Thermal Conductivity in Mortar Samples with Copper Mine Tailings
Abstract
1. Introduction and Literature Review
2. Materials and Methods
2.1. TLS-50 Equipment
2.2. Materials
2.2.1. Cement
2.2.2. Aggregates
2.2.3. Copper Mine Tailings
3. Sample Preparation and Testing Procedures
4. Results and Discussions
Mortar Thermal Conductivity
5. Analysis of Results
5.1. Normality of the Data
5.2. Homogeneity of Variance
5.3. Multiple Range Test
6. Conclusions
- The TLS methodology proved effective for precise thermal measurements in mortar samples with tailings.
- Mineralogical characterization confirmed the quartz-rich composition (43.9%) of tailings as the key factor influencing their thermal behavior.
- The results demonstrated a significant increase in thermal conductivity (0.32 to 0.52 W/m·K) with a higher tailings content, establishing clear differences between the replacement levels, except for the range between 30 and 40%, in which no change was observed. Statistical validation confirmed these trends were significant, with p < 0.05.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Damineli, B.L.; Kemeid, F.M.; Aguiar, P.S.; John, V.M. Measuring the eco-efficiency of cement use. Cem. Concr. Compos. 2010, 32, 555–562. [Google Scholar] [CrossRef]
- Vieira, E.G.; Rezende, E.N. Sand mining and the environment: Is it possible to harmonize them? Rev. do Direito Público 2015, 10, 181. (In Portuguese) [Google Scholar] [CrossRef]
- Yu, Z.; Qin, N.; Huang, S.; Li, J.; Wang, Y. Performance Characteristics of Cemented Tailings Containing Crumb Rubber as a Filling Material. Adv. Mater. Sci. Eng. 2022, 2022, 1–10. [Google Scholar] [CrossRef]
- Shettima, A.U.; Hussin, M.W.; Ahmad, Y.; Mirza, J. Evaluation of iron ore tailings as replacement for fine aggregate in concrete. Constr. Build. Mater. 2016, 120, 72–79. [Google Scholar] [CrossRef]
- Lee, J.K.; Shang, J.Q. Thermal properties of mine tailings and tire crumbs mixtures. Constr. Build. Mater. 2013, 48, 636–646. [Google Scholar] [CrossRef]
- Wang, H.L.; Shang, J.Q.; Kovac, V.; Ho, K.S. Utilization of Atikokan coal fly ash in acid rock drainage control from Musselwhite Mine tailings. Can. Geotech. J. 2006, 43, 229–243. [Google Scholar] [CrossRef]
- Yeheyis, M.B.; Shang, J.Q.; Yanful, E.K. Long-term evaluation of coal fly ash and mine tailings co-placement: A site-specific study. J. Environ. Manag. 2009, 91, 237–244. [Google Scholar] [CrossRef]
- Bussière, B. Colloquium 2004: Hydrogeotechnical properties of hard rock tailings from metal mines and emerging geoenvironmental disposal approaches. Can. Geotech. J. 2007, 44, 1019–1052. [Google Scholar] [CrossRef]
- Ercikdi, B.; Cihangir, F.; Kesimal, A.; Deveci, H.; Alp, İ. Utilization of water-reducing admixtures in cemented paste backfill of sulphide-rich mill tailings. J. Hazard. Mater. 2010, 179, 940–946. [Google Scholar] [CrossRef]
- Behera, S.K.; Ghosh, C.N.; Mishra, D.P.; Singh, P.; Mishra, K.; Buragohain, J.; Mandal, P.K. Strength development and microstructural investigation of lead-zinc mill tailings based paste backfill with fly ash as alternative binder. Cem. Concr. Compos. 2020, 109, 103553. [Google Scholar] [CrossRef]
- Behera, S.K.; Mishra, D.P.; Singh, P.; Mishra, K.; Mandal, S.K.; Ghosh, C.N.; Kumar, R.; Mandal, P.K. Utilization of mill tailings, fly ash and slag as mine paste backfill material: Review and future perspective. Constr. Build. Mater. 2021, 309, 125120. [Google Scholar] [CrossRef]
- Onuaguluchi, O.; Eren, Ö. Recycling of copper tailings as an additive in cement mortars. Constr. Build. Mater. 2012, 37, 723–727. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, Y.; Liu, H.; Song, S. Fabrication and mechanism of cement-based waterproof material using silicate tailings from reverse flotation. Powder Technol. 2017, 315, 422–429. [Google Scholar] [CrossRef]
- Zhang, N.; Tang, B.; Liu, X. Cementitious activity of iron ore tailing and its utilization in cementitious materials, bricks and concrete. Constr. Build. Mater. 2021, 288, 123022. [Google Scholar] [CrossRef]
- Yin, Z.; Li, R.; Lin, H.; Chen, Y.; Wang, Y.; Zhao, Y. Analysis of Influencing Factors of Cementitious Material Properties of Lead–Zinc Tailings Based on Orthogonal Tests. Materials 2022, 16, 361. [Google Scholar] [CrossRef] [PubMed]
- Yellishetty, M.; Karpe, V.; Reddy, E.H.; Subhash, K.N.; Ranjith, P.G. Reuse of iron ore mineral wastes in civil engineering constructions: A case study. Resour. Conserv. Recycl. 2008, 52, 1283–1289. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, Y.; Kim, M.; Park, H. Preparation of high porosity bricks by utilizing red mud and mine tailing. J. Clean. Prod. 2019, 207, 490–497. [Google Scholar] [CrossRef]
- Li, R.; Zhou, Y.; Li, C.; Li, S.; Huang, Z. Recycling of industrial waste iron tailings in porous bricks with low thermal conductivity. Constr. Build. Mater. 2019, 213, 43–50. [Google Scholar] [CrossRef]
- Wei, Z.; Zhao, J.; Wang, W.; Yang, Y.; Zhuang, S.; Lu, T.; Hou, Z. Utilizing gold mine tailings to produce sintered bricks. Constr. Build. Mater. 2021, 282, 122655. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, C.; Li, S.; He, Y.; Liu, H. Preparation of permeable ceramic bricks with tungsten tailings by two-stage calcination technology. Constr. Build. Mater. 2024, 411, 134382. [Google Scholar] [CrossRef]
- Fall, M.; Célestin, J.C.; Han, F.S. Suitability of bentonite-paste tailings mixtures as engineering barrier material for mine waste containment facilities. Miner. Eng. 2009, 22, 840–848. [Google Scholar] [CrossRef]
- Qian, G.; Huang, T.; Bai, S. Use of Cement-Stabilized Granite Mill Tailings as Pavement Subbase. J. Mater. Civ. Eng. 2011, 23, 1575–1578. [Google Scholar] [CrossRef]
- Lee, J.K.; Shang, J.Q.; Jeong, S. Thermal conductivity of compacted fill with mine tailings and recycled tire particles. Soils Found. 2015, 55, 1454–1465. [Google Scholar] [CrossRef]
- Arunachalam, K.P.; Avudaiappan, S.; Maureira, M.; Garcia, F.C.; Monteiro, S.N.; Batista, I.D.; de Azevedo, A.R. Innovative use of copper mine tailing as an additive in cement mortar. J. Mater. Res. Technol. 2023, 25, 2261–2274. [Google Scholar] [CrossRef]
- Avudaiappan, S.; Gómez, R.; Betancourt, F.; Canales, C.; Chavez, M. Experimental investigations on sustainable mortar containing mining tailing as partial replacement of fine aggregate. Int. J. Min. Reclam. Environ. 2025, 39, 235–247. [Google Scholar] [CrossRef]
- Andrews, A.; Nyarko, E.F.; Adjaottor, A.A.; Nsiah-Baafi, E.; Adom-Asamoah, M. Reuse and stabilization of sulphide mine tailings as fine aggregate for construction mortar. J. Clean. Prod. 2022, 357, 131971. [Google Scholar] [CrossRef]
- Esmaeili, J.; Aslani, H.; Onuaguluchi, O. Reuse potentials of copper mine tailings in mortar and concrete composites. J. Mater. Civ. Eng. 2020, 32, 04020084. [Google Scholar] [CrossRef]
- Mendes, J.C.; Barreto, R.R.; de Paula, A.C.; da Fonseca Eloi, F.P.; Brigolini, G.J.; Peixoto, R.A. On the relationship between morphology and thermal conductivity of cement-based composites. Cem. Concr. Compos. 2019, 104, 103365. [Google Scholar] [CrossRef]
- Mendes, J.C.; Barreto, R.R.; Vanessa, V.; Lopes, A.V.; de Souza, A.; Peixoto, R.A. Coating mortars based on mining and industrial residues. J. Mater. Cycles Waste Manag. 2020, 22, 1569–1586. [Google Scholar] [CrossRef]
- Vo, D.; Thi, K.D.; Yehualaw, M.; Hwang, C.L.; Ngo, T.M.; Nguyen, H.A. Engineering Properties of Cement Mortar Produced with Mine Tailing as Fine Aggregate. In Proceedings of the 5th International Conference on Green Technology and Sustainable Development, Ho Chi Minh, Vietnam, 27–28 November 2020. [Google Scholar] [CrossRef]
- Ince, C.; Derogar, S.; Gurkaya, K.; Ball, R. Properties, durability and cost efficiency of cement and hydrated lime mortars reusing copper mine tailings of Lefke-Xeros in Cyprus. Constr. Build. Mater. 2021, 268, 121070. [Google Scholar] [CrossRef]
- Castán-Fernández, C.; Marcos-Robredo, G.; Castro-García, M.P.; Rey-Ronco, M.A.; Alonso-Sánchez, T. Development of a dry mortar with nanosilica and different types of industrial waste for the application in borehole heat exchangers. Constr. Build. Mater. 2022, 359, 129511. [Google Scholar] [CrossRef]
- Xiang, R.; Li, Y.; Sun, Y.; Hu, L. An appraisal application of zircon mine tailings in thermal insulating material via a sacrificial fugitive route. J. Build. Eng. 2023, 78, 107652. [Google Scholar] [CrossRef]
- Almeida, J.; Faria, P.; Ribeiro, A.B.; Silva, A.S. Effect of mining residues treated with an electrodialytic technology on cement-based mortars. Clean. Eng. Technol. 2020, 1, 100001. [Google Scholar] [CrossRef]
- Almeida, J.; Faria, P.; Ribeiro, A.B.; Santos-Silva, A. Cement-based mortars production applying mining residues treated with an electro-based technology and a thermal treatment: Technical and economic effects. Constr. Build. Mater. 2021, 280, 122483. [Google Scholar] [CrossRef]
- ASTM D5334; Standard Test Method for Determination of Thermal Conductivity of Soil and Rock by Thermal Needle Probe Procedure. ASTM Standards: West Conshohocken, PA, USA, 2008; pp. 1–8. [CrossRef]
- Conductors, I.; Society, E. IEEE Guide for Thermal Resistivity Measurements of Soils and Backfill Materials; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar] [CrossRef]
- Batty, W.J.; Probert, S.D.; Ball, M.; O’Callaghan, P.W. Use of the thermal-probe technique for the measurement of the apparent thermal conductivities of moist materials. Appl. Energy 1984, 18, 301–317. [Google Scholar] [CrossRef]
- Thermtest Instrument-Latin America. “Fuente de Línea Transitoria”. 2025. Available online: https://thermtest.com/latinamerica/tls-100 (accessed on 8 April 2025).
- Lockmuller, N.; Redgrove, J.; Kubičár, L. Measurement of thermal conductivity with the needle probe. High Temp.-High Press. 2003, 35/36, 127–138. [Google Scholar] [CrossRef]
- Neville, A.M. Properties of Concrete, 5th ed.; Pearson Education Limited: London, UK, 2011. [Google Scholar]
- ASTM D854; Standard Test Methods for Specific Gravity of Soil Solids by the Water Displacement Method. ASTM Standards: West Conshohocken, PA, USA, 2018.
- Powers, M.C. A new roundness scale for sedimentary particles. J. Sediment. Res. 1953, 23, 117–119. [Google Scholar] [CrossRef]
- Clauser, C.; Huenges, E. Rock Physics and Phase Relations. A Handbook of Physical Constants, 3rd ed.; American Geophysical Union: Washington, DC, USA, 1995. [Google Scholar]
- Maiza, P.J.; Marfil, S.A. Rocks as concrete material. Rev. de Geol. Apl. a la Ing. y al Ambiente 2010, 24, 1–11. (In Spanish) [Google Scholar]
- Suft, O.; Hagenauer, H.; Bertermann, D. Relationship Between Thermal Conductivity, Mineral Composition and Major Element Composition in Rocks from Central and South Germany. Geosciences 2025, 15, 19. [Google Scholar] [CrossRef]
- Gutierrez, M.V.; Gómez-Espina, R.; Larenas, C.; Gómez, R.; Avudaiappan, S. Effects of sulphuric-acid attack and chloride-ion penetration on cement mortar with copper tailings: Mechanical properties and technical considerations for uses in shotcrete. Int. J. Min. Reclam. Environ. 2025, 1–32. [Google Scholar] [CrossRef]
- Hu, L.; Wu, H.; Zhang, L.; Zhang, P.; Wen, Q. Geotechnical Properties of Mine Tailings. J. Mater. Civ. Eng. 2017, 29, 04016220. [Google Scholar] [CrossRef]
- Li, W.; Coop, M.R.; Senetakis, K.; Schnaid, F. The mechanics of a silt-sized gold tailing. Eng. Geol. 2018, 241, 97–108. [Google Scholar] [CrossRef]
- Okewale, I.A.; Grobler, H. Investigations into Grading Characteristics of Tailings. In Proceedings of the CIGOS 2021, Emerging Technologies and Applications for Green Infrastructure, Ha Long, Vietnam, 28–29 October 2021; pp. 1121–1127. [Google Scholar] [CrossRef]
- Li, W.; Coop, M.R. Mechanical behaviour of Panzhihua iron tailings. Can. Geotech. J. 2019, 56, 420–435. [Google Scholar] [CrossRef]
- Fjellerup, J.; Henriksen, U.; Jensen, A.D.; Jensen, P.A.; Glarborg, P. Heat Transfer in a Fixed Bed of Straw Char. Energy Fuels 2003, 17, 1251–1258. [Google Scholar] [CrossRef]
- Zhou, Z.Y.; Yu, A.B.; Zulli, P. A new computational method for studying heat transfer in fluid bed reactors. Powder Technol. 2010, 197, 102–110. [Google Scholar] [CrossRef]
- Lamond, J.F.; Pielert, J.H. Significance of Tests and Properties of Concrete and Concrete-Making Materials; ASTM International: West Conshohocken, PA, USA, 2006. [Google Scholar] [CrossRef]
- Zhang, W.; Min, H.; Gu, X.; Xi, Y.; Xing, Y. Mesoscale model for thermal conductivity of concrete. Constr. Build. Mater. 2015, 98, 8–16. [Google Scholar] [CrossRef]
- Ould-Lahoucine, C.; Sakashita, H.; Kumada, T. Measurement of thermal conductivity of buffer materials and evaluation of existing correlations predicting it. Nucl. Eng. Des. 2002, 216, 1–11. [Google Scholar] [CrossRef]
- Mitchell, J.; Tsung, K. Measurement of Soil Thermal Resistivity. J. Geotech. Eng. Div. 1978, 104, 1307–1320. [Google Scholar] [CrossRef]
- Gangadhara, M.; Singh, D.N. A generalized relationship to estimate thermal resistivity of soils. Can. Geotech. J. 1999, 36, 767–773. [Google Scholar] [CrossRef]
- Krishnaiah, S.; Singh, D.N. Determination of thermal properties of some supplementary cementing materials used in cement and concrete. Constr. Build. Mater. 2006, 20, 193–198. [Google Scholar] [CrossRef]
- Yun, T.S.; Santamarina, J.C. Fundamental study of thermal conduction in dry soils. Granul. Matter 2008, 10, 197–207. [Google Scholar] [CrossRef]
- Doncaster, P.; Davey, A. Analysis of Variance and Covariance. How to Choose and Construct Models for the Life Sciences; Cambridge University Press: New York, NY, USA, 2007. [Google Scholar]
Materials | Mortar, Rocks, and Polymers |
---|---|
Measuring Capacity | Bulk Properties |
Thermal Conductivity | 0.3 to 5 W/m·K |
Thermal Resistivity | 0.2 to 3.3 m·K/W |
Measuring Time | 1 to 90 min |
Precision | ±2% |
Temperature Range | −40 to 100 °C |
Parameter | Coarse Aggregate | Copper Mine Tailings |
---|---|---|
D80 (mm) | 1.36 | 0.26 |
D60 (mm) | 0.79 | 0.19 |
D30 (mm) | 0.48 | 0.079 |
D10 (mm) | 0.31 | 0.056 |
cc | 0.84 | 0.59 |
cu | 2.55 | 3.39 |
Type of Tailings | Source | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | K2O | Na2O |
---|---|---|---|---|---|---|---|---|---|
Copper tailings | Porphyry (Atacama, Chile) | 66.71 | 20.47 | 1.84 | 0.36 | 1.39 | 0.52 | 6.15 | 1.54 |
P2O5 | TiO2 | Cr2O3 | MnO | CuO | Rb2O | ZrO2 | BaO | ||
0.16 | 0.52 | 0.04 | 0.02 | 0.10 | 0.02 | 0.02 | 0.07 |
Sample Name | Aggregate Replacement (%) | Materials (%) | 28-Day Density (kg/m3) | ||||
---|---|---|---|---|---|---|---|
Cement | Coarse Aggregate | Mine Tailings | Water | Wet | Dry | ||
Control | 0 | 27.27 | 57.23 | 0 | 15.5 | 2761 | 2165 |
10 RCR | 10 | 27.27 | 51.51 | 5.72 | 15.5 | 2783 | 2250 |
20 RCR | 20 | 27.27 | 45.78 | 11.45 | 15.5 | 2667 | 2120 |
30 RCR | 30 | 27.27 | 40.06 | 17.17 | 15.5 | 2713 | 2102 |
40 RCR | 40 | 27.27 | 34.34 | 22.89 | 15.5 | 2809 | 2217 |
50 RCR | 50 | 27.27 | 28.62 | 28.62 | 15.5 | 2831 | 2190 |
Sample | cc | cu |
---|---|---|
10 RCR | 0.50 | 2.0 |
20 RCR | 1.0 | 4.0 |
30 RCR | 1.7 | 6.82 |
40 RCR | 1.36 | 6.11 |
50 RCR | 2.03 | 8.11 |
Mineral (%) | Coarse Aggregate | Mine Tailings | 10 RCR | 20 RCR | 30 RCR | 40 RCR | 50 RCR |
---|---|---|---|---|---|---|---|
albite | 64.6 | 23.5 | 60.5 | 56.4 | 52.3 | 48.2 | 44.1 |
diopside | 13.1 | - | 11.8 | 10.5 | 9.2 | 7.9 | 6.6 |
quartz | 11.8 | 43.9 | 15 | 18.2 | 21.4 | 24.6 | 27.9 |
forsterite | 8.5 | - | 7.7 | 6.8 | 6 | 5.1 | 4.3 |
andradite | 1.7 | - | 1.5 | 1.4 | 1.2 | 1 | 0.9 |
muscovite | - | 21.1 | 2.1 | 4.2 | 6.3 | 8.4 | 10.6 |
kaolinite | - | 11.5 | 1.2 | 2.3 | 3.5 | 4.6 | 5.8 |
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Sample | Count | Mean | Standard Deviation | Coefficient of Variation | Standardized Skewness | Standardized Kurtosis |
---|---|---|---|---|---|---|
Control | 8 | 0.323 | 0.0067 | 2.06 | −0.6703 | 0.113 |
10 RCR | 8 | 0.309 | 0.0078 | 2.53 | −1.301 | 0.680 |
20 RCR | 8 | 0.378 | 0.0092 | 2.44 | −0.826 | −0.502 |
30 RCR | 8 | 0.487 | 0.0060 | 1.23 | −0.596 | −0.588 |
40 RCR | 8 | 0.489 | 0.013 | 2.56 | 0.264 | −0.333 |
50 RCR | 8 | 0.504 | 0.013 | 2.50 | −1.003 | 0.590 |
Sum of Squares | Degrees of Freedom | Mean Square | F Value | p Value | |
---|---|---|---|---|---|
Model | 0.315 | 5 | 0.0629 | 697.86 | 0.0001 |
Error | 42 | 0.0038 | 9.02 × 10−5 |
Sample | Statistic | p-Value | Decision at Level (5%) |
---|---|---|---|
Control | 0.9255 | 0.47602 | Cannot reject normality |
10 RCR | 0.89068 | 0.23748 | Cannot reject normality |
20 RCR | 0.90219 | 0.3023 | Cannot reject normality |
30 RCR | 0.90141 | 0.29748 | Cannot reject normality |
40 RCR | 0.97125 | 0.90761 | Cannot reject normality |
50 RCR | 0.95308 | 0.7422 | Cannot reject normality |
Levene′s Test (Absolute Deviations) | DF | Sum of Squares | Mean Square | F Value | Prob > F |
---|---|---|---|---|---|
Model | 5 | 1.95162 × 10−4 | 3.90325 × 10−5 | 1.38361 | 0.24991 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daza, L.; Gómez, R.; Díaz-Noriega, R.; Gómez-Espina, R.; Skrzypkowski, K.; Jerez, O. Thermal Conductivity in Mortar Samples with Copper Mine Tailings. Materials 2025, 18, 3157. https://doi.org/10.3390/ma18133157
Daza L, Gómez R, Díaz-Noriega R, Gómez-Espina R, Skrzypkowski K, Jerez O. Thermal Conductivity in Mortar Samples with Copper Mine Tailings. Materials. 2025; 18(13):3157. https://doi.org/10.3390/ma18133157
Chicago/Turabian StyleDaza, Lucas, René Gómez, Ramón Díaz-Noriega, Roberto Gómez-Espina, Krzysztof Skrzypkowski, and Oscar Jerez. 2025. "Thermal Conductivity in Mortar Samples with Copper Mine Tailings" Materials 18, no. 13: 3157. https://doi.org/10.3390/ma18133157
APA StyleDaza, L., Gómez, R., Díaz-Noriega, R., Gómez-Espina, R., Skrzypkowski, K., & Jerez, O. (2025). Thermal Conductivity in Mortar Samples with Copper Mine Tailings. Materials, 18(13), 3157. https://doi.org/10.3390/ma18133157