Multi-Response Optimization of Aluminum Laser Spot Welding with Sinusoidal and Cosinusoidal Power Profiles Based on Taguchi–Grey Relational Analysis
Abstract
1. Introduction
2. Experimental Details and Materials
3. Methods and Configurations
3.1. Heat and Fluid Dynamics
3.2. Optimization Approach
3.2.1. Taguchi Design
3.2.2. Grey Relational Analysis (GRA)
- Grey relational analysis (GRA)
- Analysis of variance (ANOVA)
3.3. System, Software, and Calculation Details
4. Results and Discussion
4.1. Experimental Results and Validation
4.2. Numerical Results and Optimization Procedures
4.2.1. Keyhole Depth and Width
4.2.2. Thermal Response (Mean Temperature)
4.2.3. Process Stability and Fluctuations (Velocity and Forces)
4.3. GRA and ANOVA
4.3.1. Response Table for GRG
4.3.2. ANOVA Analysis of GRG and Key Factor Effects
5. Conclusions
- Seven of the first ten best cases in terms of the overall welding performance belonged to the cosinusoidal pulse shape. A cosinusoidal pulse shape (test 25) with 1000 W amplitude and 400 Hz was found to be the best case, while a sinusoidal counterpart (test 15) with 800 Hz and 4000 W amplitude had the worst performance.
- The GRA results demonstrate that the best welding performances were achieved at a low amplitude of 1000 W (six among the top ten performances). However, increasing the amplitude to its maximum (4000 W) reached its best performance (fourth place among all) only when the frequency was set to its minimum (100 Hz).
- High-frequency and high-power amplitude pulses tend to destabilize the process and degrade the multi-objective outcome, whereas low-amplitude power, slow pulses foster stable keyhole dynamics and uniform heating, even if the penetration is lower.
- Selecting lower frequencies (100–400 Hz) is crucial for maximizing weld quality, offering adequate penetration with significantly improved process stability.
- Amplitude, frequency, and the two-way interaction between them contributed the most to the weld quality and system performance, with amplitude having the most contribution.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclatures
Melting temperature; [K] | |
Vaporization temperature; [K] | |
Solidus temperature; [K] | |
Temperature; [K] | |
Smoothing interval of melting; [K] | |
Smoothing interval of vaporization; [K] | |
Thermal conductivity of solid; [W/m/K] | |
Thermal conductivity of liquid; [W/m/K] | |
Latent heat of fusion; [J/kg] | |
Latent heat of evaporation; [J/kg] | |
Universal gas constant; [J/mol/K] | |
Specific heat of solid; [J/kg/K] | |
Specific heat of liquid; [J/kg/K] | |
Dynamic viscosity of solid; [Pa.s] | |
Dynamic viscosity of liquid; [Pa.s] | |
Form factor for Gaussian distribution | |
Coefficient in Darcy’s law | |
Coefficient in Darcy’s law | |
Effective radius of a laser beam; [m] | |
Dendrite dimension; [m] | |
Molecular mass of aluminum; [kg/mol] | |
Convective heat transfer coefficient; [W/m2/K] | |
Laser frequency; [Hz] | |
A | Laser power amplitude [W] |
Gravity; [m/s2] | |
Pressure; [atm] | |
Velocity; [m/s] | |
Time; [s] | |
Darcy damping force; [N/m3] | |
Buoyancy force; [N/m3] | |
Volume fraction of fluid 1 | |
Volume fraction of fluid 2 | |
Gauss function around the melting temperature | |
Gauss function around the vaporization temperature | |
Constant representing the mushy zone morphology; [1/m2] | |
Saturated vapor pressure; [atm] | |
Atmospheric pressure; [atm] | |
Volume fraction of liquid | |
Volume fraction of solid | |
Normal vector on the vapor/liquid interface | |
Tangential vector on the vapor/liquid interface | |
Temporal laser distribution function used to apply pulses | |
n | Simulation steps |
Time-dependent value of the j-th response for the i-th test at time step t | |
Mean of over all simulation steps sampled from t = 0 to t = 0.01 s | |
Original values of the j-th response of the i-th test | |
Normalized values of the j-th response of the i-th test | |
Set of all values of the j-th response across all test cases (). | |
Deviation of the normalized response from the ideal normalized response | |
Minimum possible deviation | |
Maximum possible deviation | |
r | Radial direction in the 2D axisymmetric design |
z | Axial direction in the 2D axisymmetric design |
Greek | |
Level-set parameter; [m/s] | |
Deviation between two values | |
Level-set parameter; [m] | |
Delta function | |
Level-set function (variable) | |
Absorptivity of aluminum on 1064 nm laser | |
Surface emissivity; distinguishing coefficient ranges from 0 to 1 | |
Thermal expansion coefficient; [1/K] | |
Retro-diffusion coefficient | |
Density; [kg/m3] | |
Dynamic viscosity; [Pa.s] | |
Surface tension coefficient; [N/m] | |
Subscript | |
L | Liquid |
V | Vapor/vaporization |
m | Melting; total number of responses in the GRA approach |
Vol | Volume force |
g | Gas |
st | Surface tension |
ls | Level set |
Abbreviation | |
ANOVA | Analysis of variance |
GRA | Grey relational analysis |
GRC | Grey relational coefficient |
GRG | Grey relational grade |
RSD | Relative standard deviation |
SD | Standard deviation |
LS | Level set |
TEPT | Thermal-enthalpy porosity technique |
MMT | Modified mixture theory |
PW | Pulsed wave |
CW | Continuous wave |
PWM | Power wave modulation |
HAZ | Heat affected zone |
DOF | Degrees of freedom |
OA | Orthogonal array |
Sur | Surface tension |
Adj | Adjusted |
SS | Sum of squares |
MS | Mean squares |
CV | Cross-sectional view |
TV | Top view |
References
- Miller, W.S.; Zhuang, L.; Bottema, J.; Wittebrood, A.J.; De Smet, P.; Haszler, A.; Vieregge, A. Recent development in aluminium alloys for the automotive industry. Mater. Sci. Eng. A 2000, 280, 37–49. [Google Scholar] [CrossRef]
- Bunaziv, I.; Hovig, E.W.; Godinez Brizuela, O.E.; Zhang, K.; Ma, X.; Ren, X.; Eriksson, M.; Skjetne, P. CFD modeling for predicting imperfections in laser welding and additive manufacturing of aluminum alloys. J. Laser Appl. 2024, 36, 032010. [Google Scholar] [CrossRef]
- Schubert, E.; Klassen, M.; Zerner, I.; Walz, C.; Sepold, G. Light-weight structures produced by laser beam joining for future applications in automobile and aerospace industry. J. Mater. Process. Technol. 2001, 115, 2–8. [Google Scholar] [CrossRef]
- Wang, L.; Yao, M.; Gao, X.; Kong, F.; Tang, J.; Jun Kim, M. Keyhole stability and surface quality during novel adjustable-ring mode laser (ARM) ssswelding of aluminum alloy. Opt. Laser Technol. 2023, 161, 109202. [Google Scholar] [CrossRef]
- Bunaziv, I.; Akselsen, O.M.; Ren, X.; Nyhus, B.; Eriksson, M. Laser Beam and Laser-Arc Hybrid Welding of Aluminium Alloys. Metals 2021, 11, 1150. [Google Scholar] [CrossRef]
- Cavilha Neto, F.; Pereira, M.; dos Santos Paes, L.E.; Fredel, M.C. Assessment of power modulation formats on penetration depth for laser welding. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 286. [Google Scholar] [CrossRef]
- Hajavifard, R.; Motahari, M.; Özden, H.; Miyanaji, H.; Kafashi, S. The Effects of Pulse Shaping Variation in Laser Spot-Welding of Aluminum. Procedia Manuf. 2016, 5, 232–247. [Google Scholar] [CrossRef]
- Svenungsson, J.; Choquet, I.; Kaplan, A.F.H. Laser Welding Process—A Review of Keyhole Welding Modelling. Phys. Procedia 2015, 78, 182–191. [Google Scholar] [CrossRef]
- Fetzer, F.; Sommer, M.; Weber, R.; Weberpals, J.-P.; Graf, T. Reduction of pores by means of laser beam oscillation during remote welding of AlMgSi. Opt. Lasers Eng. 2018, 108, 68–77. [Google Scholar] [CrossRef]
- Pang, S.; Chen, W.; Zhou, J.; Liao, D. Self-consistent modeling of keyhole and weld pool dynamics in tandem dual beam laser welding of aluminum alloy. J. Mater. Process. Technol. 2015, 217, 131–143. [Google Scholar] [CrossRef]
- Chen, G.; Liu, J.; Shu, X.; Gu, H.; Zhang, B. Numerical simulation of keyhole morphology and molten pool flow behavior in aluminum alloy electron-beam welding. Int. J. Heat Mass Transf. 2019, 138, 879–888. [Google Scholar] [CrossRef]
- SaediArdahaei, S.; Pham, X.-T. Toward Stabilizing the Keyhole in Laser Spot Welding of Aluminum: Numerical Analysis. Materials 2024, 17, 4741. [Google Scholar] [CrossRef] [PubMed]
- SaediArdahaei, S.; Pham, X.-T. Comparative Numerical Analysis of Keyhole Shape and Penetration Depth in Laser Spot Welding of Aluminum with Power Wave Modulation. Thermo 2024, 4, 222–251. [Google Scholar] [CrossRef]
- Matsunawa, A.; Kim, J.-D.; Seto, N.; Mizutani, M.; Katayama, S. Dynamics of keyhole and molten pool in laser welding. J. Laser Appl. 1998, 10, 247–254. [Google Scholar] [CrossRef]
- Tsukamoto, S.; Kawaguchi, I.; Arakane, G.; Honda, H. Keyhole Behaviour in High Power Laser Welding. In First International Symposium on High-Power Laser Macroprocessing; SPIE: Bellingham, DC, USA, 2003; pp. 251–256. [Google Scholar]
- Zhang, M.; Wu, J.; Mao, C.; Cheng, B.; Shakhawat, H.M.D.; Li, H.; Wang, K.; Zhang, J.; Hu, Y.; Bi, Z. Impact of power modulation on weld appearance and mechanical properties during laser welding of AZ31B magnesium alloy. Opt. Laser Technol. 2022, 156, 108490. [Google Scholar] [CrossRef]
- Heider, A.; Weber, R.; Herrmann, D.; Herzog, P.; Graf, T. Power modulation to stabilize laser welding of copper. J. Laser Appl. 2015, 27, 022003. [Google Scholar] [CrossRef]
- Omoniyi, P.; Acharya, U.; Akinlabi, S.; Jen, T.-C.; Akinlabi, E. Taguchi-Grey relational analysis driven multi-objective optimization of weld bead geometry and hardness in laser welded Ti6Al4V Alloy. Int. J. Interact. Des. Manuf. IJIDeM 2025, 19, 423–434. [Google Scholar] [CrossRef]
- Tsai, M.-J.; Wu, L.-F. Multi-Objective Optimization of Nd: YAG Laser Drilling of Optical-Grade Acrylic Plate Using Taguchi-Based Grey Relational Analysis. Materials 2022, 15, 8998. [Google Scholar] [CrossRef]
- Cai, J.; Jin, H.; Ouyang, Z.; Guo, K.; Wei, Y.; Chen, J. Study on asymmetric forming and performance strengthening mechanisms of 6061-T6 aluminum alloy joints fabricated by oscillating laser based on keyhole characteristics and molten pool dynamic behaviors. Int. J. Therm. Sci. 2025, 207, 109377. [Google Scholar] [CrossRef]
- Wen, X.; Wu, D.; Zhang, P.; Liu, S.; Luo, Z.; Jia, Z.; Ye, X.; Shi, H.; Yu, Z. Influence mechanism of the keyhole behavior on penetration depth by in-situ monitoring in pulsed laser welding of aluminum alloy. Optik 2021, 246, 167812. [Google Scholar] [CrossRef]
- Olsson, E.; Kreiss, G. A conservative level set method for two phase flow. J. Comput. Phys. 2005, 210, 225–246. [Google Scholar] [CrossRef]
- Kong, F.; Kovacevic, R. Modeling of Heat Transfer and Fluid Flow in the Laser Multilayered Cladding Process. Metall. Mater. Trans. B 2010, 41, 1310–1320. [Google Scholar] [CrossRef]
- Ardahaie, S.S.; Hosseini, M.J.; Ranjbar, A.A.; Rahimi, M. Energy storage in latent heat storage of a solar thermal system using a novel flat spiral tube heat exchanger. Appl. Therm. Eng. 2019, 159, 113900. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, Z.; Ni, X. Modeling and simulation on long pulse laser drilling processing. Int. J. Heat Mass Transf. 2014, 73, 429–437. [Google Scholar] [CrossRef]
- Mayi, Y.A.; Dal, M.; Peyre, P.; Bellet, M.; Metton, C.; Moriconi, C.; Fabbro, R. Laser-induced plume investigated by finite element modelling and scaling of particle entrainment in laser powder bed fusion. J. Phys. Appl. Phys. 2020, 53, 075306. [Google Scholar] [CrossRef]
- Courtois, M.; Carin, M.; Le Masson, P.; Gaied, S.; Balabane, M. A complete model of keyhole and melt pool dynamics to analyze instabilities and collapse during laser welding. J. Laser Appl. 2014, 26, 042001. [Google Scholar] [CrossRef]
- Pang, S.; Chen, L.; Zhou, J.; Yin, Y.; Chen, T. A three-dimensional sharp interface model for self-consistent keyhole and weld pool dynamics in deep penetration laser welding. J. Phys. Appl. Phys. 2011, 44, 025301. [Google Scholar] [CrossRef]
- Pahamli, Y.; Hosseini, M.J.; Ardahaie, S.S.; Ranjbar, A.A. Improvement of a phase change heat storage system by Blossom-Shaped Fins: Energy analysis. Renew. Energy 2022, 182, 192–215. [Google Scholar] [CrossRef]
- Ardahaie, S.S.; Hosseini, M.J.; Eisapour, M.; Eisapour, A.H.; Ranjbar, A.A. A novel porous metal hydride tank for hydrogen energy storage and consumption assisted by PCM jackets and spiral tubes. J. Clean. Prod. 2021, 311, 127674. [Google Scholar] [CrossRef]
- Pakrouh, R.; Hosseini, M.J.; Ranjbar, A.A.; Bahrampoury, R. A numerical method for PCM-based pin fin heat sinks optimization. Energy Convers. Manag. 2015, 103, 542–552. [Google Scholar] [CrossRef]
- Kuo, Y.; Yang, T.; Huang, G.-W. The use of grey relational analysis in solving multiple attribute decision-making problems. Comput. Ind. Eng. 2008, 55, 80–93. [Google Scholar] [CrossRef]
Property | Symbol | Magnitude |
---|---|---|
Solidus temperature | 873.13 (K) | |
Liquidus temperature | 915.15 (K) | |
Vaporization temperature | 2760 (K) | |
Thermal conductivity of solid | 235 (W/m/K) | |
Thermal conductivity of liquid | 90 (W/m/K) | |
Density of solid | 2660 (kg/m3) | |
Density of liquid | 2380 (kg/m3) | |
Latent heat of melting | 3.87 × 105 (J/kg) | |
Latent heat of vaporization | 1.05 × 107 (J/kg) | |
Specific heat capacity of solid | 870 (J/kg/K) | |
Specific heat capacity of liquid | 1170 (J/kg/K) | |
Convective heat transfer coefficient | h | 20 (W/m2/K) |
Coefficient of linear thermal expansion | 2.8 × 10−5 (1/K) | |
Dynamic viscosity | 1.3 × 10−3 (Pa.s) | |
Coefficient of surface tension | 0.95 × (1 + 0.13 × (1 − T/Tm))1.67 (N/m) | |
Temperature-dependent surface tension coefficient | −0.15 × 10−3 (N/m/K) | |
Radiation emissivity | 0.2 |
Symbol | Parameter | Level | |||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||
A | Pulse Shape | Sinusoidal | Cosinusoidal | N/A | N/A |
B | Frequency (Hz) | 100 | 200 | 400 | 800 |
C | Amplitude (W) | 1000 | 2000 | 3000 | 4000 |
Experiments | A | B | C |
---|---|---|---|
1 | 1 | 1 | 1 |
2 | 1 | 1 | 2 |
3 | 1 | 1 | 3 |
4 | 1 | 1 | 4 |
5 | 1 | 2 | 1 |
6 | 1 | 2 | 2 |
7 | 1 | 2 | 3 |
8 | 1 | 2 | 4 |
9 | 1 | 3 | 1 |
10 | 1 | 3 | 2 |
11 | 1 | 3 | 3 |
12 | 1 | 3 | 4 |
13 | 1 | 4 | 1 |
14 | 1 | 4 | 2 |
15 | 1 | 4 | 3 |
16 | 1 | 4 | 4 |
17 | 2 | 1 | 1 |
18 | 2 | 1 | 2 |
19 | 2 | 1 | 3 |
20 | 2 | 1 | 4 |
21 | 2 | 2 | 1 |
22 | 2 | 2 | 2 |
23 | 2 | 2 | 3 |
24 | 2 | 2 | 4 |
25 | 2 | 3 | 1 |
26 | 2 | 3 | 2 |
27 | 2 | 3 | 3 |
28 | 2 | 3 | 4 |
29 | 2 | 4 | 1 |
30 | 2 | 4 | 2 |
31 | 2 | 4 | 3 |
32 | 2 | 4 | 4 |
Parameter | Objective | Reason |
---|---|---|
Keyhole depth/width | Higher the better | Deeper welds |
Mean temperature | Smaller the better | Less overall material heat exposure |
RSD of Darcy damping force | Smaller the better | Reduced variability of parameter over time Fewer fluctuations; less instability |
RSD of surface tension force | ||
RSD of velocity |
Test | Keyhole Depth (mm) | Keyhole Width (mm) | RSD Velocity (%) | Mean Temperature (K) | RSD Darcyr (%) | RSD Darcyz (%) | RSD Surr (%) | RSD Surz (%) |
---|---|---|---|---|---|---|---|---|
1 | 0.793 | 1.500 | 46.9 | 2682 | 62.4 | 56.8 | 42.4 | 23.1 |
2 | 0.930 | 1.610 | 53.2 | 2403 | 58.0 | 72.0 | 54.8 | 36.9 |
3 | 1.067 | 1.670 | 56.8 | 2112 | 74.4 | 62.6 | 62.0 | 39.8 |
4 | 1.218 | 1.728 | 52.8 | 1941 | 77.8 | 62.2 | 67.1 | 39.5 |
5 | 0.852 | 1.434 | 44.9 | 2684 | 60.3 | 52.5 | 35.3 | 22.3 |
6 | 0.951 | 1.516 | 48.8 | 2439 | 58.7 | 63.4 | 48.9 | 34.9 |
7 | 1.008 | 1.580 | 53.3 | 2152 | 71.5 | 58.0 | 54.4 | 38.9 |
8 | 1.116 | 1.616 | 47.9 | 1995 | 78.4 | 58.2 | 57.8 | 38.9 |
9 | 0.848 | 1.384 | 46.4 | 2692 | 58.5 | 42.8 | 27.0 | 23.0 |
10 | 0.880 | 1.446 | 54.4 | 2543 | 63.2 | 55.6 | 43.8 | 28.6 |
11 | 0.945 | 1.488 | 62.4 | 2298 | 62.9 | 57.3 | 50.9 | 36.7 |
12 | 0.997 | 1.508 | 59.8 | 2135 | 75.2 | 55.4 | 53.0 | 37.6 |
13 | 0.784 | 1.350 | 53.9 | 2698 | 56.9 | 39.8 | 23.6 | 27.4 |
14 | 0.777 | 1.396 | 58.2 | 2665 | 59.1 | 46.9 | 35.6 | 26.8 |
15 | 0.801 | 1.444 | 54.5 | 2531 | 67.4 | 59.2 | 46.5 | 28.7 |
16 | 0.886 | 1.502 | 62.0 | 2358 | 67.2 | 59.9 | 50.0 | 31.1 |
17 | 0.754 | 1.350 | 30.6 | 2695 | 53.3 | 45.7 | 28.2 | 23.7 |
18 | 0.776 | 1.436 | 29.5 | 2382 | 54.1 | 49.8 | 51.2 | 35.7 |
19 | 0.857 | 1.474 | 29.5 | 2114 | 73.4 | 43.9 | 56.5 | 34.5 |
20 | 0.984 | 1.514 | 32.2 | 1948 | 75.1 | 41.7 | 59.7 | 33.5 |
21 | 0.762 | 1.404 | 42.8 | 2697 | 55.0 | 40.5 | 29.9 | 25.0 |
22 | 0.784 | 1.492 | 44.6 | 2444 | 56.4 | 56.3 | 49.0 | 34.1 |
23 | 0.881 | 1.536 | 52.0 | 2162 | 73.5 | 49.8 | 56.2 | 36.5 |
24 | 1.062 | 1.576 | 54.1 | 1999 | 73.4 | 48.3 | 60.9 | 35.0 |
25 | 0.810 | 1.396 | 45.2 | 2697 | 53.4 | 39.6 | 26.7 | 21.8 |
26 | 0.903 | 1.442 | 53.0 | 2548 | 59.6 | 55.0 | 43.8 | 27.1 |
27 | 0.995 | 1.496 | 62.2 | 2293 | 69.4 | 57.4 | 52.8 | 35.7 |
28 | 1.076 | 1.528 | 64.6 | 2125 | 74.2 | 58.5 | 57.7 | 37.4 |
29 | 0.839 | 1.360 | 54.6 | 2689 | 51.2 | 41.2 | 25.0 | 25.8 |
30 | 0.863 | 1.380 | 58.7 | 2641 | 54.4 | 48.4 | 39.9 | 24.8 |
31 | 0.882 | 1.420 | 57.4 | 2505 | 63.1 | 61.8 | 49.8 | 27.8 |
32 | 0.931 | 1.466 | 62.4 | 2344 | 66.4 | 57.9 | 51.6 | 32.2 |
Test | GRC | GRG | Rank | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Keyhole Depth | Keyhole Width | RSD Velocity | Mean Temp | RSD Darcyr | RSD Darcyz | RSD Surr | RSD Surz | |||
1 | 0.35 | 0.45 | 0.50 | 0.34 | 0.55 | 0.48 | 0.54 | 0.88 | 0.511 | 15 |
2 | 0.45 | 0.62 | 0.43 | 0.45 | 0.67 | 0.33 | 0.41 | 0.37 | 0.465 | 24 |
3 | 0.61 | 0.77 | 0.39 | 0.69 | 0.37 | 0.41 | 0.36 | 0.33 | 0.491 | 17 |
4 | 1.0 | 1.00 | 0.43 | 1.00 | 0.34 | 0.42 | 0.33 | 0.34 | 0.607 | 5 |
5 | 0.39 | 0.39 | 0.53 | 0.34 | 0.60 | 0.56 | 0.65 | 0.95 | 0.551 | 11 |
6 | 0.46 | 0.47 | 0.48 | 0.43 | 0.64 | 0.41 | 0.46 | 0.41 | 0.470 | 21 |
7 | 0.52 | 0.56 | 0.42 | 0.64 | 0.40 | 0.47 | 0.41 | 0.34 | 0.472 | 20 |
8 | 0.69 | 0.63 | 0.49 | 0.88 | 0.33 | 0.47 | 0.39 | 0.34 | 0.527 | 14 |
9 | 0.39 | 0.35 | 0.51 | 0.34 | 0.65 | 0.86 | 0.86 | 0.88 | 0.605 | 7 |
10 | 0.41 | 0.40 | 0.41 | 0.39 | 0.53 | 0.50 | 0.52 | 0.57 | 0.466 | 23 |
11 | 0.46 | 0.44 | 0.35 | 0.51 | 0.54 | 0.48 | 0.44 | 0.38 | 0.449 | 27 |
12 | 0.51 | 0.46 | 0.37 | 0.66 | 0.36 | 0.51 | 0.43 | 0.36 | 0.457 | 26 |
13 | 0.35 | 0.33 | 0.42 | 0.33 | 0.71 | 0.99 | 1.00 | 0.62 | 0.592 | 8 |
14 | 0.34 | 0.36 | 0.38 | 0.34 | 0.63 | 0.69 | 0.64 | 0.64 | 0.505 | 16 |
15 | 0.36 | 0.40 | 0.41 | 0.39 | 0.46 | 0.45 | 0.49 | 0.57 | 0.440 | 32 |
16 | 0.41 | 0.46 | 0.35 | 0.48 | 0.46 | 0.44 | 0.45 | 0.49 | 0.443 | 31 |
17 | 0.33 | 0.33 | 0.94 | 0.33 | 0.87 | 0.73 | 0.83 | 0.83 | 0.649 | 2 |
18 | 0.34 | 0.39 | 1.00 | 0.46 | 0.83 | 0.61 | 0.44 | 0.39 | 0.559 | 10 |
19 | 0.39 | 0.43 | 1.00 | 0.69 | 0.38 | 0.79 | 0.4 | 0.41 | 0.561 | 9 |
20 | 0.45 | 0.47 | 0.87 | 0.98 | 0.36 | 0.89 | 0.38 | 0.43 | 0.609 | 4 |
21 | 0.34 | 0.37 | 0.57 | 0.33 | 0.78 | 0.95 | 0.77 | 0.74 | 0.607 | 6 |
22 | 0.35 | 0.44 | 0.54 | 0.43 | 0.72 | 0.49 | 0.46 | 0.42 | 0.482 | 19 |
23 | 0.41 | 0.50 | 0.44 | 0.63 | 0.38 | 0.61 | 0.40 | 0.38 | 0.468 | 22 |
24 | 0.6 | 0.55 | 0.42 | 0.87 | 0.38 | 0.65 | 0.37 | 0.40 | 0.530 | 13 |
25 | 0.36 | 0.36 | 0.53 | 0.33 | 0.86 | 1.00 | 0.88 | 1.00 | 0.666 | 1 |
26 | 0.42 | 0.40 | 0.43 | 0.38 | 0.62 | 0.51 | 0.52 | 0.63 | 0.489 | 18 |
27 | 0.51 | 0.45 | 0.35 | 0.52 | 0.43 | 0.48 | 0.43 | 0.39 | 0.444 | 29 |
28 | 0.62 | 0.49 | 0.33 | 0.67 | 0.37 | 0.46 | 0.39 | 0.37 | 0.462 | 25 |
29 | 0.38 | 0.34 | 0.41 | 0.34 | 1.00 | 0.91 | 0.94 | 0.69 | 0.626 | 3 |
30 | 0.40 | 0.35 | 0.38 | 0.35 | 0.81 | 0.65 | 0.57 | 0.75 | 0.532 | 12 |
31 | 0.41 | 0.38 | 0.39 | 0.40 | 0.53 | 0.42 | 0.45 | 0.60 | 0.448 | 28 |
32 | 0.45 | 0.42 | 0.35 | 0.48 | 0.47 | 0.47 | 0.44 | 0.46 | 0.443 | 30 |
Analysis of Variance | ||||||
---|---|---|---|---|---|---|
Source | DOF | Adj SS | Adj MS | F-Value | p-Value | Contribution (%) |
Amplitude | 3 | 0.076427 | 0.025476 | 111.28 | 0 | 51.9 |
Pulse Shape | 1 | 0.008454 | 0.008454 | 36.93 | 0 | 5.7 |
Frequency | 3 | 0.015007 | 0.005002 | 21.85 | 0 | 10.2 |
Frequency × Amplitude | 9 | 0.035032 | 0.003892 | 17 | 0 | 23.8 |
Pulse Shape × Amplitude | 3 | 0.005416 | 0.001805 | 7.89 | 0.007 | 3.7 |
Pulse Shape × Frequency | 3 | 0.004968 | 0.001656 | 7.23 | 0.009 | 3.4 |
Error | 9 | 0.00206 | 0.000229 | |||
Total | 31 | 0.147366 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
SaediArdahaei, S.; Pham, X.-T. Multi-Response Optimization of Aluminum Laser Spot Welding with Sinusoidal and Cosinusoidal Power Profiles Based on Taguchi–Grey Relational Analysis. Materials 2025, 18, 3044. https://doi.org/10.3390/ma18133044
SaediArdahaei S, Pham X-T. Multi-Response Optimization of Aluminum Laser Spot Welding with Sinusoidal and Cosinusoidal Power Profiles Based on Taguchi–Grey Relational Analysis. Materials. 2025; 18(13):3044. https://doi.org/10.3390/ma18133044
Chicago/Turabian StyleSaediArdahaei, Saeid, and Xuan-Tan Pham. 2025. "Multi-Response Optimization of Aluminum Laser Spot Welding with Sinusoidal and Cosinusoidal Power Profiles Based on Taguchi–Grey Relational Analysis" Materials 18, no. 13: 3044. https://doi.org/10.3390/ma18133044
APA StyleSaediArdahaei, S., & Pham, X.-T. (2025). Multi-Response Optimization of Aluminum Laser Spot Welding with Sinusoidal and Cosinusoidal Power Profiles Based on Taguchi–Grey Relational Analysis. Materials, 18(13), 3044. https://doi.org/10.3390/ma18133044