Cold Atmospheric Plasma Treatment of Zirconia to Improve Its Bond Strength and Longevity with Dental Cement
Abstract
1. Introduction
2. Materials and Methods
2.1. Zirconia Test Specimen Preparation
2.2. Cold Atmospheric Plasma Treatment
2.3. Micro-Shear Bond Strength (μSBS) Testing
2.4. Surface–Water Contact Angle Measurements
2.5. Surface Examination
2.6. Data Analysis
3. Results
3.1. Micro-Shear Bond Strength (μSBS) Test Results
3.2. Surface–Water Contact Angle Changes
3.3. Surface Morphology and Surface Roughness Changes
4. Discussion
4.1. CAP Treatment Effects of Zirconia on Bond Strength and Durability
4.2. CAP Treatment Effects on Surface Energy and Surface Morphology of Zirconia
4.3. Plausible Mechanisms of CAP Treatment for Bond Enhancement
5. Conclusions
- The CAP treatment significantly enhanced the initial bond strength between zirconia and resin cement, with micro-shear bond strength increased to 38.3 ± 5.6 MPa (a 77.3% increase) as compared with the 21.6 ± 7.9 MPa of the controls without plasma treatment.
- The plasma treatment led to a decrease in the water surface contact angle of the zirconia, resulting in increased water wettability, surface hydrophilicity, and surface energy without altering its surface morphology.
- After 30 days of storage in 37 °C deionized (DI) water and 1000 cycles of thermal cycling (TC) between 5 °C and 55 °C, more durable bond strength was observed with the CAP-treated zirconia specimens, highlighting the long-term stability of the interfacial bond achieved with CAP treatment.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CAPs | Cold atmospheric plasmas |
DI | Deionized |
µSBS | Micro-shear bond strength |
RNS | Reactive nitrogen species |
ROS | Reactive oxygen species |
TC | Thermal cycling |
References
- Fernando, Z.; Russo, S.; Sorrentino, R. From porcelain-fused-to-metal to zirconia: Clinical and experimental considerations. Dent. Mater. 2011, 27, 83–96. [Google Scholar] [CrossRef]
- Blatz, M.B.; Phark, J.-H.; Ozer, F.; Mante, F.K.; Saleh, N.; Bergler, M.; Sadan, A. In vitro comparative bond strength of contemporary self-adhesive resin cements to zirconium oxide ceramic with and without air-particle abrasion. Clin. Oral Investig. 2010, 14, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Burke, F.J.; Fleming, G.J.; Nathanson, D.; Marquis, P.M. Are adhesive technologies needed to support ceramics? An assessment of the current evidence. J. Adhes. Dent. 2002, 4, 7–22. [Google Scholar] [PubMed]
- Huang, B.; Chen, M.; Wang, J.; Zhang, X. Advances in zirconia-based dental materials: Properties, classification, applications, and future prospects. J. Dent. 2024, 147, 105111. [Google Scholar] [CrossRef] [PubMed]
- Shahmiri, R.; Standard, O.C.; Hart, J.N.; Sorrell, C.C. Optical properties of zirconia ceramics for esthetic dental restorations: A systematic review. J. Prosthet. Dent. 2018, 119, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.; Al Kheraif, A.A.A.; Jamaluddin, S.; Elsharawy, M.; Divakar, D.D. Recent trends in surface treatment methods for bonding composite cement to zirconia: A review. J. Adhes. Dent. 2017, 19, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Inokoshi, M.; De Munck, J.; Minakuchi, S.; Van Meerbeek, B. Meta-analysis of bonding effectiveness to zirconia ceramics. J. Dent. Res. 2014, 93, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Komine, F.; Markus, B.B.; Hideo, M. Current status of zirconia-based fixed restorations. J. Oral Sci. 2010, 52, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Lung, C.Y.K.; Matinlinna, J.P. Aspects of silane coupling agents and surface conditioning in dentistry: An overview. Dent. Mater. 2012, 28, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Alrabeah, G.; Alomar, S.; Almutairi, A.; Alali, H.; ArRejaie, A. Analysis of the effect of thermocycling on bonding cements to zirconia. Saudi Dent. J. 2023, 35, 734–740. [Google Scholar] [CrossRef] [PubMed]
- D’Amario, M.; Campidoglio, M.; Morresi, A.L.; Luciani, L.; Marchetti, E.; Baldi, M. Effect of thermocycling on the bond strength between dual-cured resin cements and zirconium-oxide ceramics. J. Oral Sci. 2010, 52, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Rigos, A.E.; Sarafdou, K.; Kontonashi, E. Zirconia bond strength durability following artificial aging: A systematic review and meta-analysis of in vitro studies. Jpn. Dent. Sci. Rev. 2023, 59, 138–159. [Google Scholar] [CrossRef] [PubMed]
- Sladek, R.E.J.; Stoffels, E. Deactivation of Escherichia coli by the plasma needle. J. Phys. D Appl. Phys. 2005, 38, 1716. [Google Scholar] [CrossRef]
- Sladek, R.E.J.; Stoffels, E.; Walraven, R.; Tielbeek, P.J.A.; Koollhoven, R.A. Plasma treatment of dental cavities: A feasibility study. IEEE Trans. Plasma Sci. 2004, 32, 1540–1543. [Google Scholar] [CrossRef]
- Laroussi, M.; Tendero, C.; Lu, X.; Alla, S.; Hynes, W.L. Inactivation of bacteria by the plasma pencil. Plasma Process. Polym. 2006, 3, 470–473. [Google Scholar] [CrossRef]
- Cha, S.; Park, Y.S. Plasma in dentistry. Clin. Plasma Med. 2014, 2, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Silva, N.R.; Coelho, P.G.; Valverde, G.B.; Becker, K.; Ihrk, R.; Quade, A.; Thompson, V.P. Surface characterization of Ti and Y-TZP following non-thermal plasma exposure. J. Biomed. Mater. Res. B Appl. Biomater. 2011, 99, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Aanaszak, A.; Terefinko, D.; Motyka-Pomagruk, A.; Grzebieluch, W.; Wdowiak, J.; Pohl, P.; Śledź, W.; Malicka, B.; Jamroz, P.; Skoskiewicz-Malinowska, K.; et al. Possibilities of application of cold atmospheric pressure plasmas in dentistry—A narrative review. Plasma Process. Polym. 2025, 22, e2400246. [Google Scholar] [CrossRef]
- Ritts, A.C.; Li, H.; Yu, Q.; Xu, C.; Yao, X.; Hong, L.; Wang, Y. Dentin surface treatment using a non-thermal argon plasma brush for interfacial bonding improvement in composite restoration. Eur. J. Oral Sci. 2010, 118, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, Q.; Yu, Q.S.; Wang, Y. Nonthermal Atmospheric Plasmas in Dental Restoration. J. Dent. Res. 2016, 95, 496–505. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Okawa, T.; Fujii, T.; Tanaka, M. Influence of plasma treatment on surface properties of zirconia. J. Osaka Dent. Univ. 2016, 50, 79–84. [Google Scholar]
- Liu, T.; Hong, L.; Hottel, T.; Dong, X.; Yu, Q.; Chen, M. Non-thermal plasma enhanced bonding of resin cement to zirconia ceramic. Clin. Plasma Med. 2016, 4, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.Y.; Liu, M.Y.; Li, J.; Liu, X.Q.; Liao, Y.; Zhan, L.L.; Zhu, X.M.; Li, H.P.; Tan, J. Effects of cold atmospheric plasma treatment on resin bonding to high-translucency zirconia ceramics. Dent. Mater. J. 2022, 41, 896–904. [Google Scholar] [CrossRef] [PubMed]
- Miura, S.; Fujisawa, M.; Vallittu, P.; Lassila, L. Effects of plasma surface treatment on the bond strength of zirconia with an adhesive resin luting agent. Dent. Mater. J. 2024, 43, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Kobes, K.G.; Vandewalle, K.S. Bond strength of resin cements to zirconia conditioned with primers. Gen. Dent. 2013, 61, 73–76. [Google Scholar] [PubMed]
- Duan, Y.; Huang, C.; Yu, Q.S. Cold plasma brush generated at atmospheric pressure. Rev. Sci. Instrum. 2007, 78, 015104. [Google Scholar] [CrossRef] [PubMed]
- ISO 29022:2013(E); Dentistry—Adhesion—Notched-Edge Shear Bond Strength Test. The International Organization for Standardization (ISO): Geneva, Switzerland, 2013.
- Qeblawi, D.M.; Munoz, C.A.; Brewer, J.D.; Monaco, E.A., Jr. The effect of zirconia surface treatment on flexural strength and shear bond strength to a resin cement. J. Prosthet. Dent. 2010, 103, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Li, H.; Wang, Y.; Yu, Q.S. Plasma treatment of dentin surfaces for improving self-etching adhesive/dentin interface bonding. Clin. Plasma Med. 2015, 3, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, A.; Rueppell, A.; Schindler, A.; Zylla, I.M.; Seifert, H.J.; Nothdurft, F.; Hannig, M.; Rupf, S. Modification of enamel and dentin surfaces by non-thermal atmospheric plasma. Plasma Process. Polym. 2013, 10, 262–270. [Google Scholar] [CrossRef]
- Ujino, D.; Nishizaki, H.; Hguchi, S.; Konasa, S.; Okazaki, J. Effect of plasma treatment of titanium surface on biocompatibility. Appl. Sci. 2019, 9, 2257. [Google Scholar] [CrossRef]
- da Silva, B.T.F.; Trevelin, L.T.; Teixeira, F.d.S.; Salvadori, M.C.; Cesar, P.F.; Matos, A.B. Non-thermal plasma increase bond strength of zirconia to a resin cement. Braz. Dent. Sci. 2018, 21, 210–219. [Google Scholar] [CrossRef]
- Shao, T.; Wang, R.; Zhang, C.; Yan, P. Atmospheric-pressure pulsed discharges and plasmas: Mechanism, characteristics and applications. High Volt. 2018, 3, 14–20. [Google Scholar] [CrossRef]
- Jia, C.; Chen, P.; Liu, W.; Li, B.; Wang, Q. Surface treatment of aramid fiber by air dielectric barrier discharge plasma at atmospheric pressure. Appl. Surf. Sci. 2011, 257, 4165–4170. [Google Scholar] [CrossRef]
- Xie, J.; Xin, D.; Cao, H.; Wang, C.; Zhao, Y.; Yao, L.; Ji, F.; Qiu, Y. Improving carbon fiber adhesion to polyimide with atmospheric pressure plasma treatment. Surf. Coat. Technol. 2011, 206, 191–201. [Google Scholar] [CrossRef]
- Liao, Y.; Lombardo, S.J.; Yu, Q. Argon Plasma Treatment Effects on the Micro-Shear Bond Strength of Lithium Disilicate with Dental Resin Cements. Materials 2023, 16, 5376. [Google Scholar] [CrossRef] [PubMed]
- de Souza, G.; Hennig, D.; Aggarwal, A.; Tam, L.E. The use of MDP-based materials for bonding to zirconia. J. Prosthet. Dent. 2014, 112, 895–902. [Google Scholar] [CrossRef] [PubMed]
- Gale, M.S.; Darvell, B.W. Thermal cycling procedures for laboratory testing of dental restorations. J. Dent. 1999, 27, 89–99. [Google Scholar] [CrossRef] [PubMed]
Components | % |
---|---|
Ethanol | 75–85 |
Bisphenol A-glycidyl methacrylate (BisGMA) | 5–10 |
2-hydroxyethyl methacrylate | 5–10 |
10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) | 1–5 |
Triethylamine | <1 |
Zirconia Samples | Ra (nm) | Rq (nm) |
---|---|---|
Untreated zirconia | 282 ± 76 | 336 ± 61 |
Sandblasted zirconia | 867 ± 64 | 1190 ± 17 |
Sandblasted and 300 s plasma-treated zirconia | 924 ± 49 | 1227 ± 59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Y.; Phan, T.; Yu, Q. Cold Atmospheric Plasma Treatment of Zirconia to Improve Its Bond Strength and Longevity with Dental Cement. Materials 2025, 18, 3482. https://doi.org/10.3390/ma18153482
Liao Y, Phan T, Yu Q. Cold Atmospheric Plasma Treatment of Zirconia to Improve Its Bond Strength and Longevity with Dental Cement. Materials. 2025; 18(15):3482. https://doi.org/10.3390/ma18153482
Chicago/Turabian StyleLiao, Yixuan, ThiThuHa Phan, and Qingsong Yu. 2025. "Cold Atmospheric Plasma Treatment of Zirconia to Improve Its Bond Strength and Longevity with Dental Cement" Materials 18, no. 15: 3482. https://doi.org/10.3390/ma18153482
APA StyleLiao, Y., Phan, T., & Yu, Q. (2025). Cold Atmospheric Plasma Treatment of Zirconia to Improve Its Bond Strength and Longevity with Dental Cement. Materials, 18(15), 3482. https://doi.org/10.3390/ma18153482