Advances in the Tribological Performance of Graphene Oxide and Its Composites
Abstract
1. Introduction
2. Overview of Production Methods of GO-Based Materials and Composites
3. Significance of Graphene Oxide in Tribology
4. Properties of Graphene Oxide Relevant to Tribology
4.1. Structural and Chemical Properties
4.2. Mechanical Properties
4.3. Thermal Stability and Conductivity
4.4. Surface Chemistry and Functionalization
5. Tribological Applications of Graphene Oxide
5.1. Solid Lubricant Properties
5.2. Additives in Lubricants
5.3. Coating Applications
5.4. Self-Lubricating Properties in Composites
5.5. Performance in Extreme Environments
6. GO Composites in Tribology
6.1. Polymer-Based Composites
6.2. Metal Matrix Composites
6.3. Ceramic Matrix Composites
6.4. Hybrid Composites
7. Mechanisms of Tribological Performance Improvement
7.1. Mechanisms of Wear Reduction
7.2. Role in Friction Control
7.3. Nanoscale Mechanisms of Friction and Wear Reduction
8. Synthesis and Functionalization Techniques
8.1. Chemical Methods
8.2. Physical Methods
8.3. Challenges in Large-Scale Production
9. Challenges and Limitations in Graphene Oxide Applications
9.1. Stability Under Operational Conditions
9.2. Cost and Scalability
9.3. Compatibility with Base Materials
10. Future Directions and Emerging Trends
11. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Menezes, P.L.; Nosonovsky, M.; Ingole, S.P.; Kailas, S.V.; Lovell, M.R. (Eds.) Tribology for Scientists and Engineers: From Basics to Advanced Concepts; Springer: New York, NY, USA, 2013; ISBN 978-1-4614-1944-0. [Google Scholar]
- Tung, S.C.; McMillan, M.L. Automotive Tribology Overview of Current Advances and Challenges for the Future. Tribol. Int. 2004, 37, 517–536. [Google Scholar] [CrossRef]
- Miyoshi, K. Aerospace Mechanisms and Tribology Technology: Case Study. Tribol. Int. 1999, 32, 673–685. [Google Scholar] [CrossRef]
- Mathew, M.T.; Srinivasa Pai, P.; Pourzal, R.; Fischer, A.; Wimmer, M.A. Significance of Tribocorrosion in Biomedical Applications: Overview and Current Status. Adv. Tribol. 2009, 2009, 250986. [Google Scholar] [CrossRef]
- Komanduri, R.; Hou, Z.B. A Review of the Experimental Techniques for the Measurement of Heat and Temperatures Generated in Some Manufacturing Processes and Tribology. Tribol. Int. 2001, 34, 653–682. [Google Scholar] [CrossRef]
- Ralls, A.M.; Kumar, P.; Menezes, P.L. Tribological Properties of Additive Manufactured Materials for Energy Applications: A Review. Processes 2021, 9, 31. [Google Scholar] [CrossRef]
- Reeves, C.J.; Menezes, P.L.; Lovell, M.R.; Jen, T.-C. The Size Effect of Boron Nitride Particles on the Tribological Performance of Biolubricants for Energy Conservation and Sustainability. Tribol. Lett. 2013, 51, 437–452. [Google Scholar] [CrossRef]
- Omrani, E.; Moghadam, A.D.; Menezes, P.L.; Rohatgi, P.K. Influences of Graphite Reinforcement on the Tribological Properties of Self-Lubricating Aluminum Matrix Composites for Green Tribology, Sustainability, and Energy Efficiency—A Review. Int. J. Adv. Manuf. Technol. 2016, 83, 325–346. [Google Scholar] [CrossRef]
- Menezes, P.L. Surface Texturing to Control Friction and Wear for Energy Efficiency and Sustainability. Int. J. Adv. Manuf. Technol. 2016, 85, 1385–1394. [Google Scholar] [CrossRef]
- Reeves, C.J.; Menezes, P.L. Evaluation of Boron Nitride Particles on the Tribological Performance of Avocado and Canola Oil for Energy Conservation and Sustainability. Int. J. Adv. Manuf. Technol. 2017, 89, 3475–3486. [Google Scholar] [CrossRef]
- Sikdar, S.; Rahman, M.H.; Menezes, P.L. Synergistic Study of Solid Lubricant Nano-Additives Incorporated in Canola Oil for Enhancing Energy Efficiency and Sustainability. Sustainability 2022, 14, 290. [Google Scholar] [CrossRef]
- Kasar, A.K.; Menezes, P.L. Synthesis and Recent Advances in Tribological Applications of Graphene. Int. J. Adv. Manuf. Technol. 2018, 97, 3999–4019. [Google Scholar] [CrossRef]
- Dorri Moghadam, A.; Omrani, E.; Menezes, P.L.; Rohatgi, P.K. Mechanical and Tribological Properties of Self-Lubricating Metal Matrix Nanocomposites Reinforced by Carbon Nanotubes (CNTs) and Graphene—A Review. Compos. Part B Eng. 2015, 77, 402–420. [Google Scholar] [CrossRef]
- Xu, M.; Liang, T.; Shi, M.; Chen, H. Graphene-Like Two-Dimensional Materials. Chem. Rev. 2013, 113, 3766–3798. [Google Scholar] [CrossRef]
- Some, S.; Xu, Y.; Kim, Y.; Yoon, Y.; Qin, H.; Kulkarni, A.; Kim, T.; Lee, H. Highly Sensitive and Selective Gas Sensor Using Hydrophilic and Hydrophobic Graphenes. Sci. Rep. 2013, 3, 1868. [Google Scholar] [CrossRef]
- Seredych, M.; Tamashausky, A.V.; Bandosz, T.J. Graphite Oxides Obtained from Porous Graphite: The Role of Surface Chemistry and Texture in Ammonia Retention at Ambient Conditions. Adv. Funct. Mater. 2010, 20, 1670–1679. [Google Scholar] [CrossRef]
- Jin, B.; Zhao, J.; He, Y.; Chen, G.; Li, Y.; Zhang, C.; Luo, J. High-Quality Ultra-Flat Reduced Graphene Oxide Nanosheets with Super-Robust Lubrication Performances. Chem. Eng. J. 2022, 438, 135620. [Google Scholar] [CrossRef]
- Suo, Y.; Guo, R.; Xia, H.; Yang, Y.; Zhou, B.; Zhao, Z. A Review of Graphene Oxide/Cement Composites: Performance, Functionality, Mechanisms, and Prospects. J. Build. Eng. 2022, 53, 104502. [Google Scholar] [CrossRef]
- Liu, Y.; Ge, X.; Li, J. Graphene Lubrication. Appl. Mater. Today 2020, 20, 100662. [Google Scholar] [CrossRef]
- Su, Y.; Kravets, V.G.; Wong, S.L.; Waters, J.; Geim, A.K.; Nair, R.R. Impermeable Barrier Films and Protective Coatings Based on Reduced Graphene Oxide. Nat. Commun. 2014, 5, 4843. [Google Scholar] [CrossRef]
- Liang, H.; Bu, Y.; Zhang, J. Graphene Oxide Film as Solid Lubricant. ACS Appl. Mater. Interfaces 2013, 5, 6369–6375. [Google Scholar] [CrossRef]
- Kasar, A.K.; Xiong, G.; Menezes, P.L. Graphene-Reinforced Metal and Polymer Matrix Composites. JOM 2018, 70, 829–836. [Google Scholar] [CrossRef]
- Tao, F.; Salmeron, M. In Situ Studies of Chemistry and Structure of Materials in Reactive Environments. Science 2011, 331, 171–174. [Google Scholar] [CrossRef]
- Sandoz-Rosado, E.J.; Tertuliano, O.A.; Terrell, E.J. An Atomistic Study of the Abrasive Wear and Failure of Graphene Sheets When Used as a Solid Lubricant and a Comparison to Diamond-like-Carbon Coatings. Carbon 2012, 50, 4078–4084. [Google Scholar] [CrossRef]
- Chauhan, D.S.; Quraishi, M.A.; Ansari, K.R.; Saleh, T.A. Graphene and Graphene Oxide as New Class of Materials for Corrosion Control and Protection: Present Status and Future Scenario. Prog. Org. Coat. 2020, 147, 105741. [Google Scholar] [CrossRef]
- Li, H.; Chen, S.; Li, Z.; Feng, Y.; Zhang, M. Preparation of PU/GO Hybrid Wall Microcapsules and Their Self-Lubricating Properties for Epoxy Composites. Colloids Surf. A Physicochem. Eng. Asp. 2020, 596, 124729. [Google Scholar] [CrossRef]
- Asghar, F.; Shakoor, B.; Fatima, S.; Munir, S.; Razzaq, H.; Naheed, S.; Butler, I. Fabrication and Prospective Applications of Graphene Oxide-Modified Nanocomposites for Wastewater Remediation. RSC Adv. 2022, 12, 11750–11768. [Google Scholar] [CrossRef]
- Ramezanzadeh, B.; Niroumandrad, S.; Ahmadi, A.; Mahdavian, M.; Moghadam, M.H.M. Enhancement of Barrier and Corrosion Protection Performance of an Epoxy Coating through Wet Transfer of Amino Functionalized Graphene Oxide. Corros. Sci. 2016, 103, 283–304. [Google Scholar] [CrossRef]
- Ikram, R.; Jan, B.M.; Ahmad, W. An Overview of Industrial Scalable Production of Graphene Oxide and Analytical Approaches for Synthesis and Characterization. J. Mater. Res. Technol. 2020, 9, 11587–11610. [Google Scholar] [CrossRef]
- Fallahazad, P. Rational and Key Strategies toward Enhancing the Performance of Graphene/Silicon Solar Cells. Mater. Adv. 2023, 4, 1876–1899. [Google Scholar] [CrossRef]
- Gao, Q.; Liu, S.; Hou, K.; Li, Z.; Wang, J. Graphene-Based Nanomaterials as Lubricant Additives: A Review. Lubricants 2022, 10, 273. [Google Scholar] [CrossRef]
- Fan, S.; Chen, Y.; Wu, J.; Xiao, S.; Chen, G.; Chu, P.K. Structure, Superlubricity, Applications, and Chemical Vapor Deposition Methods of Graphene Solid Lubricants. Tribol. Int. 2024, 198, 109896. [Google Scholar] [CrossRef]
- Bian, Y.; Bian, Z.-Y.; Zhang, J.-X.; Ding, A.-Z.; Liu, S.-L.; Wang, H. Effect of the Oxygen-Containing Functional Group of Graphene Oxide on the Aqueous Cadmium Ions Removal. Appl. Surf. Sci. 2015, 329, 269–275. [Google Scholar] [CrossRef]
- Abdullah, S.I.; Ansari, M.N.M. Mechanical Properties of Graphene Oxide (GO)/Epoxy Composites. HBRC J. 2015, 11, 151–156. [Google Scholar] [CrossRef]
- Sun, J.; Du, S. Application of Graphene Derivatives and Their Nanocomposites in Tribology and Lubrication: A Review. RSC Adv. 2019, 9, 40642–40661. [Google Scholar] [CrossRef] [PubMed]
- Eksik, O.; Arvas, M.B.; Yavuz, R. PAN-Based Nanofiber Reduced Graphene Oxide Electrodes for Supercapacitor Applications. J. Mater. Sci. Mater. Electron. 2023, 34, 1831. [Google Scholar] [CrossRef]
- Johari, P.; Shenoy, V.B. Modulating Optical Properties of Graphene Oxide: Role of Prominent Functional Groups. ACS Nano 2011, 5, 7640–7647. [Google Scholar] [CrossRef]
- Liu, L.; Gao, Y.; Liu, Q.; Kuang, J.; Zhou, D.; Ju, S.; Han, B.; Zhang, Z. High Mechanical Performance of Layered Graphene Oxide/Poly(Vinyl Alcohol) Nanocomposite Films. Small 2013, 9, 2466–2472. [Google Scholar] [CrossRef]
- Zhao, H.; Ding, J.; Yu, H. Variation of Mechanical and Thermal Properties in Sustainable Graphene Oxide/Epoxy Composites. Sci. Rep. 2018, 8, 16560. [Google Scholar] [CrossRef]
- Pei, S.; Zhao, J.; Du, J.; Ren, W.; Cheng, H.-M. Direct Reduction of Graphene Oxide Films into Highly Conductive and Flexible Graphene Films by Hydrohalic Acids. Carbon 2010, 48, 4466–4474. [Google Scholar] [CrossRef]
- Hu, X.; Yu, Y.; Hou, W.; Zhou, J.; Song, L. Effects of Particle Size and pH Value on the Hydrophilicity of Graphene Oxide. Appl. Surf. Sci. 2013, 273, 118–121. [Google Scholar] [CrossRef]
- Pacilé, D.; Meyer, J.C.; Fraile Rodríguez, A.; Papagno, M.; Gómez-Navarro, C.; Sundaram, R.S.; Burghard, M.; Kern, K.; Carbone, C.; Kaiser, U. Electronic Properties and Atomic Structure of Graphene Oxide Membranes. Carbon 2011, 49, 966–972. [Google Scholar] [CrossRef]
- Cao, C.; Daly, M.; Singh, C.V.; Sun, Y.; Filleter, T. High Strength Measurement of Monolayer Graphene Oxide. Carbon 2015, 81, 497–504. [Google Scholar] [CrossRef]
- Gómez-Navarro, C.; Meyer, J.C.; Sundaram, R.S.; Chuvilin, A.; Kurasch, S.; Burghard, M.; Kern, K.; Kaiser, U. Atomic Structure of Reduced Graphene Oxide. Nano Lett. 2010, 10, 1144–1148. [Google Scholar] [CrossRef] [PubMed]
- Francolini, I.; Perugini, E.; Silvestro, I.; Lopreiato, M.; Scotto d’Abusco, A.; Valentini, F.; Placidi, E.; Arciprete, F.; Martinelli, A.; Piozzi, A. Graphene Oxide Oxygen Content Affects Physical and Biological Properties of Scaffolds Based on Chitosan/Graphene Oxide Conjugates. Materials 2019, 12, 1142. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, H.; Fan, M.; Hui, D. Graphene Oxide Incorporated Functional Materials: A Review. Compos. Part B Eng. 2018, 145, 270–280. [Google Scholar] [CrossRef]
- Tan, Q.; Fan, Y.; Song, Z.; Chen, J.; Chen, L. Effects of Interlayer Spacing and Oxidation Degree of Graphene Oxide Nanosheets on Water Permeation: A Molecular Dynamics Study. J. Mol. Model. 2022, 28, 57. [Google Scholar] [CrossRef]
- Su, C.; Loh, K.P. Carbocatalysts: Graphene Oxide and Its Derivatives. Acc. Chem. Res. 2013, 46, 2275–2285. [Google Scholar] [CrossRef]
- Yan, H.; Tao, X.; Yang, Z.; Li, K.; Yang, H.; Li, A.; Cheng, R. Effects of the Oxidation Degree of Graphene Oxide on the Adsorption of Methylene Blue. J. Hazard. Mater. 2014, 268, 191–198. [Google Scholar] [CrossRef]
- Li, M.; Liu, C.; Xie, Y.; Cao, H.; Zhao, H.; Zhang, Y. The Evolution of Surface Charge on Graphene Oxide during the Reduction and Its Application in Electroanalysis. Carbon 2014, 66, 302–311. [Google Scholar] [CrossRef]
- Pareek, S.; Jain, D.; Shrivastava, R.; Dam, S.; Hussain, S.; Behera, D. Tunable Degree of Oxidation in Graphene Oxide: Cost Effective Synthesis, Characterization and Process Optimization. Mater. Res. Express 2019, 6, 085625. [Google Scholar] [CrossRef]
- Qi, X.; Pu, K.-Y.; Zhou, X.; Li, H.; Liu, B.; Boey, F.; Huang, W.; Zhang, H. Conjugated-Polyelectrolyte-Functionalized Reduced Graphene Oxide with Excellent Solubility and Stability in Polar Solvents. Small 2010, 6, 663–669. [Google Scholar] [CrossRef]
- Tang, L.-C.; Wan, Y.-J.; Yan, D.; Pei, Y.-B.; Zhao, L.; Li, Y.-B.; Wu, L.-B.; Jiang, J.-X.; Lai, G.-Q. The Effect of Graphene Dispersion on the Mechanical Properties of Graphene/Epoxy Composites. Carbon 2013, 60, 16–27. [Google Scholar] [CrossRef]
- Han, D.; Yan, L.; Chen, W.; Li, W. Preparation of Chitosan/Graphene Oxide Composite Film with Enhanced Mechanical Strength in the Wet State. Carbohydr. Polym. 2011, 83, 653–658. [Google Scholar] [CrossRef]
- Galpaya, D.; Wang, M.; George, G.; Motta, N.; Waclawik, E.; Yan, C. Preparation of Graphene Oxide/Epoxy Nanocomposites with Significantly Improved Mechanical Properties. J. Appl. Phys. 2014, 116, 053518. [Google Scholar] [CrossRef]
- Wei, X.; Mao, L.; Soler-Crespo, R.A.; Paci, J.T.; Huang, J.; Nguyen, S.T.; Espinosa, H.D. Plasticity and Ductility in Graphene Oxide through a Mechanochemically Induced Damage Tolerance Mechanism. Nat. Commun. 2015, 6, 8029. [Google Scholar] [CrossRef] [PubMed]
- Medhekar, N.V.; Ramasubramaniam, A.; Ruoff, R.S.; Shenoy, V.B. Hydrogen Bond Networks in Graphene Oxide Composite Paper: Structure and Mechanical Properties. ACS Nano 2010, 4, 2300–2306. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Guo, F.; Hurt, R.; Külaots, I. Explosive Thermal Reduction of Graphene Oxide-Based Materials: Mechanism and Safety Implications. Carbon 2014, 72, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Eigler, S.; Dimiev, A.M. Functionalization and Reduction of Graphene Oxide. In Graphene Oxide; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016; pp. 175–229. ISBN 978-1-119-06944-7. [Google Scholar]
- Pei, S.; Cheng, H.-M. The Reduction of Graphene Oxide. Carbon 2012, 50, 3210–3228. [Google Scholar] [CrossRef]
- Zhang, P.; Li, Z.; Zhang, S.; Shao, G. Recent Advances in Effective Reduction of Graphene Oxide for Highly Improved Performance Toward Electrochemical Energy Storage. Energy Environ. Mater. 2018, 1, 5–12. [Google Scholar] [CrossRef]
- Dolbin, A.V.; Khlistyuck, M.V.; Esel’son, V.B.; Gavrilko, V.G.; Vinnikov, N.A.; Basnukaeva, R.M.; Maluenda, I.; Maser, W.K.; Benito, A.M. The Effect of the Thermal Reduction Temperature on the Structure and Sorption Capacity of Reduced Graphene Oxide Materials. Appl. Surf. Sci. 2016, 361, 213–220. [Google Scholar] [CrossRef]
- Sun, W.; Wang, L.; Yang, Z.; Zhu, T.; Wu, T.; Dong, C.; Liu, G. Tuning the Oxidation Degree of Graphite toward Highly Thermally Conductive Graphite/Epoxy Composites. Chem. Mater. 2018, 30, 7473–7483. [Google Scholar] [CrossRef]
- Shudo, Y.; Karim, M.R.; Ohtani, R.; Nakamura, M.; Hayami, S. Hybrids from the Π−π Stacking of Graphene Oxide and Aromatic Sulfonic Compounds for Improved Proton Conductivity. ChemElectroChem 2018, 5, 238–241. [Google Scholar] [CrossRef]
- Wei, N.; Lv, C.; Xu, Z. Wetting of Graphene Oxide: A Molecular Dynamics Study. Langmuir 2014, 30, 3572–3578. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.-K.; Cao, H.-B.; An, Y.-L.; Zhou, H.-D.; Shi, Y.-P.; Hou, G.-L.; Ha, W. Bioinspired Hydroxyapatite Coating Infiltrated with a Graphene Oxide Hybrid Supramolecular Hydrogel Orchestrates Antibacterial and Self-Lubricating Performance. ACS Appl. Mater. Interfaces 2022, 14, 31702–31714. [Google Scholar] [CrossRef]
- Dasari, B.L.; Morshed, M.; Nouri, J.M.; Brabazon, D.; Naher, S. Mechanical Properties of Graphene Oxide Reinforced Aluminium Matrix Composites. Compos. Part B Eng. 2018, 145, 136–144. [Google Scholar] [CrossRef]
- Gupta, B.; Kumar, N.; Panda, K.; Dash, S.; Tyagi, A.K. Energy Efficient Reduced Graphene Oxide Additives: Mechanism of Effective Lubrication and Antiwear Properties. Sci. Rep. 2016, 6, 18372. [Google Scholar] [CrossRef]
- Jena, G.; Philip, J. A Review on Recent Advances in Graphene Oxide-Based Composite Coatings for Anticorrosion Applications. Prog. Org. Coat. 2022, 173, 107208. [Google Scholar] [CrossRef]
- Chen, H.; Ba, Z.; Qiao, D.; Feng, D.; Song, Z.; Zhang, J. Study on the Tribological Properties of Graphene Oxide Composite Films by Self-Assembly. Tribol. Int. 2020, 151, 106533. [Google Scholar] [CrossRef]
- Ma, L.; Xie, G.; Luo, P.; Zhang, L.; Fan, Y.; He, Y. Dispersion Stability of Graphene Oxide in Extreme Environments and Its Applications in Shale Exploitation. ACS Sustain. Chem. Eng. 2022, 10, 2609–2623. [Google Scholar] [CrossRef]
- Dong, H.S.; Qi, S.J. Realising the Potential of Graphene-Based Materials for Biosurfaces—A Future Perspective. Biosurface and Biotribol. 2015, 1, 229–248. [Google Scholar] [CrossRef]
- Miao, C.; Tang, J.; Yang, K.; Xiao, N.; Shao, Z.; Zhang, F.; Zhang, H.; Xiong, Y.; Xiong, B.; Chen, H. Recent Progress on the Tribological Applications of Solid Lubricants. J. Tribol. 2023, 146, 020801. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Q.; Zhu, K.; Ye, K.; Wang, G.; Cao, D.; Yan, J. 3D Porous Oxidation-Resistant MXene/Graphene Architectures Induced by In Situ Zinc Template toward High-Performance Supercapacitors. Adv. Funct. Mater. 2021, 31, 2101087. [Google Scholar] [CrossRef]
- Ayyagari, A.V.; Mutyala, K.C.; Sumant, A.V. Towards Developing Robust Solid Lubricant Operable in Multifarious Environments. Sci. Rep. 2020, 10, 15390. [Google Scholar] [CrossRef]
- Berman, D.; Erdemir, A.; Sumant, A.V. Graphene: A New Emerging Lubricant. Mater. Today 2014, 17, 31–42. [Google Scholar] [CrossRef]
- Alazemi, A.A.; Dysart, A.D.; Shaffer, S.J.; Pol, V.G.; Stacke, L.-E.; Sadeghi, F. Novel Tertiary Dry Solid Lubricant on Steel Surfaces Reduces Significant Friction and Wear under High Load Conditions. Carbon 2017, 123, 7–17. [Google Scholar] [CrossRef]
- Chen, L.; Wu, G.; Huang, Y.; Bai, C.; Yu, Y.; Zhang, J. High Loading Capacity and Wear Resistance of Graphene Oxide/Organic Molecule Assembled Multilayer Film. Front. Chem. 2021, 9, 740140. [Google Scholar] [CrossRef] [PubMed]
- Dhanola, A.; Gajrani, K.K. Novel Insights into Graphene-Based Sustainable Liquid Lubricant Additives: A Comprehensive Review. J. Mol. Liq. 2023, 386, 122523. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.; Li, J.; Luo, J. Enhancement of Friction Performance Enabled by a Synergetic Effect between Graphene Oxide and Molybdenum Disulfide. Carbon 2019, 154, 266–276. [Google Scholar] [CrossRef]
- Wu, W.; Liu, J.; Li, Z.; Zhao, X.; Liu, G.; Liu, S.; Ma, S.; Li, W.; Liu, W. Surface-Functionalized nanoMOFs in Oil for Friction and Wear Reduction and Antioxidation. Chem. Eng. J. 2021, 410, 128306. [Google Scholar] [CrossRef]
- Farsadi, M.; Bagheri, S.; Ismail, N.A. Nanocomposite of Functionalized Graphene and Molybdenum Disulfide as Friction Modifier Additive for Lubricant. J. Mol. Liq. 2017, 244, 304–308. [Google Scholar] [CrossRef]
- Li, X.; Lu, H.; Guo, J.; Tong, Z.; Dong, G. Synergistic Water Lubrication Effect of Self-Assembled Nanofilm and Graphene Oxide Additive. Appl. Surf. Sci. 2018, 455, 1070–1077. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Y.; Wang, Y.; Mao, J.; He, Y.; Luo, J. Mild Thermal Reduction of Graphene Oxide as a Lubrication Additive for Friction and Wear Reduction. RSC Adv. 2017, 7, 1766–1770. [Google Scholar] [CrossRef]
- Xie, H.; Jiang, B.; Dai, J.; Peng, C.; Li, C.; Li, Q.; Pan, F. Tribological Behaviors of Graphene and Graphene Oxide as Water-Based Lubricant Additives for Magnesium Alloy/Steel Contacts. Materials 2018, 11, 206. [Google Scholar] [CrossRef] [PubMed]
- Kaleli, H.; Demirtaş, S.; Uysal, V.; Karnis, I.; Stylianakis, M.M.; Anastasiadis, S.H.; Kim, D.-E. Tribological Performance Investigation of a Commercial Engine Oil Incorporating Reduced Graphene Oxide as Additive. Nanomaterials 2021, 11, 386. [Google Scholar] [CrossRef] [PubMed]
- Khatai, S.; Sahoo, A.K.; Kumar, R.; Panda, A. Performance assessment of graphene oxide based nano-cutting fluids during sustainable hard turning through synthesis, characterization and machinability investigation. Diam. Relat. Mater. 2024, 149, 111657. [Google Scholar] [CrossRef]
- Zeng, Q.; Zhang, W. A Systematic Review of the Recent Advances in Superlubricity Research. Coatings 2023, 13, 1989. [Google Scholar] [CrossRef]
- Xing, Z.; Zhang, J.; Kaindl, R.; Zhang, B. Solid superlubricity of diamond-like carbon films: A review. Surf. Sci. Technol. 2025, 3, 16. [Google Scholar] [CrossRef]
- Yi, S.; Li, N.; Solanki, S.; Mo, J.; Ding, S. Effects of graphene oxide nanofluids on cutting temperature and force in machining Ti-6Al-4V. Int. J. Adv. Manuf. Technol. 2019, 103, 1481–1495. [Google Scholar] [CrossRef]
- Goralka, C.; Bridges, J.; Jahan, M.; Sidebottom, M.; Cameron, T.; Lu, Y.; Ye, Z. Friction and Wear Reduction of Tungsten Carbide and Titanium Alloy Contacts via Graphene Nanolubricant. Lubricants 2022, 10, 272. [Google Scholar] [CrossRef]
- Sarno, M.; Scarpa, D.; Senatore, A.; Ahmed Abdalglil Mustafa, W. rGO/GO Nanosheets in Tribology: From the State of the Art to the Future Prospective. Lubricants 2020, 8, 31. [Google Scholar] [CrossRef]
- Yoo, B.M.; Shin, H.J.; Yoon, H.W.; Park, H.B. Graphene and Graphene Oxide and Their Uses in Barrier Polymers. J. Appl. Polym. Sci. 2014, 131, 39628. [Google Scholar] [CrossRef]
- Jena, G.; Anandkumar, B.; Sofia, S.; George, R.P.; Philip, J. Fabrication of Silanized GO Hybrid Coating on 316L SS with Enhanced Corrosion Resistance and Antibacterial Properties for Marine Applications. Surf. Coat. Technol. 2020, 402, 126295. [Google Scholar] [CrossRef]
- Hu, Q.; Li, X.; Zhao, G.; Ruan, Y.; Wang, G.; Ding, Q. Effects of Graphene Oxide on Tribological Properties of Micro-Arc Oxidation Coatings on Ti-6Al-4V. Coatings 2023, 13, 1967. [Google Scholar] [CrossRef]
- Mo, M.; Zhao, W.; Chen, Z.; Yu, Q.; Zeng, Z.; Wu, X.; Xue, Q. Excellent Tribological and Anti-Corrosion Performance of Polyurethane Composite Coatings Reinforced with Functionalized Graphene and Graphene Oxide Nanosheets. RSC Adv. 2015, 5, 56486–56497. [Google Scholar] [CrossRef]
- Ramkumar, N.P.; Sharma, S.C.; Adarsha, H.; Keshavamurthy, R. Tribological Performance of PEEK/GO Nanocomposites Fabricated via Stereolithography. J. Bio-Tribo-Corros. 2025, 11, 52. [Google Scholar] [CrossRef]
- Chen, X.; Meng, D.; Wang, B.; Li, B.-W.; Li, W.; Bielawski, C.W.; Ruoff, R.S. Rapid Thermal Decomposition of Confined Graphene Oxide Films in Air. Carbon 2016, 101, 71–76. [Google Scholar] [CrossRef]
- Gong, X.; Liu, G.; Li, Y.; Yu, D.Y.W.; Teoh, W.Y. Functionalized-Graphene Composites: Fabrication and Applications in Sustainable Energy and Environment. Chem. Mater. 2016, 28, 8082–8118. [Google Scholar] [CrossRef]
- Abusultan, A.; Abunahla, H.; Halawani, Y.; Mohammad, B.; Alamoodi, N.; Alazzam, A. Artificial Intelligence-Aided Low Cost and Flexible Graphene Oxide-Based Paper Sensor for Ultraviolet and Sunlight Monitoring. Nanoscale Res. Lett. 2022, 17, 89. [Google Scholar] [CrossRef]
- Nemati, N.; Emamy, M.; Yau, S.; Kim, J.-K.; Kim, D.-E. High Temperature Friction and Wear Properties of Graphene Oxide/Polytetrafluoroethylene Composite Coatings Deposited on Stainless Steel. RSC Adv. 2016, 6, 5977–5987. [Google Scholar] [CrossRef]
- Shah, R.; Kausar, A.; Muhammad, B.; Shah, S. Progression from Graphene and Graphene Oxide to High Performance Polymer-Based Nanocomposite: A Review. Polym.-Plast. Technol. Eng. 2015, 54, 173–183. [Google Scholar] [CrossRef]
- Wang, C.; Sun, J.; He, J.; Ge, C. Friction-Induced Motion Evolution of Reduced Graphene Oxide-Al2O3 at Contact Interface to Achieve Superior Lubrication Performance. Appl. Surf. Sci. 2022, 604, 154479. [Google Scholar] [CrossRef]
- Zhang, M.; Yu, Y.; Li, L.; Zhou, H.; Gong, L.; Zhou, H. A Molecular Dynamics Assisted Insight on Damping Enhancement in Carbon Fiber Reinforced Polymer Composites with Oriented Multilayer Graphene Oxide Coatings. Microstructures 2024, 4, 2024051. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, Z. Mechanical and Viscoelastic Properties of Wrinkled Graphene Reinforced Polymer Nanocomposites—Effect of Interlayer Sliding within Graphene Sheets. Carbon 2021, 177, 128–137. [Google Scholar] [CrossRef]
- Tong, L.B.; Zhang, J.B.; Xu, C.; Wang, X.; Song, S.Y.; Jiang, Z.H.; Kamado, S.; Cheng, L.R.; Zhang, H.J. Enhanced Corrosion and Wear Resistances by Graphene Oxide Coating on the Surface of Mg-Zn-Ca Alloy. Carbon 2016, 109, 340–351. [Google Scholar] [CrossRef]
- Miao, X.; Liu, S.; Ma, L.; Yang, Y.; Zhu, J.; Li, Z.; Wang, J. Ti3C2-Graphene Oxide Nanocomposite Films for Lubrication and Wear Resistance. Tribol. Int. 2022, 167, 107361. [Google Scholar] [CrossRef]
- Voevodin, A.A.; Muratore, C.; Aouadi, S.M. Hard Coatings with High Temperature Adaptive Lubrication and Contact Thermal Management: Review. Surf. Coat. Technol. 2014, 257, 247–265. [Google Scholar] [CrossRef]
- Chen, Z.; Wei, P.; Zhang, S.; Lu, B.; Zhang, L.; Yang, X.; Huang, K.; Huang, Y.; Li, X.; Zhao, Q. Graphene reinforced nickel-based superalloy composites fabricated by additive manufacturing. Mater. Sci. Eng. A 2020, 769, 138484. [Google Scholar] [CrossRef]
- Yan, S.; Zhai, W.; Xiao, J.; Zhai, W. Ahmed Mohamed Mahmoud Ibrahim, Graphene oxide decorated spherical powder for Ni superalloy with high yield strength and ductility. Mater. Sci. Eng. A 2022, 831, 142221. [Google Scholar] [CrossRef]
- Porwal, H.; Grasso, S.; Reece, M.J. Review of Graphene–Ceramic Matrix Composites. Adv. Appl. Ceram. 2013, 112, 443–454. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, P.; Chen, Q.; Liu, Z.; Wang, X.; Deng, M.; Zhou, H.; Han, Y.; Yao, P. The Effect of Copper Particles Coated with Graphene Oxide on Tribological Properties and Tribo-Layers of Copper Metal Matrix Composites. Tribol. Int. 2024, 199, 110041. [Google Scholar] [CrossRef]
- Sarath, P.S.; Reghunath, R.; Thomas, S.; Haponiuk, J.T.; George, S.C. 8—Tribology of Graphene-Based Polymeric Systems. In Tribology of Polymers, Polymer Composites, and Polymer Nanocomposites; George, S.C., Haponiuk, J.T., Thomas, S., Reghunath, R., Sarath, P.S., Eds.; Elsevier Series on Tribology and Surface Engineering; Elsevier: Amsterdam, The Netherlands, 2023; pp. 215–233. ISBN 978-0-323-90748-4. [Google Scholar]
- Kumar, H.G.P.; Xavior, M.A. Graphene Reinforced Metal Matrix Composite (GRMMC): A Review. Procedia Eng. 2014, 97, 1033–1040. [Google Scholar] [CrossRef]
- Markandan, K.; Chin, J.K.; Tan, M.T.T. Recent Progress in Graphene Based Ceramic Composites: A Review. J. Mater. Res. 2017, 32, 84–106. [Google Scholar] [CrossRef]
- Xu, H.; Liu, Y.; Wang, K. Preparation high-performance SiC ceramic reinforced with 3D hybrid graphene oxide-carbon nanotube by direct ink writing and liquid silicon infiltration. J. Eur. Ceram. Soc. 2024, 44, 5612–5622. [Google Scholar] [CrossRef]
- Pathak, A.K.; Borah, M.; Gupta, A.; Yokozeki, T.; Dhakate, S.R. Improved Mechanical Properties of Carbon Fiber/Graphene Oxide-Epoxy Hybrid Composites. Compos. Sci. Technol. 2016, 135, 28–38. [Google Scholar] [CrossRef]
- Li, H.; Li, T.; Zhang, T.; Zhu, J.; Deng, W.; He, D. Construction and Adsorption Performance Study of GO-CNT/Activated Carbon Composites for High Efficient Adsorption of Pollutants in Wastewater. Polymers 2022, 14, 4951. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J. PBO Fiber Grafted rGO Aerogel/BN/PBO Composites with Highly Improved Electromagnetic Interference Shielding Effectiveness and through-Plane Thermal Conductivity. Polym. Test. 2023, 129, 108282. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, D.; Ma, X.; Zhang, Y.; Fu, P.; Du, F. Exfoliated MoS2 Anchored on Graphene Oxide Nanosheets for Enhancing Thermoelectric Properties of Single-Walled Carbon Nanotubes. Ceram. Int. 2024, 50, 53245–53253. [Google Scholar] [CrossRef]
- Singh, S.; Rathi, K.; Pal, K. Synthesis, Characterization of Graphene Oxide Wrapped Silicon Carbide for Excellent Mechanical and Damping Performance for Aerospace Application. J. Alloys Compd. 2018, 740, 436–445. [Google Scholar] [CrossRef]
- Zhang, C.; Nieto, A.; Agarwal, A. Ultrathin Graphene Tribofilm Formation during Wear of Al2O3–Graphene Composites. Nanomater. Energy 2016, 5, 1–9. [Google Scholar] [CrossRef]
- Nassef, M.G.A.; Soliman, M.; Nassef, B.G.; Daha, M.A.; Nassef, G.A. Impact of Graphene Nano-Additives to Lithium Grease on the Dynamic and Tribological Behavior of Rolling Bearings. Lubricants 2022, 10, 29. [Google Scholar] [CrossRef]
- Wang, Q.; Ramírez, C.; Watts, C.S.; Borrero-López, O.; Ortiz, A.L.; Sheldon, B.W.; Padture, N.P. Fracture, Fatigue, and Sliding-Wear Behavior of Nanocomposites of Alumina and Reduced Graphene-Oxide. Acta Mater. 2020, 186, 29–39. [Google Scholar] [CrossRef]
- Zhao, P.; Yan, J.; Yan, H.; Zhou, S.; Huang, J.; Wu, X.; Zhao, G.; Liu, Y. Wear and Corrosion Resistance of Self-Healing Epoxy Coatings Filled by Polydopamine-Modified Graphene Oxide Assembly of Polysulfone Double-Walled Microcapsules. Prog. Org. Coat. 2023, 177, 107416. [Google Scholar] [CrossRef]
- Sánchez-López, L.; Ropero de Torres, N.; Chico, B.; Soledad Fagali, N.; de los Ríos, V.; Escudero, M.L.; García-Alonso, M.C.; Lozano, R.M. Effect of Wear-Corrosion of Reduced Graphene Oxide Functionalized with Hyaluronic Acid on Inflammatory and Proteomic Response of J774A.1 Macrophages. Metals 2023, 13, 598. [Google Scholar] [CrossRef]
- Daly, M.; Cao, C.; Sun, H.; Sun, Y.; Filleter, T.; Singh, C.V. Interfacial Shear Strength of Multilayer Graphene Oxide Films. ACS Nano 2016, 10, 1939–1947. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Feng, H.; Li, J. Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications. Chem. Rev. 2012, 112, 6027–6053. [Google Scholar] [CrossRef]
- Zhang, L.; Hou, G.; Zhai, W.; Ai, Q.; Feng, J.; Zhang, L.; Si, P.; Ci, L. Aluminum/Graphene Composites with Enhanced Heat-Dissipation Properties by in-Situ Reduction of Graphene Oxide on Aluminum Particles. J. Alloys Compd. 2018, 748, 854–860. [Google Scholar] [CrossRef]
- Wang, M.; Li, Z.; Wang, J.; Yang, S. Iron Ions Induced Self-Assembly of Graphene Oxide Lubricating Coating with Self-Adapting Low Friction Characteristics. Carbon 2023, 201, 1151–1159. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, Q.; Ge, X. Comparative Study of the Friction Behavior of Functionalized Graphene Oxide Additives Under Electric Stimulations. Lubricants 2024, 12, 455. [Google Scholar] [CrossRef]
- Cao, N.; Zhang, Y. Study of Reduced Graphene Oxide Preparation by Hummers’ Method and Related Characterization. J. Nanomater. 2015, 2015, 168125. [Google Scholar] [CrossRef]
- Zaaba, N.I.; Foo, K.L.; Hashim, U.; Tan, S.J.; Liu, W.-W.; Voon, C.H. Synthesis of Graphene Oxide Using Modified Hummers Method: Solvent Influence. Procedia Eng. 2017, 184, 469–477. [Google Scholar] [CrossRef]
- Kotsyubynsky, V.O.; Boychuk, V.M.; Budzulyak, I.M.; Rachiy, B.I.; Hodlevska, M.A.; Kachmar, A.I.; Hodlevsky, M.A. Graphene Oxide Synthesis Using Modified Tour Method. Adv. Nat. Sci. Nanosci. Nanotechnol. 2021, 12, 035006. [Google Scholar] [CrossRef]
- Zhu, P.; Shen, M.; Xiao, S.; Zhang, D. Experimental Study on the Reducibility of Graphene Oxide by Hydrazine Hydrate. Phys. B Condens. Matter 2011, 406, 498–502. [Google Scholar] [CrossRef]
- De Silva, K.K.H.; Huang, H.-H.; Yoshimura, M. Progress of Reduction of Graphene Oxide by Ascorbic Acid. Appl. Surf. Sci. 2018, 447, 338–346. [Google Scholar] [CrossRef]
- Thomas, H.R.; Phillips, D.J.; Wilson, N.R.; Gibson, M.I.; Rourke, J.P. One-Step Grafting of Polymers to Graphene Oxide. Polym. Chem. 2015, 6, 8270–8274. [Google Scholar] [CrossRef]
- Cai, Y.; Fadil, Y.; Jasinski, F.; Thickett, S.C.; Agarwal, V.; Zetterlund, P.B. Miniemulsion Polymerization Using Graphene Oxide as Surfactant: In Situ Grafting of Polymers. Carbon 2019, 149, 445–451. [Google Scholar] [CrossRef]
- Yi, M.; Shen, Z. A Review on Mechanical Exfoliation for the Scalable Production of Graphene. J. Mater. Chem. A 2015, 3, 11700–11715. [Google Scholar] [CrossRef]
- Qi, X.; Zhou, T.; Deng, S.; Zong, G.; Yao, X.; Fu, Q. Size-Specified Graphene Oxide Sheets: Ultrasonication Assisted Preparation and Characterization. J. Mater. Sci. 2014, 49, 1785–1793. [Google Scholar] [CrossRef]
- Casallas Caicedo, F.M.; Vera López, E.; Agarwal, A.; Drozd, V.; Durygin, A.; Franco Hernandez, A.; Wang, C. Synthesis of Graphene Oxide from Graphite by Ball Milling. Diam. Relat. Mater. 2020, 109, 108064. [Google Scholar] [CrossRef]
- Tas, M.; Altin, Y.; Celik Bedeloglu, A. Reduction of Graphene Oxide Thin Films Using a Stepwise Thermal Annealing Assisted by L-Ascorbic Acid. Diam. Relat. Mater. 2019, 92, 242–247. [Google Scholar] [CrossRef]
- El-Hossary, F.M.; Ghitas, A.; El-Rahman, A.M.A.; Shahat, M.A.; Fawey, M.H. The Effective Reduction of Graphene Oxide Films Using RF Oxygen Plasma Treatment. Vacuum 2021, 188, 110158. [Google Scholar] [CrossRef]
- Qahtan, T.F.; Owolabi, T.O.; Alhakami, F.S.; Saleh, T.A. Low-Energy Argon Ion Beam Irradiation for the Surface Modification and Reduction of Graphene Oxide: Insights from XPS. Radiat. Phys. Chem. 2025, 226, 112235. [Google Scholar] [CrossRef]
- Lowe, S.E.; Zhong, Y.L. Challenges of Industrial-Scale Graphene Oxide Production. In Graphene Oxide; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016; pp. 410–431. ISBN 978-1-119-06944-7. [Google Scholar]
- Marchesini, S.; Paton, K.R.; Pollard, A.J. Navigating the Frontiers of Graphene Quality Control to Enable Product Optimisation and Market Confidence. Nano Futures 2024, 8, 022501. [Google Scholar] [CrossRef]
- Thakur, K.; Kandasubramanian, B. Graphene and Graphene Oxide-Based Composites for Removal of Organic Pollutants: A Review. J. Chem. Eng. Data 2019, 64, 833–867. [Google Scholar] [CrossRef]
- Pendolino, F.; Armata, N. Regulation and Environmental Aspects of Graphene Oxide. In Graphene Oxide in Environmental Remediation Process; Pendolino, F., Armata, N., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 23–33. ISBN 978-3-319-60429-9. [Google Scholar]
- Donato, K.Z.; Tan, H.L.; Marangoni, V.S.; Martins, M.V.S.; Ng, P.R.; Costa, M.C.F.; Jain, P.; Lee, S.J.; Koon, G.K.W.; Donato, R.K.; et al. Graphene Oxide Classification and Standardization. Sci. Rep. 2023, 13, 6064. [Google Scholar] [CrossRef]
- Barroso-Bujans, F.; Alegría, A.; Pomposo, J.A.; Colmenero, J. Thermal Stability of Polymers Confined in Graphite Oxide. Macromolecules 2013, 46, 1890–1898. [Google Scholar] [CrossRef]
- Khan, F.; Khan, M.S.; Kamal, S.; Arshad, M.; Ahmad, S.I.; Nami, S.A.A. Recent Advances in Graphene Oxide and Reduced Graphene Oxide Based Nanocomposites for the Photodegradation of Dyes. J. Mater. Chem. C 2020, 8, 15940–15955. [Google Scholar] [CrossRef]
- Shams, M.; Guiney, L.M.; Huang, L.; Ramesh, M.; Yang, X.; Hersam, M.C.; Chowdhury, I. Influence of Functional Groups on the Degradation of Graphene Oxide Nanomaterials. Environ. Sci. Nano 2019, 6, 2203–2214. [Google Scholar] [CrossRef]
- Choi, Y.R.; Yoon, Y.-G.; Choi, K.S.; Kang, J.H.; Shim, Y.-S.; Kim, Y.H.; Chang, H.J.; Lee, J.-H.; Park, C.R.; Kim, S.Y.; et al. Role of Oxygen Functional Groups in Graphene Oxide for Reversible Room-Temperature NO2 Sensing. Carbon 2015, 91, 178–187. [Google Scholar] [CrossRef]
- Guardia, L.; Villar-Rodil, S.; Paredes, J.I.; Rozada, R.; Martínez-Alonso, A.; Tascón, J.M.D. UV Light Exposure of Aqueous Graphene Oxide Suspensions to Promote Their Direct Reduction, Formation of Graphene–Metal Nanoparticle Hybrids and Dye Degradation. Carbon 2012, 50, 1014–1024. [Google Scholar] [CrossRef]
- Hua, Z.; Tang, Z.; Bai, X.; Zhang, J.; Yu, L.; Cheng, H. Aggregation and Resuspension of Graphene Oxide in Siulated Natural Surface Aquatic Environments. Environ. Pollut. 2015, 205, 161–169. [Google Scholar] [CrossRef]
- Bolibok, P.; Wiśniewski, M.; Roszek, K.; Terzyk, A.P. Controlling Enzymatic Activity by Immobilization on Graphene Oxide. Sci. Nat. 2017, 104, 36. [Google Scholar] [CrossRef] [PubMed]
- Losic, D.; Farivar, F.; Yap, P.L.; Tung, T.T.; Nine, M.J. New Insights on Energetic Properties of Graphene Oxide (GO) Materials and Their Safety and Environmental Risks. Sci. Total Environ. 2022, 848, 157743. [Google Scholar] [CrossRef] [PubMed]
- Vimalanathan, K.; Scott, J.; Pan, X.; Luo, X.; Rahpeima, S.; Sun, Q.; Zou, J.; Bansal, N.; Prabawati, E.; Zhang, W.; et al. Continuous Flow Fabrication of Green Graphene Oxide in Aqueous Hydrogen Peroxide. Nanoscale Adv. 2022, 4, 3121–3130. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.-J.; Lv, W.; Yang, Q.-H. Self-Assembly of Graphene Oxide at Interfaces. Adv. Mater. 2014, 26, 5586–5612. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.M.; Li, W.G.; Li, C.Y.; Sanjayan, J.G.; Duan, W.H.; Li, Z. Effects of Graphene Oxide Agglomerates on Workability, Hydration, Microstructure and Compressive Strength of Cement Paste. Constr. Build. Mater. 2017, 145, 402–410. [Google Scholar] [CrossRef]
- Yang, Y.; Cao, J.; Wu, P.; Luo, T.; Liang, T.; Yin, H.; Yuan, K. Effect of Temperature on Interface Debonding Behavior of Graphene/Graphene-Oxide on Cement-Based Composites. Surf. Interfaces 2024, 47, 104198. [Google Scholar] [CrossRef]
- Ye, M.; Gao, J.; Xiao, Y.; Xu, T.; Zhao, Y.; Qu, L. Metal/Graphene Oxide Batteries. Carbon 2017, 125, 299–307. [Google Scholar] [CrossRef]
- Panda, S.; Rout, T.K.; Prusty, A.D.; Ajayan, P.M.; Nayak, S. Electron Transfer Directed Antibacterial Properties of Graphene Oxide on Metals. Adv. Mater. 2018, 30, 1702149. [Google Scholar] [CrossRef]
Property | Approximate Value | Reference |
---|---|---|
Surface Area | ~2630 m2/g (specific surface area) | [36] |
Functional Groups | Epoxides, hydroxyls, carboxyls (varies based on GO preparation) | [37] |
Mechanical Strength | Tensile strength up to ~130 GPa (similar to graphene) | [38] |
Self-lubricating Properties | Effective in reducing friction and wear | [35] |
Wear Resistance | Improved, depending on application and GO concentration | [24] |
Thermal Stability | Stable up to ~200 °C to ~300 °C | [39] |
Electrical Conductivity | Low conductivity (but tunable by reduction processes) | [40] |
Hydrophilicity | High (due to oxygenated functional groups) | [41] |
Structural Property | Approximate Value | Reference |
---|---|---|
Layer Structure | Single-layer (monolayer) or few layers | [43] |
Lattice Arrangement | Hexagonal (similar to graphene) | [44] |
Thickness | ~1 nm (monolayer) | [43] |
Oxygen Content | 20–50% by weight (depends on degree of oxidation) | [45] |
Defect Density | High (due to oxygen functional groups and oxidation) | [46] |
Interlayer Spacing | ~0.8–1.0 nm (varies with oxidation level) | [47] |
Chemical Property | Approximate Value | Reference |
---|---|---|
Chemical Reactivity | High (due to the presence of oxygenated groups) | [48] |
pH (in aqueous dispersion) | ~3–6 (varies based on the degree of oxidation) | [49] |
Surface Charge | Negative (due to carboxyl groups and hydroxyls) | [50] |
Degree of Oxidation | 20–50% (tunable depending on the preparation method) | [51] |
Reduction Potential | Can be reduced to improve conductivity (e.g., reduced GO has better electrical properties) | [44] |
Solubility | Soluble in water and polar solvents | [52] |
Mechanical Property | Approximate Value | Reference |
---|---|---|
Tensile Strength | 100–200 MPa (GO films) | [54] |
Elastic Modulus | 5–40 GPa (varies with oxidation) | [55] |
Fracture Toughness | Lower than graphene, brittle nature | [56] |
Interlayer Adhesion | High (due to hydrogen bonding) compared to graphene | [57] |
Property | Approximate Value | Reference |
---|---|---|
Thermal Stability | Stable up to ~200–300 °C | [39] |
Decomposition Temperature | ~200–300 °C (due to oxygen group removal) | [62] |
Thermal Conductivity | ~0.14–2.87 W/m·K (varies with oxidation) | [63] |
Electrical Conductivity | Insulating (can be restored by reduction) | [60] |
Application Area | Key Benefits | Example Applications | Reference |
---|---|---|---|
Solid Lubricant Properties | Low shear strength, protective film formation, self-healing behavior | High-precision mechanical systems, aerospace components | [21] |
Additives in Lubricants | Forms stable tribofilms, reduces wear and friction, enhances thermal stability | Automotive lubricants, industrial machinery oils | [68] |
Coating Applications | Enhances wear resistance, corrosion protection, and adhesion | Aerospace coatings, biomedical implants, anti-corrosion coatings | [69] |
Self-Lubricating Properties in Composites | Improves mechanical properties, reduces material degradation, enhances load distribution. | Bearings, gears, structural components | [70] |
Performance in Extreme Environments | Stable at high temperatures, vacuum lubrication, corrosion resistance | Marine environments, space applications, nuclear reactors | [71] |
Material Pair | Friction Reduction | Wear Reduction | Test Conditions | Reference |
---|---|---|---|---|
Stainless Steel–Stainless Steel (with Graphene-ZnO-PVDF composite) | Up to 90% | Up to 90% | Load: 15 N normal load. Distance: 450 m sliding. Environment: Room temperature. | [77] |
Stainless Steel–Stainless Steel (with MoS2–GO hybrid coating) | Excellent performance in various environments | Survived 44 km of sliding | Load: 1, 3, 5, 7, 9 N. Environment: ambient atmospheric conditions, dry nitrogen, and in a high vacuum. | [75] |
Silicon–Silicon (with GO/PDDA multilayer films) | Lower friction coefficients with increased layers | Enhanced wear resistance with increased layers | Distance: Reciprocating at a distance of 5 mm. Load: of 0.1, 0.2, 0.3, and 0.4 N. Environment: Ambient conditions of 20 °C and 40–50% relative humidity. | [78] |
Property/Feature | Graphene Oxide (GO) | Molybdenum Disulfide (MoS2) | Graphite | Hexagonal Boron Nitride (h-BN) | PTFE |
---|---|---|---|---|---|
Structure | 2D oxidized graphene sheets [21,22] | Layered crystalline (Mo–S–Mo) [76] | Layered carbon sheets [24] | Layered hexagonal structure [25] | Linear fluoropolymer [21] |
Wear Resistance | High (forms tribofilm) [21,22,75] | High but degrades in air [74] | Moderate [24,76] | High [25] | Moderate-to-high [21,23] |
Thermal Stability (°C) | 200–300 °C (starts decomposing) [39,60] | Stable up to 400 °C in inert, <300 °C air [74] | ~500 °C inert, ~300 °C air [24] | Up to 900 °C inert [25] | Up to 260 °C [21] |
Oxidation Resistance | Moderate-to-good [21,24] | Poor above 250 °C in air [74] | Moderate [24] | Excellent [25] | Good [21] |
Chemical Reactivity | High, easily functionalized [16,21] | Inert, but oxidizes in moist air [74] | Inert [24] | Stable [25] | Inert [21] |
Lubrication in Humid Air | Excellent (hydrophilic) [24,28] | Poor (sensitive to moisture) [74] | Moderate [24] | Stable [25] | Stable [21] |
Material Pair | GO Concentration | Friction Reduction | Wear Reduction | Test Conditions | Reference |
---|---|---|---|---|---|
Steel–Steel (PAO 6 base oil) | 0.5 wt% | Up to 30% | Not specified | Load of 2 N Distance: sliding stroke are 0.4 Hz and 3 mm Environment: Not specified | [84] |
Magnesium Alloy–Steel (Water-based nanofluid) | 0.5 wt% | 77.50% | 90% | Load: 1, 3, 5, 8 N Distance: 0.08 m/s for 0.5 h Environment: Room temperature | [85] |
Steel–Steel (Engine oil) | 0.02 wt% | 5% | 3% | Load: 60.5 N Distance: Sliding speed and stroke 0.055 m/s and 8 mm Environment: Elevated temperature, 100 deg | [86] |
Coating Type | GO Concentration | Friction Reduction | Wear Reduction | Test Conditions | Reference |
---|---|---|---|---|---|
Micro-Arc Oxidation (MAO) Coating on Ti-6Al-4V Alloy | 5 g/L | Reduced from 0.47 to 0.35 (~25%) | Not specified | Load: 3 N Distance: 100 rpm, with a diameter of 6 mm Environment: 20 ± 1 °C. | [95] |
Polyurethane (PU) Composite Coating Reinforced with Functionalized GO | 0.25–0.5 wt% | Not specified | Improved wear resistance | Load of 3 N, Distance: 20 min and wear track length of 5 mm. Environment: Ambient | [96] |
Layer-by-Layer Assembled GO/PDDA Multilayer Films on Silicon Substrate | Not specified | Decreased with more layers | Increased with more layers | Loads: 0.1, 0.2, 0.3, and 0.4 N Distance: Reciprocating 5 mm Environment: 20 °C and 40–50% relative | [78] |
Environment | Materials Used | GO Concentration | Friction Reduction | Wear Reduction | Test Conditions | Reference |
---|---|---|---|---|---|---|
High Temperature (up to 400 °C) | PTFE/GO Composite Coating | 15 vol% | Reduced to 0.1 | 0.65 × 10−9 mm3/N·m | Load: 5 N, a Distance: Sliding speed of 4 mm s−1 and a stroke of 4 mm | [101] |
High-Load Conditions | Graphene-ZnO Composite Film | Not specified | Up to 90% | Up to 90% | Load: 15 N normal load Distance: 450 m sliding | [77] |
Water-Based Nanofluid Environment | 0.5 wt% GO in Water (Mg Alloy–Steel Pair) | 0.5 wt% | 77.50% | 90% | Load: 1, 3, 5, 8 N Distance: 0.08 m/s for 0.5 h Environment: Room temperature | [85] |
GO Composite Type | Matrix Material | Tribological Improvements | Mechanism | References |
---|---|---|---|---|
GO–Polymer Composites | Epoxy, Nylon, PTFE, etc. | Reduced friction and wear rate | Uniform dispersion and strong interfacial bonding due to GO’s functional groups | [113] |
GO–Metal Matrix Composites (MMCs) | Aluminum, Copper, etc. | Enhanced load-carrying capacity and wear resistance | GO acts as a barrier and provides solid lubrication under sliding | [114] |
GO–Ceramic Composites | Al2O3, Si3N4, TiO2 | Improved hardness, wear resistance, and reduced crack propagation | GO bridges microcracks and enhances grain boundary strength | [115] |
GO–Ceramic | SiC (3D GO–CNT hybrid) | Improved hardness, wear resistance, reduced friction and crack propagation under dry sliding | Hybrid GO–CNT network tribofilm; crack bridging and shear dissipation | [116] |
Hybrid Composite Type | Secondary Reinforcement | Key Benefits | Reference |
---|---|---|---|
GO-CNT Composites | Carbon Nanotubes (CNTs) | Enhanced mechanical strength, improved thermal conductivity, and reduced friction | [118] |
GO-BN Composites | Boron Nitride (BN) | Increased lubrication efficiency, superior high-temperature stability | [119] |
GO-MoS2 Composites | Molybdenum Disulfide (MoS2) | Excellent solid lubrication, enhanced anti-wear properties | [120] |
GO-SiC Composites | Silicon Carbide (SiC) | Superior hardness, improved oxidation resistance in high-temperature applications | [121] |
Stability Factor | Challenges/Limitations | Potential Impacts | Reference |
---|---|---|---|
Thermal Stability | Decomposition and loss of functional groups at elevated temperatures (~150–200 °C). | Limits usage in high-temperature applications, structural integrity loss, inconsistent performance. | [152] |
Chemical Reactivity | Highly reactive oxygen functional groups are prone to reduction or reactions in varying chemical environments. | Unpredictable chemical behavior, impaired consistency, potential toxicity in biomedical uses. | [153] |
Photodegradation | Partial reduction and structural damage upon prolonged UV or visible light exposure. | Altered optical and electronic properties, decreased reliability in solar and optical applications. | [154] |
Aqueous Dispersion Stability | Tendency to aggregate, sediment, or spontaneously reduce over time in aqueous dispersions. | Shortened shelf-life, inconsistent performance in formulations, difficulties in handling. | [155] |
Biological Stability | Degradation or unwanted reactions in biological media (pH shifts, enzymatic activity, ionic strength). | Unpredictable biocompatibility and cytotoxicity, compromised efficacy in biomedical applications. | [156] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wakchaure, M.B.; Menezes, P.L. Advances in the Tribological Performance of Graphene Oxide and Its Composites. Materials 2025, 18, 3587. https://doi.org/10.3390/ma18153587
Wakchaure MB, Menezes PL. Advances in the Tribological Performance of Graphene Oxide and Its Composites. Materials. 2025; 18(15):3587. https://doi.org/10.3390/ma18153587
Chicago/Turabian StyleWakchaure, Mayur B., and Pradeep L. Menezes. 2025. "Advances in the Tribological Performance of Graphene Oxide and Its Composites" Materials 18, no. 15: 3587. https://doi.org/10.3390/ma18153587
APA StyleWakchaure, M. B., & Menezes, P. L. (2025). Advances in the Tribological Performance of Graphene Oxide and Its Composites. Materials, 18(15), 3587. https://doi.org/10.3390/ma18153587