Influence of Porosity Gradient Distribution on Mechanical and Biological Properties of Gyroid-Based Zn-2Mg Scaffolds for Bone Tissue Engineering
Abstract
1. Introduction
2. Materials and Methods
2.1. Design of Gyroid-Based Porous Structures
2.2. Modeling of Porous Bone Scaffolds of Uniform and Gradient Porosity
2.3. Finite Element Analysis of Porous Bone Scaffolds
2.4. Sample Manufacturing and Mechanical Testing
2.5. In Vitro Cell Culture
3. Results and Discussion
3.1. Finite Element Analysis (FEA)
3.1.1. Uniform Porous Bone Scaffolds
3.1.2. Axial Gradient Porous Bone Scaffolds
3.1.3. Radial Gradient Porous Bone Scaffolds
3.2. Manufacturability and Mechanical Properties
3.3. In Vitro Biocompatibility
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kamboj, N.; Ressler, A.; Hussainova, I. Bioactive ceramic scaffolds for bone tissue engineering by powder bed selective laser processing: A review. Materials 2021, 14, 5338. [Google Scholar] [CrossRef] [PubMed]
- Percival, K.M.; Paul, V.; Husseini, G.A. Recent Advancements in Bone Tissue Engineering: Integrating Smart Scaffold Technologies and Bio-Responsive Systems for Enhanced Regeneration. Int. J. Mol. Sci. 2024, 25, 6012. [Google Scholar] [CrossRef] [PubMed]
- Govoni, M.; Vivarelli, L.; Mazzotta, A.; Stagni, C.; Maso, A.; Dallari, D. Commercial bone grafts claimed as an alternative to autografts: Current trends for clinical applications in orthopaedics. Materials 2021, 14, 3290. [Google Scholar] [CrossRef] [PubMed]
- Borden, M.; El-Amin, S.F.; Attawia, M.; Laurencin, C.T. Structural and human cellular assessment of a novel microsphere-based tissue engineered scaffold for bone repair. Biomaterials 2003, 24, 597–609. [Google Scholar] [CrossRef]
- Kanwar, S.; Vijayavenkataraman, S. Design of 3D printed scaffolds for bone tissue engineering: A review. Bioprinting 2021, 24, e00167. [Google Scholar] [CrossRef]
- Jin, S.; Shuaibin, H.; Annan, C.; Peng, C.; Lei, Y.; Xi, Y.; Dahu, Q.; Hao, Z.; Chunze, Y.; Jun, X.; et al. Three-dimensional printing of gyroid-structured composite bioceramic scaffolds with tuneable degradability. Mater. Sci. Eng. C 2021, 133, 112595. [Google Scholar]
- Riosalido, P.M.; Velásquez, P.; Murciano, Á.; De Aza, P.N. Multilayer scaffolds designed with bioinspired topography for bone regeneration. Ceram. Int. 2025, 51, 13363–13373. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Wang, H.; He, L.; Huang, B.; Dadbakhsh, S.; Bartolo, P. Fabrication and development of mechanical metamaterials via additive manufacturing for biomedical applications: A review. Int. J. Extrem. Manuf. 2025, 7, 012001. [Google Scholar] [CrossRef]
- Bai, L.; Gong, C.; Chen, X.H.; Sun, Y.X.; Zhang, J.F.; Cai, L.C.; Zhu, S.Y.; Xie, S.Q. Additive manufacturing of customized metallic orthopedic implants: Materials, structures, and surface modifications. Metals 2019, 9, 1004. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Mitra, I.; Ciliveri, S.; Avila, J.D.; Dernell, W.; Goodman, S.B.; Bose, S. Additively manufactured Ti–Ta–Cu alloys for the next-generation load-bearing implants. Int. J. Extrem. Manuf. 2024, 6, 015503. [Google Scholar] [CrossRef]
- Shuai, C.J.; Shi, X.X.; Yang, F.; Tian, H.F.; Feng, P. Oxygen vacancy boosting Fenton reaction in bone scaffold towards fighting bacterial infection. Int. J. Extrem. Manuf. 2024, 6, 015101. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Mitra, I.; Avila, J.D.; Upadhyayula, M.; Bose, S. Porous metal implants: Processing, properties, and challenges. Int. J. Extrem. Manuf. 2023, 5, 032014. [Google Scholar] [CrossRef]
- Yang, H.T.; Lin, W.J.; Zheng, Y.F. Advances and perspective on the translational medicine of biodegradable metals. Biomater. Transl. 2021, 2, 177. [Google Scholar] [PubMed]
- Ali, D.; Sen, S. Finite element analysis of mechanical behavior, permeability and fluid induced wall shear stress of high porosity scaffolds with gyroid and lattice-based architectures. J. Mech. Behav. Biomed. 2017, 75, 262–270. [Google Scholar] [CrossRef]
- Xu, W.; Yu, A.H.; Jiang, Y.; Li, Y.G.; Zhang, C.; Singh, H.P.; Liu, B.W.; Hou, C.J.; Zhang, Y.; Tian, S.W.; et al. Gyroid-based functionally graded porous titanium scaffolds for dental application: Design, simulation and characterizations. Mater. Des. 2022, 224, 111300. [Google Scholar] [CrossRef]
- Li, D.W.; Liao, W.H.; Dai, N.; Dong, G.; Tang, Y.; Xie, Y.M. Optimal design and modeling of gyroid-based functionally graded cellular structures for additive manufacturing. Comput. Aided Des. 2018, 104, 87–99. [Google Scholar] [CrossRef]
- Li, D.W.; Dai, N.; Xie, Y.M. Comparison of Mechanical Properties and Energy Absorption of Sheet-Based and Strut-Based Gyroid Cellular Structures with Graded Densities. Materials 2019, 12, 2183. [Google Scholar] [CrossRef]
- Ma, S.; Tang, Q.; Feng, Q.; Song, J.; Han, X.; Guo, F. Mechanical behaviours and mass transport properties of bone-mimicking scaffolds consisted of gyroid structures manufactured using selective laser melting. J. Mech. Behav. Biomed. 2019, 93, 158–169. [Google Scholar] [CrossRef]
- Yánez, A.; Cuadrado, A.; Martel, O.; Afonso, H.; Monopoli, D. Gyroid porous titanium structures: A versatile solution to be used as scaffolds in bone defect reconstruction. Mater. Des. 2018, 140, 21–29. [Google Scholar] [CrossRef]
- Silva, C.; Pais, A.I.; Caldas, G.; Gouveia, B.P.; Alves, J.L. Study on 3D printing of gyroid-based structures for superior structural behaviour. Prog. Addit. Manuf. 2021, 6, 689–703. [Google Scholar] [CrossRef]
- Castro-Sandoval, J.C.; Chavez, A.; Corona-Castuera, J.; Henao, J.; Rivera-Gil, M.A.; Poblano-Salas, C.A. Additive manufactured gyroid-based cell structures under compression: Design, testing and simulation for biomedical applications. Comput. Methods Biomech. Biomed. Eng. 2024, 27, 211–221. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, R.T.; Lu, W.F.; Zhu, K.P.; Dan, B.B. Effect of additive manufactured gyroid porous structure of hybrid gradients on mechanical and failure properties. Addit. Manuf. Front. 2024, 3, 200152. [Google Scholar] [CrossRef]
- Ali, D.; Ozalp, M.; Blanquer, S.B.G.; Onel, S. Permeability and fluid flow-induced wall shear stress in bone scaffolds with TPMS and lattice architectures: A CFD analysis. Eur. J. Mech. B/Fluids 2020, 79, 376–385. [Google Scholar] [CrossRef]
- Yang, Y.Q.; Jiang, R.W.; Han, C.J.; Chen, J.Q.; Li, H.R.; Wang, Y.; Tang, J.R.; Zhou, H.; Hu, W.N.; Zheng, B.Y.; et al. Frontiers in laser additive manufacturing technology. Addit. Manuf. Front. 2024, 3, 200160. [Google Scholar] [CrossRef]
- Kolawole, M.Y.; Aweda, J.O.; Iqbal, F.; Ali, A.; Abdulkareem, S. Mechanical properties of powder metallurgy processed biodegradable Zn-based alloy for biomedical application. Int. J. Mater. Metall. Eng. 2019, 13, 558–563. [Google Scholar]
- Bayraktar, H.H.; Morgan, E.F.; Niebur, G.L.; Morris, G.E.; Wong, E.K.; Keaveny, T.M. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J. Biomech. 2004, 37, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.W.; Yuan, F.L.; Gao, C.D.; Feng, P.; Xue, L.F.; He, S.W.; Shuai, C.J. A combined strategy to enhance the properties of Zn by laser rapid solidification and laser alloying. J. Mech. Behav. Biomed. 2018, 82, 51–60. [Google Scholar] [CrossRef]
- Wang, X.; Liu, A.; Zhang, Z.; Hao, D.; Liang, Y.; Dai, J.; Li, Y. Additively Manufactured Zn-2Mg Alloy Porous Scaffolds with Customizable Biodegradable Performance and Enhanced Osteogenic Ability. Adv. Sci. 2024, 11, e2307329. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Kong, H.; Zhou, X.; Li, G.; Du, J. Design and characterization of sheet-based gyroid porous structures with bioinspired functional gradients. Materials 2020, 13, 3844. [Google Scholar] [CrossRef] [PubMed]
Porosity (P) | 50% | 55% | 60% | 65% | 70% | 75% |
Neutral surface offset parameter (d) | −0.0004 | −0.10356 | −0.2065 | −0.3065 | −0.4108 | −0.511 |
Material | Elastic Modulus/GPa | Poisson’s Ratio |
---|---|---|
Zn-2Mg | 45 | 0.3 |
Porosity | 50% | 55% | 60% | 65% | 70% | 75% |
Isoelastic Young’s Modulus (GPa) | 9.763 | 7.832 | 5.812 | 4.594 | 3.345 | 2.233 |
Porosity (Average Porosity) | 40–60% (50%) | 50–70% (60%) | 60–80% (70%) | 70–90% (80%) |
Equivalent Young’s Modulus (GPa) | 9.422 | 5.560 | 2.757 | 0.483 |
Porosity (Average porosity) | 30–50% (43.41%) | 40–60% (53.31%) | 50–70% (63.29%) | 60–80% (73.22%) | 70–90% (82.82%) |
Equivalent Young’s modulus (GPa) | 13.15 | 8.63 | 6.18 | 2.38 | 0.8 |
Porosity (Average porosity) | 50–30% (36.72%) | 60–40% (46.67%) | 70–50% (56.64%) | 80–60% (66.54%) | 90–70% (76.35%) |
Equivalent Young’s modulus (GPa) | 16.93 | 11.50 | 8.95 | 4.062 | 1.735 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Liao, K.; Yang, Y.; Chen, H.; Huang, R. Influence of Porosity Gradient Distribution on Mechanical and Biological Properties of Gyroid-Based Zn-2Mg Scaffolds for Bone Tissue Engineering. Materials 2025, 18, 4399. https://doi.org/10.3390/ma18184399
Chen S, Liao K, Yang Y, Chen H, Huang R. Influence of Porosity Gradient Distribution on Mechanical and Biological Properties of Gyroid-Based Zn-2Mg Scaffolds for Bone Tissue Engineering. Materials. 2025; 18(18):4399. https://doi.org/10.3390/ma18184399
Chicago/Turabian StyleChen, Shuxin, Kai Liao, Youwen Yang, Huiming Chen, and Renkai Huang. 2025. "Influence of Porosity Gradient Distribution on Mechanical and Biological Properties of Gyroid-Based Zn-2Mg Scaffolds for Bone Tissue Engineering" Materials 18, no. 18: 4399. https://doi.org/10.3390/ma18184399
APA StyleChen, S., Liao, K., Yang, Y., Chen, H., & Huang, R. (2025). Influence of Porosity Gradient Distribution on Mechanical and Biological Properties of Gyroid-Based Zn-2Mg Scaffolds for Bone Tissue Engineering. Materials, 18(18), 4399. https://doi.org/10.3390/ma18184399