Optimal Design and Application of Universal Cementitious Material Prepared Using Full Industrial Solid Wastes
Abstract
1. Introduction
2. Methodological Framework
3. Materials and Experimental Procedures
3.1. Materials
3.2. Specimen Design
3.2.1. Development of ISWs-CM Based on Two-Layer Optimization Strategy
3.2.2. Stabilization of Aeolian Sand Using Developed ISWs-CM
3.3. Specimen Preparation
3.4. UCS Measurement
3.5. Mineral Phase Composition
3.6. Microstructure
3.7. Hydration Products
4. Results and Analysis
4.1. Development of ISWs-CM
4.2. Application of Developed ISWs-CM in Aeolian Sand Stabilization
5. Discussion
5.1. Substitutability of ISWs-CM for OPC in Engineering Applications
5.2. Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ISW | industrial solid waste |
ISWs-CM | industrial solid wastes based cementitious materials |
SS | steel slag |
GGBFS | ground granulated blast-furnace slag |
PS | phosphorus slag |
CS | carbide slag |
DG | desulfurized gypsum |
OPC | ordinary Portland cement |
TCM | three chemical moduli |
IM | alumina modulus |
SM | silica modulus |
KH | lime saturation coefficient |
C-S-H | calcium silicate hydrate |
UCS | unconfined compression strength |
C2S | dicalcium silicate |
C3S | tricalcium silicate |
CSS | coarse steel slag |
CPS | coarse phosphorus slag |
CCS | coarse carbide slag |
SEM | scanning electron microscopy |
EDS | energy dispersive spectroscopy |
XRD | X-ray diffraction |
XRF | X-ray fluorescence |
TGA | thermogravimetric analysis |
DTG | differential thermogravimetric analysis |
ASISW | aeolian sand stabilized by industrial solid wastes based cementitious materials |
ASOPC | aeolian sand stabilized by ordinary Portland cement |
AFt | ettringite |
ANOVA | analysis of variance |
References
- Lorenzo, G.A.; Bergado, D.T. Fundamental parameters of cement-admixed clay—New approach. J. Geotech. Geoenviron. Eng. 2004, 130, 1042–1050. [Google Scholar] [CrossRef]
- Wu, J.; Deng, Y.F.; Zheng, X.P.; Cui, Y.J.; Zhao, Z.P.; Chen, Y.G.; Zha, F.S. Hydraulic conductivity and strength of foamed cement-stabilized marine clay. Constr. Build. Mater. 2019, 222, 688–698. [Google Scholar] [CrossRef]
- Wu, J.; Liu, L.; Deng, Y.F.; Zhang, G.P.; Zhou, A.N.; Wang, Q. Distinguishing the effects of cementation versus density on the mechanical behavior of cement-based stabilized clays. Constr. Build. Mater. 2021, 271, 121571. [Google Scholar] [CrossRef]
- Wu, J.; Liu, L.; Deng, Y.F.; Zhang, G.P.; Zhou, A.N.; Xiao, H.L. Use of recycled gypsum in the cement-based stabilization of very soft clays and its micro-mechanism. J. Rock Mech. Geotech. Eng. 2021, 14, 909–921. [Google Scholar] [CrossRef]
- Xu, M.; Liu, L.; Deng, Y.F.; Zhou, A.N.; Gu, S.T.; Ding, J.W. Influence of sand incorporation on unconfined compression strength of cement-based stabilized soft clay. Soils Found. 2021, 61, 1132–1141. [Google Scholar] [CrossRef]
- Cunningham, P.R.; Wang, L.; Nassiri, S.; Thy, P.; Harvey, J.T.; Jenkins, B.M.; Miller, S.A. Compressive strength and regional supply implications of rice straw and rice hull ashes used as supplementary cementitious materials. Resour. Conserv. Recycl. 2025, 241, 108024. [Google Scholar] [CrossRef]
- Navaratnam, S.; Tushar, Q.; Jahan, I.; Zhang, G.M. Environmental Sustainability of Industrial Waste-Based Cementitious Materials: A Review, Experimental Investigation and Life-Cycle Assessment. Sustainability 2023, 15, 1873. [Google Scholar] [CrossRef]
- Wu, J.; Deng, Y.F.; Zhang, G.P.; Zhou, A.N.; Tan, Y.Z.; Xiao, H.L.; Zheng, Q.S. A Generic Framework of Unifying Industrial By-products for Soil Stabilization. J. Clean. Prod. 2021, 321, 128920. [Google Scholar] [CrossRef]
- Duan, D.D.; Wu, H.B.; Wei, F.; Song, H.P.; Chen, Z.; Cheng, F.Q. Preparation, characterization, and rheological analysis of eco-friendly geopolymer grouting cementitious materials based on industrial solid wastes. J. Build. Eng. 2023, 78, 107451. [Google Scholar] [CrossRef]
- Ke, Y.; Chen, Y.; Liang, S.; Hu, J.P.; Hou, H.J.; Quan, J.D.; Li, X.W.; Duan, H.B.; Yuan, S.S.; Yang, J.K. Environmentally sound management of industrial solid waste: A paradigm of proposed bi-tetrahedron. Resour. Conserv. Recycl. 2023, 198, 107212. [Google Scholar] [CrossRef]
- Kumar, N.; Amritphale, S.S.; Matthews, J.C.; Lynam, J.G.; Alam, S.; Omar, A.A. Synergistic utilization of diverse industrial wastes for reutilization in steel production and their geopolymerization potential. Waste Manag. 2021, 126, 728–736. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.P.; Zhang, J.Y.; Lei, Z.X.; Gao, M.S.; Sun, J.B.; Tong, L.H.; Chen, S.M.; Wang, Y.F. Designing low-carbon fly ash based geopolymer with red mud and blast furnace slag wastes: Performance, microstructure and mechanism. J. Environ. Manag. 2024, 354, 120362. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.L.; Yu, Q.; Xu, J.Y.; Yue, B.; Sheng, M.Q. Comparative Experimental Study on Strength Properties of Red Clay Modified by Cement and Industrial Solid Waste Powder. Adv. Civ. Eng. 2023, 2023, 120362. [Google Scholar] [CrossRef]
- Wang, X.L.; Wang, X.C.; Fu, P.F.; Shi, J.J.; Xu, M. Performance Optimization of Alkaline Multi-Industrial Waste-Based Cementitious Materials for Soil Solidification. Materials 2024, 17, 5077. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Guan, C.; Hua, S.D.; Zhang, Y.N.; Zhang, D.R.; Bao, Y.Z.; Yuan, Z.Z. Performance Evaluation and Mechanism Study of Solid Waste-Based Cementitious Materials for Solidifying Marine Soft Soil under Seawater Mixing and Erosion Action. Appl. Sci. 2024, 14, 6666. [Google Scholar] [CrossRef]
- Duan, S.Y.; Liao, H.Q.; Cheng, F.Q.; Song, H.P.; Yang, H.Q. Investigation into the synergistic effects in hydrated gelling systems containing fly ash, desulfurization gypsum and steel slag. Constr. Build. Mater. 2018, 187, 1113–1120. [Google Scholar] [CrossRef]
- Gu, X.Y.; Yu, B.; Dong, Q.; Deng, Y.F. Application of secondary steel slag in subgrade: Performance evaluation and enhancement. J. Clean. Prod. 2018, 181, 102–108. [Google Scholar] [CrossRef]
- Wu, J.; Liu, Q.W.; Deng, Y.F.; Yu, X.B.; Feng, Q.; Yan, C. Expansive soil modified by waste steel slag and its application in subbase layer of highways. Soils Found. 2019, 59, 955–965. [Google Scholar] [CrossRef]
- Yang, P.; Liu, L.; Suo, Y.L.; Qu, H.S.; Xie, G.; Zhang, C.X.; Deng, S.C.; Lv, Y. Investigating the synergistic effects of magnesia-coal slag based solid waste cementitious materials and its basic characteristics as a backfill material. Sci. Total Environ. 2023, 880, 163209. [Google Scholar] [CrossRef] [PubMed]
- Maneli, A.; Kupolati, W.K.; Abiola, O.S.; Ndambuki, J.M. Influence of fly ash, ground-granulated blast furnace slag and lime on unconfined compressive strength of black cotton soil. Road Mater. Pavement Des. 2016, 17, 252–260. [Google Scholar] [CrossRef]
- Yi, Y.L.; Liska, M.; Jin, F.; Al-Tabbaa, A. Mechanism of reactive magnesia—ground granulated blastfurnace slag (GGBS) soil stabilization. Can. Geotech. J. 2016, 53, 773–782. [Google Scholar] [CrossRef]
- Liu, J.P.; Song, G.; Ge, X.W.; Liu, B.; Liu, K.X.; Tian, Y.L.; Wang, X.; Hu, Z.H. Experimental Study on the Properties and Hydration Mechanism of Gypsum-Based Composite Cementitious Materials. Buildings 2024, 14, 314. [Google Scholar] [CrossRef]
- Wu, P.F.; Liu, X.Y.; Liu, X.M.; Zhang, Z.Q.; Wei, C. Effect of Industrial Byproduct Gypsum on the Mechanical Properties and Stabilization of Hazardous Elements of Cementitious Materials: A Review. Materials 2024, 17, 4183. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.F.; Gao, Y.L.; Li, Y.L.; Zhu, J.C.; Cheng, Z.D.; Xiong, H.Y. The strength, reaction mechanism, sustainable potential of full solid waste alkali-activated cementitious materials using red mud and carbide slag. Constr. Build. Mater. 2024, 449, 138454. [Google Scholar] [CrossRef]
- Li, Y.C.; Min, X.B.; Ke, Y.; Liu, D.G.; Tang, C.J. Preparation of red mud-based geopolymer materials from MSWI fly ash and red mud by mechanical activation. Waste Manag. 2019, 83, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.F.; Zhang, J.; Li, S.C.; Lin, C.J.; Gao, Y.F.; Liu, C. Feasibility of preparing red mud-based cementitious materials: Synergistic utilization of industrial solid waste, waste heat, and tail gas. J. Clean. Prod. 2021, 285, 124896. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.M.; Zhang, Z.Q.; Liu, Y. Synergistic utilization, critical mechanisms, and environmental suitability of bauxite residue (red mud) based multi-solid wastes cementitious materials and special concrete. J. Environ. Manag. 2024, 361, 121255. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.G.; Liu, X.M.; Zhu, X.; Zhu, W.X.; Yue, J.W. Synergistic effect of red mud, desulfurized gypsum and fly ash in cementitious materials: Mechanical performances and microstructure. Constr. Build. Mater. 2023, 404, 133302. [Google Scholar] [CrossRef]
- Adesina, A. Synthesis, characterization, and efficacy of alkali-activated materials from mine tailings: A review. Waste Manag. 2025, 191, 23–46. [Google Scholar] [CrossRef] [PubMed]
- Simonsen, A.M.T.; Solismaa, S.; Hansen, H.K.; Jensen, P.E. Evaluation of mine tailings’ potential as supplementary cementitious materials based on chemical, mineralogical and physical characteristics. Waste Manag. 2020, 102, 710–721. [Google Scholar] [CrossRef] [PubMed]
- Waleed, M.; Alshawmar, F. Enhancing mechanical properties of low plasticity soil through coal and silica fume stabilization. Sci. Rep. 2025, 15, 9990. [Google Scholar] [CrossRef] [PubMed]
- Umar, I.H.; Lin, H.; Ibrahim, A.S. Laboratory Testing and Analysis of Clay Soil Stabilization Using Waste Marble Powder. Appl. Sci. 2023, 13, 9274. [Google Scholar] [CrossRef]
- Cai, D.G.; Ouyang, M.Z.; Bao, X.Y.; Zhang, Q.L.; Bi, Z.Q.; Yan, H.Y.; Li, S.M.; Shi, Y.F. Performance Evaluation of Stabilized Soils with Selected Common Waste Materials of Rice Husk Ash, Steel Slag and Iron Tailing Powder. Materials 2025, 18, 346. [Google Scholar] [CrossRef] [PubMed]
- Pastor, J.L.; Chai, J.C.; Sánchez, I. Strength and Microstructure of a Clayey Soil Stabilized with Natural Stone Industry Waste and Lime or Cement. Appl. Sci. 2023, 13, 2583. [Google Scholar] [CrossRef]
- Gücek, S.; Gürer, C.; Žlender, B.; Taciroğlu, M.V.; Korkmaz, B.E.; Gürkan, K.; Bračko, T.; Macuh, B.; Varga, R.; Jelušič, P. Use of Lignin, Waste Tire Rubber, and Waste Glass for Soil Stabilization. Appl. Sci. 2024, 14, 7532. [Google Scholar] [CrossRef]
- Tanyildizi, M.; Uz, V.E.; Gökalp, I. Utilization of waste materials in the stabilization of expansive pavement subgrade: An extensive review. Constr. Build. Mater. 2023, 398, 132435. [Google Scholar] [CrossRef]
- Ikeagwuani, C.C.; Nwonu, D.C. Application of fuzzy logic and grey based Taguchi approach for additives optimization in expansive soil treatment. Road Mater. Pavement Des. 2022, 23, 849–873. [Google Scholar] [CrossRef]
- Tang, P.P.; Javadi, A.A.; Vinai, R. Calcium carbide residue for clay stabilisation: Mechanical and microstructural properties. Transp. Geotech. 2025, 51, 101543. [Google Scholar] [CrossRef]
- Ikeagwuani, C.C.; Alexander, T.C.; Odumade, A.O. Evaluation of strength development and micro-pore characteristics of stabilized expansive soil. Environ. Earth Sci. 2024, 83, 38. [Google Scholar] [CrossRef]
- Ikeagwuani, C.C.; Nwonu, D.C.; Onah, H.N. Min-max fuzzy goal programming—Taguchi model for multiple additives optimization in expansive soil improvement. Int. J. Numer. Anal. Methods Geomech. 2021, 45, 431–456. [Google Scholar] [CrossRef]
- Nwonu, D.C.; Onyia, M.E. Novel grey-vector optimization of desiccation-induced shrinkage and strength of industrial waste-based soil-composite binder as sustainable construction material. J. Mater. Cycles Waste Manag. 2023, 25, 2123–2134. [Google Scholar] [CrossRef]
- Hamed, E.; Demiröz, A. Optimization of geotechnical characteristics of clayey soils using fly ash and granulated blast furnace slag-based geopolymer. Constr. Build. Mater. 2024, 441, 137488. [Google Scholar] [CrossRef]
- Ashraf, M.S.; Ghouleh, Z.; Shao, Y.X. Production of eco-cement exclusively from municipal solid waste incineration residues. Resour. Conserv. Recycl. 2019, 149, 332–342. [Google Scholar] [CrossRef]
- Xie, Z.L.; Qian, Z.Z.; Wang, H.; Qi, Y.Z.; Yue, B. Synergistic Preparation and Mechanistic Investigation of Full Industrial Solid Waste-Based Cementitious Materials for Aeolian Sand Stabilization. Appl. Sci. 2025, 15, 3858. [Google Scholar] [CrossRef]
- Costa, F.N.; Ribeiro, D.V. Reduction in CO2 emissions during production of cement, with partial replacement of traditional raw materials by civil construction waste (CCW). J. Clean. Prod. 2020, 276, 123302. [Google Scholar] [CrossRef]
- Taylor, H.F.W. Cement Chemistry; Thomas Telford: London, UK, 1997; Volume 2. [Google Scholar]
- Vilaplana, A.S.D.; Ferreira, V.J.; López-Sabirón, A.M.; Aranda-Usón, A.; Lausín-González, C.; Berganza-Conde, C.; Ferreira, G. Utilization of Ladle Furnace slag from a steelwork for laboratory scale production of Portland cement. Constr. Build. Mater. 2015, 94, 837–843. [Google Scholar] [CrossRef]
- Qian, Z.Z.; Sheng, M.Q.; Huang, F.M.; Lu, X.L. Uplift Performance of Plate Anchors in Cement-Stabilised Aeolian Sand. Front. Earth Sci. 2021, 9, 783148. [Google Scholar] [CrossRef]
- Yang, H.; Qian, Z.Z.; Yue, B.; Xie, Z.L. Effects of Cement Dosage, Curing Time, and Water Dosage on the Strength of Cement-Stabilized Aeolian Sand Based on Macroscopic and Microscopic Tests. Materials 2024, 17, 3946. [Google Scholar] [CrossRef] [PubMed]
- Elipe, M.G.M.; López-Querol, S. Aeolian sands: Characterization, options of improvement and possible employment in construction—The State-of-the-art. Constr. Build. Mater. 2014, 73, 728–739. [Google Scholar] [CrossRef]
- Cui, Q.; Liu, G.; Zhang, Z.H.; Fang, Y.Q.; Gu, X.D. Experimental Investigation on the Strength and Microscopic Properties of Cement-Stabilized Aeolian Sand. Buildings 2023, 13, 395. [Google Scholar] [CrossRef]
- Liu, W.Z.; Huang, X.J.; Yin, W.H.; Liu, G.Y. Static and dynamic characteristics of cement-treated and untreated aeolian sand from the Tengger desert hinterland: Laboratory tests and prediction models. Constr. Build. Mater. 2025, 458, 139733. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, J.X.; Zhou, N. Early-Age Strength of Aeolian Sand-Based Cemented Backfilling Materials: Experimental Results. Arab. J. Sci. Eng. 2018, 43, 1697–1708. [Google Scholar] [CrossRef]
- Yang, X.; Hu, Z.Q.; Wang, Y.; Wang, X.L. Aeolian sand stabilized by using fiber- and silt-reinforced cement: Mechanical properties, microstructure evolution, and reinforcement mechanism. Constr. Build. Mater. 2024, 411, 134750. [Google Scholar] [CrossRef]
- Zhang, X.D.; Geng, J.; Pang, S.; Su, L.J.; Cai, G.J.; Zhou, Z.C. Microscopic Properties and Splitting Tensile Strength of Fiber-Modified Cement-Stabilized Aeolian Sand. J. Mater. Civ. Eng. 2023, 35, 04023128. [Google Scholar] [CrossRef]
- Liu, J.; Wang, B.; Hu, C.T.; Chen, J.G.; Zhu, S.Y.; Xu, X.D. Multiscale study of the road performance of cement and fly ash stabilized aeolian sand gravel base. Constr. Build. Mater. 2023, 397, 131842. [Google Scholar] [CrossRef]
- GB/T 18046-2017; Ground Granulated Blast Furnace Slag Used for Cement, Mortar, and Concrete. Standards Press of China: Beijing, China, 2017.
- ISO-679-2020; Cement—Test Methods—Determination of Strength. Standards Press of China: Beijing, China, 2020.
- ASTM D2487-2025; Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM: West Conshohocken, PA, USA, 2025.
- GB/T 17671-2021; Test Method of Cement Mortar Strength (ISO Method). Standards Press of China: Beijing, China, 2021.
- ASTM D5102; Standard Test Method for Unconfined Compressive Strength of Compacted Soil-Lime Mixtures. ASTM: West Conshohocken, PA, USA, 2017.
- Ba, H.J.; Li, J.J.; Ni, W.; Li, Y.; Ju, Y.J.; Zhao, B.; Wen, G.P.; Hitch, M. Effect of calcium to silicon ratio on the microstructure of hydrated calcium silicate gels prepared under medium alkalinity. Constr. Build. Mater. 2023, 379, 131240. [Google Scholar] [CrossRef]
- Gong, J.W.; Zhang, K.; Xie, G.C.; Shi, K.B.; Zhu, Y. Factors Affecting Synthesized C-S-H CO2 Uptake: Initial Alkalinity and Ca/Si. Buildings 2025, 15, 1264. [Google Scholar] [CrossRef]
- Shen, X.Y.; Feng, P.; Zhang, Q.; Lu, J.Y.; Liu, X.; Ma, Y.F.; Jin, P.; Wang, W.; Ran, Q.P.; Hong, J.X. Toward the formation mechanism of synthetic calcium silicate hydrate (C-S-H)- pH and kinetic considerations. Cem. Concr. Res. 2023, 172, 107248. [Google Scholar] [CrossRef]
- Liang, S.H.; Chen, J.T.; Guo, M.X.; Feng, D.L.; Liu, L.; Qi, T. Utilization of pretreated municipal solid waste incineration fly ash for cement-stabilized soil. Waste Manag. 2020, 105, 425–432. [Google Scholar] [CrossRef] [PubMed]
- JTG/T F20-2015; Technical Guidelines for Construction of Highway Roadbases. China Communications Press: Beijing, China, 2015.
NO. | Proportion (%) | TCM | ||||||
---|---|---|---|---|---|---|---|---|
SS | GGBFS | PS | CS | DG | SM | IM | KH | |
1 | 15.00 | 10.00 | 20.00 | 40.00 | 15 | 1.61 | 0.79 | 0.89 |
2 | 11.67 | 13.33 | 20.00 | 40.00 | 1.78 | 1.07 | 0.85 | |
3 | 11.67 | 10.00 | 23.33 | 40.00 | 1.91 | 0.94 | 0.87 | |
4 | 8.33 | 16.67 | 20.00 | 40.00 | 1.98 | 1.51 | 0.82 | |
5 | 8.33 | 13.33 | 23.33 | 40.00 | 2.13 | 1.35 | 0.84 | |
6 | 8.33 | 10.00 | 26.67 | 40.00 | 2.31 | 1.19 | 0.86 | |
7 | 5.00 | 20.00 | 20.00 | 40.00 | 2.20 | 2.29 | 0.80 | |
8 | 5.00 | 16.67 | 23.33 | 40.00 | 2.38 | 2.08 | 0.81 | |
9 | 5.00 | 13.33 | 26.67 | 40.00 | 2.59 | 1.86 | 0.83 | |
10 | 5.00 | 10.00 | 30.00 | 40.00 | 2.85 | 1.64 | 0.84 | |
11 | 11.25 | 11.25 | 21.25 | 41.25 | 1.85 | 1.00 | 0.90 | |
12 | 6.25 | 16.25 | 21.25 | 41.25 | 2.18 | 1.77 | 0.85 | |
13 | 6.25 | 11.25 | 26.25 | 41.25 | 2.47 | 1.48 | 0.87 | |
14 | 11.67 | 10.00 | 20.00 | 43.33 | 1.78 | 0.91 | 0.97 | |
15 | 8.33 | 13.33 | 20.00 | 43.33 | 1.99 | 1.30 | 0.93 | |
16 | 8.33 | 10.00 | 23.33 | 43.33 | 2.15 | 1.14 | 0.95 | |
17 | 5.00 | 16.67 | 20.00 | 43.33 | 2.22 | 2.00 | 0.90 | |
18 | 5.00 | 13.33 | 23.33 | 43.33 | 2.43 | 1.79 | 0.92 | |
19 | 5.00 | 10.00 | 26.67 | 43.33 | 2.67 | 1.57 | 0.93 | |
20 | 6.25 | 11.25 | 21.25 | 46.25 | 2.22 | 1.40 | 1.02 | |
21 | 8.33 | 10.00 | 20.00 | 46.67 | 2.00 | 1.10 | 1.06 | |
22 | 5.00 | 13.33 | 20.00 | 46.67 | 2.26 | 1.72 | 1.02 | |
23 | 5.00 | 10.00 | 23.33 | 46.67 | 2.48 | 1.50 | 1.04 | |
24 | 5.00 | 10.00 | 20.00 | 50.00 | 2.30 | 1.44 | 1.16 | |
25 | 7.30 | 13.71 | 19.42 | 44.72 | 2.03 | 1.42 | 0.97 |
NO. | Proportion (%) | UCS (MPa) | ||||
---|---|---|---|---|---|---|
SS | GGBFS | PS | CS | DG | ||
1 | 15.00 | 10.00 | 20.00 | 40.00 | 15 | 5.90 |
2 | 11.67 | 13.33 | 20.00 | 40.00 | 11.20 | |
3 | 11.67 | 10.00 | 23.33 | 40.00 | 7.91 | |
4 | 8.33 | 16.67 | 20.00 | 40.00 | 11.98 | |
5 | 8.33 | 13.33 | 23.33 | 40.00 | 9.83 | |
6 | 8.33 | 10.00 | 26.67 | 40.00 | 7.88 | |
7 | 5.00 | 20.00 | 20.00 | 40.00 | 16.35 | |
8 | 5.00 | 16.67 | 23.33 | 40.00 | 12.71 | |
9 | 5.00 | 13.33 | 26.67 | 40.00 | 10.13 | |
10 | 5.00 | 10.00 | 30.00 | 40.00 | 9.24 | |
11 | 11.25 | 11.25 | 21.25 | 41.25 | 10.13 | |
12 | 6.25 | 16.25 | 21.25 | 41.25 | 10.60 | |
13 | 6.25 | 11.25 | 26.25 | 41.25 | 8.96 | |
14 | 11.67 | 10.00 | 20.00 | 43.33 | 8.24 | |
15 | 8.33 | 13.33 | 20.00 | 43.33 | 14.20 | |
16 | 8.33 | 10.00 | 23.33 | 43.33 | 8.53 | |
17 | 5.00 | 16.67 | 20.00 | 43.33 | 11.83 | |
18 | 5.00 | 13.33 | 23.33 | 43.33 | 9.53 | |
19 | 5.00 | 10.00 | 26.67 | 43.33 | 7.72 | |
20 | 6.25 | 11.25 | 21.25 | 46.25 | 7.36 | |
21 | 8.33 | 10.00 | 20.00 | 46.67 | 7.05 | |
22 | 5.00 | 13.33 | 20.00 | 46.67 | 11.47 | |
23 | 5.00 | 10.00 | 23.33 | 46.67 | 9.85 | |
24 | 5.00 | 10.00 | 20.00 | 50.00 | 6.01 | |
25 | 7.30 | 13.71 | 19.42 | 44.72 | 8.35 |
Source | Degree of Freedom, DOF | Sequential Sums of Squares, Seq S | Sequential Mean Squares, Seq MS | p-Value | |
---|---|---|---|---|---|
Linear | 3 | 103.18 | 4.62 | 0.083 | |
Quadratic | SS×GGBFS | 1 | 1.423 | 8.835 | 0.040 |
SS×CS | 1 | 2.888 | 7.536 | 0.055 | |
GGBFS×PS | 1 | 3.356 | 6.427 | 0.073 | |
PS×CS | 1 | 0.331 | 7.892 | 0.050 | |
Cubic | SS×GGBFS×CCR | 1 | 2.353 | 9.082 | 0.037 |
GGBFS×PS×CCR | 1 | 7.462 | 7.462 | 0.056 | |
Residual error | 14 | 24.008 | 1.715 | ||
Total | 23 | 145.010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Z.; Qian, Z.; Lu, X.; Yue, B.; Su, W.; Tian, M. Optimal Design and Application of Universal Cementitious Material Prepared Using Full Industrial Solid Wastes. Materials 2025, 18, 3485. https://doi.org/10.3390/ma18153485
Xie Z, Qian Z, Lu X, Yue B, Su W, Tian M. Optimal Design and Application of Universal Cementitious Material Prepared Using Full Industrial Solid Wastes. Materials. 2025; 18(15):3485. https://doi.org/10.3390/ma18153485
Chicago/Turabian StyleXie, Zilu, Zengzhen Qian, Xianlong Lu, Bing Yue, Wendi Su, and Mengze Tian. 2025. "Optimal Design and Application of Universal Cementitious Material Prepared Using Full Industrial Solid Wastes" Materials 18, no. 15: 3485. https://doi.org/10.3390/ma18153485
APA StyleXie, Z., Qian, Z., Lu, X., Yue, B., Su, W., & Tian, M. (2025). Optimal Design and Application of Universal Cementitious Material Prepared Using Full Industrial Solid Wastes. Materials, 18(15), 3485. https://doi.org/10.3390/ma18153485