Synergistic Multi-Mechanism Enhancement in Chemomechanical Abrasive Polishing of Polycrystalline Diamond via a New SiO2–Diamond Slurry in High-Concentration H2O2 Solution
Abstract
1. Introduction
2. Experimental Details
2.1. Materials and Methods
2.2. Characterization
3. Experimental Results
4. Discussion
4.1. Effect of the Mechanical Action
4.2. Effect of Bubble Cavitation
4.3. Effect of the Chemical Action
4.4. Cooperative Interaction Between Mechanical Action, Bubble Cavitation, and Chemical Action
5. Conclusions
- (1)
- The optimal CMAP performance was achieved with a slurry containing 60 wt% SiO2 and 40 wt% diamond particles, realizing the MRR of 1039.78 μm/(MPa·h) and the minimum surface roughness (Sa) of 3.59 μm. The new slurry can not only improve the MRR but also reduce the processing costs. Further, the reduced surface roughness can be attributed to the formation of a lubricating layer by the SiO2 particles, which effectively mitigated the direct mechanical damage. In addition, a slight reduction in microstrain (0.003–0.028%) was observed, indicating atomic recombination and strain relief on the polished surface.
- (2)
- The synergistic effects of mechanical abrasion, chemical oxidation, and bubble cavitation significantly improved the polishing efficiency. The mechanical action played a predominant role in the diamond material removal, accounting for 70.8% of the total process. This dominance can be attributed to the edge-to-face contact between the diamond particles and the PCD surface, which generated localized high stress and facilitated brittle fracture and grain detachment. Bubble cavitation and chemical reactions collectively contributed by 27.5% to the material removal. The shock waves generated by bubble collapse enhanced the surface shear stress, while chemical action promoted the transformation of sp3 carbon to sp2 carbon. The incorporated SiO2 mainly acted as a lubricating layer and reduced the surface roughness value of 1.39 µm, which contributed by 1.7% to the material removal.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, G.; Li, Z.; Hu, M.; Li, L.; He, N.; Jamil, M. Fabrication and performance of CVD diamond cutting tool in micro milling of oxygen-free copper. Diam. Relat. Mater. 2019, 100, 107589. [Google Scholar] [CrossRef]
- Yang, Q.; Zhao, J.; Huang, Y.; Zhu, X.; Fu, W.; Li, C.; Miao, J. A diamond made microchannel heat sink for high-density heat flux dissipation. Appl. Therm. Eng. 2019, 158, 113804. [Google Scholar] [CrossRef]
- Ukraintsev, E.; Kromka, A.; Janssen, W.; Haenen, K.; Takeuchi, D.; Bábor, P.; Rezek, B. Electron emission from H-terminated diamond enhanced by polypyrrole grafting. Carbon 2021, 176, 642–649. [Google Scholar] [CrossRef]
- Xiao, C.; Hsia, F.-C.; Sutton-Cook, A.; Weber, B.; Franklin, S. Polishing of polycrystalline diamond using synergies between chemical and mechanical inputs: A review of mechanisms and processes. Carbon 2022, 196, 29–48. [Google Scholar] [CrossRef]
- Thornton, A.G.; Wilks, J. The polishing of diamonds in the presence of oxidizing agents. Diam. Res. 1974, 39, 39–42. [Google Scholar]
- Tsai, H.; Ting, C.; Chou, C. Evaluation research of polishing methods for large area diamond films produced by chemical vapor deposition. Diam. Relat. Mater. 2007, 16, 253–261. [Google Scholar] [CrossRef]
- Thomas, E.L.H.; Mandal, S.; Brousseau, E.B.; A Williams, O. Silica based polishing of {100} and {111} single crystal diamond. Sci. Technol. Adv. Mat. 2014, 15, 035013. [Google Scholar] [CrossRef]
- Werrell, J.M.; Mandal, S.; Thomas, E.L.H.; Brousseau, E.B.; Lewis, R.; Borri, P.; Davies, P.R.; Williams, O.A. Effect of slurry composition on the chemical mechanical polishing of thin diamond films. Sci. Technol. Adv. Mat. 2017, 18, 654–663. [Google Scholar] [CrossRef]
- Kubota, A.; Nagae, S.; Touge, M. Improvement of material removal rate of single-crystal diamond by polishing using H2O2 solution. Diam. Relat. Mater. 2016, 70, 39–45. [Google Scholar] [CrossRef]
- Mandal, S.; Thomas, E.L.; Gines, L.; Morgan, D.; Green, J.; Brousseau, E.B.; Williams, O.A. Redox agent enhanced chemical mechanical polishing of thin film diamond. Carbon 2018, 130, 25–30. [Google Scholar] [CrossRef]
- Sun, B.; Zhang, X.; Lin, Z. Growth mechanism and the order of appearance of diamond (111) and (100) facets. Phys. Rev. B 1993, 47, 9816–9824. [Google Scholar] [CrossRef]
- Frenklach, M. The role of hydrogen in vapor deposition of diamond. J. Appl. Phys. 1989, 65, 5142–5149. [Google Scholar] [CrossRef]
- Srikanth, V.V.S.S. Review of advances in diamond thin film synthesis. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2011, 226, 303–318. [Google Scholar] [CrossRef]
- Lee, S.T.; Peng, H.Y.; Zhou, X.T.; Wang, N.; Lee, C.S.; Bello, I.; Lifshitz, Y. A Nucleation Site and Mechanism Leading to Epitaxial Growth of Diamond Films. Science 2000, 287, 104. [Google Scholar] [CrossRef]
- Ralchenko, V.; Pleuler, E.; Lu, F.; Sovyk, D.; Bolshakov, A.; Guo, S.; Ang, W.; Ontar, I.; Khomich, A.; Zavedeev, E.; et al. Fracture strength of optical quality and black polycrystalline CVD diamonds. Diam. Relat. Mater. 2012, 23, 172–177. [Google Scholar] [CrossRef]
- Zheng, Y.; Ye, H.; Thornton, R.; Knott, T.; Ochalski, T.J.; Wang, J.; Liu, J.; Wei, J.; Chen, L.; Cumont, A.; et al. Subsurface cleavage of diamond after high-speed three-dimensional dynamic friction polishing. Diam. Relat. Mater. 2020, 101, 107600. [Google Scholar] [CrossRef]
- Williamson, G.K.; Hall, W.H. X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1953, 1, 22–31. [Google Scholar] [CrossRef]
- Chattot, R.; Le Bacq, O.; Beermann, V.; Kühl, S.; Herranz, J.; Henning, S.; Kühn, L.; Asset, T.; Guétaz, L.; Renou, G.; et al. Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis. Nat. Mater. 2018, 17, 827–833. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.; Guo, S. Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chem. Soc. Rev. 2019, 48, 3265–3278. [Google Scholar] [CrossRef]
- Kaboli, S.; Burnley, P.C. Direct observations of crystal defects in polycrystalline diamond. Mater. Charact. 2018, 142, 154–161. [Google Scholar] [CrossRef]
- Zheng, X.; Zheng, K.; Chang, J.; Qu, S.; Jia, W.; Li, Z.; Yu, S.; Gao, J.; Ma, Y. Microstructure, mechanical properties and reciprocating wear properties of diamond grits-reinforced NiCrBSi composite coatings on 42CrMo. Surf. Coat. Technol. 2022, 445, 128703. [Google Scholar] [CrossRef]
- Wu, H.; Huang, H.; Jiang, F.; Xu, X. Mechanical wear of different crystallographic orientations for single abrasive diamond scratching on Ta12W. Int. J. Refract. Met. Hard Mater. 2016, 54, 260–269. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, J.; Kang, J.; Zhang, H. Analysis of diamond wear morphology and segment wear evolution during the process of hard granite sawing. Int. J. Refract. Met. Hard Mater. 2023, 110, 106040. [Google Scholar] [CrossRef]
- De Pellegrin, D.V.; Corbin, N.D.; Baldoni, G.; Torrance, A.A. Diamond particle shape: Its measurement and influence in abrasive wear. Tribol. Int. 2009, 42, 160–168. [Google Scholar] [CrossRef]
- Gogotsi, Y.G.; Kailer, A.; Nickel, K.G. Transformation of diamond to graphite. Nature 1999, 401, 663–664. [Google Scholar] [CrossRef]
- Reese, H.; Ohl, S.-W.; Ohl, C.-D. Cavitation bubble induced wall shear stress on an elastic boundary. Phys. Fluids 2023, 35, 076122. [Google Scholar] [CrossRef]
- Abbondanza, D.; Gallo, M.; Casciola, C.M. Cavitation over solid surfaces: Microbubble collapse, shock waves, and elastic response. Meccanica 2022, 58, 1109–1119. [Google Scholar] [CrossRef]
- Naing, N.M.T.; Park, J.; Hyun, S.-H.; Jung, R.-T. Impact loads generated by tandem cavitation bubble on solid wall. J. Hydrodyn. 2022, 34, 467–482. [Google Scholar] [CrossRef]
- Brenner, M.P.; Hilgenfeldt, S.; Lohse, D. Single-bubble sonoluminescence. Rev. Mod. Phys. 2002, 74, 425. [Google Scholar] [CrossRef]
- McQuillan, A.K.; Clements, W.R.L.; Stoicheff, B.P. Stimulated Raman Emission in Diamond: Spectrum, Gain, and Angular Distribution of Intensity. Phys. Rev. A 1970, 1, 628–635. [Google Scholar] [CrossRef]
- Ager, J.W.; Drory, M.D. Quantitative measurement of residual biaxial stress by Raman spectroscopy in diamond grown on a Ti alloy by chemical vapor deposition. Phys. Rev. B 1993, 48, 2601–2607. [Google Scholar] [CrossRef]
- Kawaguchi, K.; Wang, Y.; Xu, J.; Ootani, Y.; Higuchi, Y.; Ozawa, N.; Kubo, M. Atom-by-Atom and Sheet-by-Sheet Chemical Mechanical Polishing of Diamond Assisted by OH Radicals: A Tight-Binding Quantum Chemical Molecular Dynamics Simulation Study. ACS Appl. Mater. Interfaces 2021, 13, 41231–41237. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Zong, W.; Li, Z.; Sun, T. Amorphization anisotropy and the internal of amorphous layer in diamond nanoscale friction. Comp. Mater. Sci. 2014, 95, 551–556. [Google Scholar] [CrossRef]
- Zong, W.; Zhang, J.; Liu, Y.; Sun, T. Achieving ultra-hard surface of mechanically polished diamond crystal by thermo-chemical refinement. Appl. Surf. Sci. 2014, 316, 617–624. [Google Scholar] [CrossRef]
- Zong, W.; Cheng, X.; Zhang, J. Atomistic origins of material removal rate anisotropy in mechanical polishing of diamond crystal. Carbon 2016, 99, 186–194. [Google Scholar] [CrossRef]
- Pastewka, L.; Moser, S.; Gumbsch, P.; Moseler, M. Anisotropic mechanical amorphization drives wear in diamond. Nat. Mater. 2010, 10, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Zheng, P.; Wen, Q.; He, Y. Chemical kinetics mechanism for chemical mechanical polishing diamond and its related hard-inert materials. Int. J. Adv. Manuf. Technol. 2017, 95, 1715–1727. [Google Scholar] [CrossRef]
- Barin, I.; Knacke, O.; Kubaschewski, O. Thermochemical Properties of Inorganic Substances; Springer: Berlin/Heidelberg, Germany, 1977. [Google Scholar]
- Fairchild, B.A.; Rubanov, S.; Lau, D.W.M.; Robinson, M.; Suarez-Martinez, I.; Marks, N.; Greentree, A.D.; McCulloch, D.; Prawer, S. Mechanism for the Amorphisation of Diamond. Adv. Mater. 2012, 24, 2024–2029. [Google Scholar] [CrossRef]
- Peguiron, A.; Moras, G.; Walter, M.; Uetsuka, H.; Pastewka, L.; Moseler, M. Activation and mechanochemical breaking of C–C bonds initiate wear of diamond (110) surfaces in contact with silica. Carbon 2016, 98, 474–483. [Google Scholar] [CrossRef]
- Thomas, E.L.; Nelson, G.W.; Mandal, S.; Foord, J.S.; Williams, O.A. Chemical mechanical polishing of thin film diamond. Carbon 2014, 68, 473–479. [Google Scholar] [CrossRef]
- Shi, Z.; Jin, Z.; Guo, X.; Yuan, S.; Guo, J. Insights into the atomistic behavior in diamond chemical mechanical polishing with %OH environment using ReaxFF molecular dynamics simulation. Comp. Mater. Sci. 2019, 166, 136–142. [Google Scholar] [CrossRef]
- Guo, X.; Yuan, S.; Wang, X.; Jin, Z.; Kang, R. Atomistic mechanisms of chemical mechanical polishing of diamond (1 0 0) in aqueous H2O2/pure H2O: Molecular dynamics simulations using reactive force field (ReaxFF). Comput. Mater. Sci. 2019, 157, 99–106. [Google Scholar] [CrossRef]
- Xu, H.; Zang, J.; Tian, P.; Wang, Y.; Yu, Y.; Lu, J.; Xu, X.; Zhang, P. Rapid grinding CVD diamond films using corundum grinding wheels containing iron. Int. J. Refract. Met. Hard Mater. 2018, 71, 147–152. [Google Scholar] [CrossRef]
- Xu, H.; Zang, J.; Tian, P.; Yuan, Y.; Wang, Y.; Yu, Y.; Lu, J.; Xu, X.; Zhang, P. Surface conversion reaction and high efficient grinding of CVD diamond films by chemically mechanical polishing. Ceram. Int. 2018, 44, 21641–21647. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Power (kW) | 20 |
Pressure (kPa) | 12 |
Substrate temperature (°C) | 950 ± 10 |
CH4 concentration (%) | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, X.; Zheng, K.; Gao, J.; Wang, Y.; An, P.; Ma, Y.; Hei, H.; Qu, S.; Yu, S. Synergistic Multi-Mechanism Enhancement in Chemomechanical Abrasive Polishing of Polycrystalline Diamond via a New SiO2–Diamond Slurry in High-Concentration H2O2 Solution. Materials 2025, 18, 3659. https://doi.org/10.3390/ma18153659
Zheng X, Zheng K, Gao J, Wang Y, An P, Ma Y, Hei H, Qu S, Yu S. Synergistic Multi-Mechanism Enhancement in Chemomechanical Abrasive Polishing of Polycrystalline Diamond via a New SiO2–Diamond Slurry in High-Concentration H2O2 Solution. Materials. 2025; 18(15):3659. https://doi.org/10.3390/ma18153659
Chicago/Turabian StyleZheng, Xin, Ke Zheng, Jie Gao, Yan Wang, Pengtao An, Yongqiang Ma, Hongjun Hei, Shuaiwu Qu, and Shengwang Yu. 2025. "Synergistic Multi-Mechanism Enhancement in Chemomechanical Abrasive Polishing of Polycrystalline Diamond via a New SiO2–Diamond Slurry in High-Concentration H2O2 Solution" Materials 18, no. 15: 3659. https://doi.org/10.3390/ma18153659
APA StyleZheng, X., Zheng, K., Gao, J., Wang, Y., An, P., Ma, Y., Hei, H., Qu, S., & Yu, S. (2025). Synergistic Multi-Mechanism Enhancement in Chemomechanical Abrasive Polishing of Polycrystalline Diamond via a New SiO2–Diamond Slurry in High-Concentration H2O2 Solution. Materials, 18(15), 3659. https://doi.org/10.3390/ma18153659