks during the COVID-19 Pandemic. Sci. Total. Environ. 2021, 800, 149555. [Google Scholar] [CrossRef]
- Cui, W.; Hale, R.C.; Huang, Y.; Zhou, F.; Wu, Y.; Liang, X.; Liu, Y.; Tan, H.; Chen, D. Sorption of Representative Organic Contaminants on Microplastics: Effects of Chemical Physicochemical Properties, Particle Size, and Biofilm Presence. Ecotoxicol. Environ. Saf. 2023, 251, 114533. [Google Scholar] [CrossRef]
- Li, Y.; Taggart, M.A.; McKenzie, C.; Zhang, Z.; Lu, Y.; Pap, S.; Gibb, S. Utilizing Low-Cost Natural Waste for the Removal of Pharmaceuticals from Water: Mechanisms, Isotherms and Kinetics at Low Concentrations. J. Clean. Prod. 2019, 227, 88–97. [Google Scholar] [CrossRef]
- Wolff, S.; Kerpen, J.; Prediger, J.; Barkmann, L.; Müller, L. Determination of the Microplastics Emission in the Effluent of a Municipal Waste Water Treatment Plant Using Raman Microspectroscopy. Water Res. X 2019, 2, 100014. [Google Scholar] [CrossRef]
- De Falco, F.; Di Pace, E.; Cocca, M.; Avella, M. The Contribution of Washing Processes of Synthetic Clothes to Microplastic Pollution. Sci. Rep. 2019, 9, 6633. [Google Scholar] [CrossRef] [PubMed]
- Foo, K.Y.; Hameed, B.H. Insights into the Modeling of Adsorption Isotherm Systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Gong, W.; Jiang, M.; Han, P.; Liang, G.; Zhang, T.; Liu, G. Comparative Analysis on the Sorption Kinetics and Isotherms of Fipronil on Nondegradable and Biodegradable Microplastics. Environ. Pollut. 2019, 254, 112927. [Google Scholar] [CrossRef] [PubMed]
- Abdurahman, A.; Cui, K.; Wu, J.; Li, S.; Gao, R.; Dai, J.; Liang, W.; Zeng, F. Adsorption of Dissolved Organic Matter (DOM) on Polystyrene Microplastics in Aquatic Environments: Kinetic, Isotherm and Site Energy Distribution Analysis. Ecotoxicol. Environ. Saf. 2020, 198, 110658. [Google Scholar] [CrossRef] [PubMed]
- Ofomaja, A.E.; Ho, Y.S. Effect of Temperatures and PH on Methyl Violet Biosorption by Mansonia Wood Sawdust. Bioresour. Technol. 2008, 99, 5411–5417. [Google Scholar] [CrossRef] [PubMed]
- Dada, A.O.; Olalekan, A.P.; Olatunya, A.M.; Dada, O. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich Isotherms Studies of Equilibrium Sorption of Zn2+ Unto Phosphoric Acid Modified Rice Husk. IOSR J. Appl. Chem. 2012, 3, 38–45. [Google Scholar] [CrossRef]
- Wang, W.; Wang, J. Comparative Evaluation of Sorption Kinetics and Isotherms of Pyrene onto Microplastics. Chemosphere 2018, 193, 567–573. [Google Scholar] [CrossRef]
- Vujić, M.; Vasiljević, S.; Rocha-Santos, T.; Agbaba, J.; Čačić, Z.; Radovanović, J.; Tubić, A. Improving of an easy, effective and low-cost method for isolation of microplastic fibers collected in drying machines filters. Sci. Total. Environ. 2023, 892, 164549. [Google Scholar] [CrossRef]
- Nanganoa, L.T.; Merlain, G.T.; Ndi, J.N.; Ketcha, J.M. Removal of ammonium ions from aqueous solution using hydroxy-sodalite zeolite. Asian J. Green Chem. 2019, 3, 169–186. [Google Scholar] [CrossRef]
- Worch, E. Adsorption Technology in Water Treatment; Walter de Gruyter GmbH: Berlin, Germany, 2012. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vujić, M.; Srebro, T.M.; Vasiljević, S.; Simetić, T.; Molnar Jazić, J.; Agbaba, J.; Tubić, A. Environmental Fate of 4-Methylbenzylidene Camphor: Adsorption Behavior on Textile-Derived Microplastic Fibers in Wastewater and Surface Water Systems. Materials 2025, 18, 3799. https://doi.org/10.3390/ma18163799
Vujić M, Srebro TM, Vasiljević S, Simetić T, Molnar Jazić J, Agbaba J, Tubić A. Environmental Fate of 4-Methylbenzylidene Camphor: Adsorption Behavior on Textile-Derived Microplastic Fibers in Wastewater and Surface Water Systems. Materials. 2025; 18(16):3799. https://doi.org/10.3390/ma18163799
Chicago/Turabian StyleVujić, Maja, Tijana Marjanović Srebro, Sanja Vasiljević, Tajana Simetić, Jelena Molnar Jazić, Jasmina Agbaba, and Aleksandra Tubić. 2025. "Environmental Fate of 4-Methylbenzylidene Camphor: Adsorption Behavior on Textile-Derived Microplastic Fibers in Wastewater and Surface Water Systems" Materials 18, no. 16: 3799. https://doi.org/10.3390/ma18163799
APA StyleVujić, M., Srebro, T. M., Vasiljević, S., Simetić, T., Molnar Jazić, J., Agbaba, J., & Tubić, A. (2025). Environmental Fate of 4-Methylbenzylidene Camphor: Adsorption Behavior on Textile-Derived Microplastic Fibers in Wastewater and Surface Water Systems. Materials, 18(16), 3799. https://doi.org/10.3390/ma18163799