Factors Affecting Consolidation in Geopolymers for Stabilization of Galvanic Sludge
Abstract
1. Introduction
- Treatment of Fly Ash from Municipal Solid Waste Incineration (MSWI):
- Wastewater Treatment:
- Landfill and Soil Remediation:
- Nuclear Material Encapsulation:
- Encapsulation: Heavy metals are physically trapped within the geopolymer matrix during the polymerization process, limiting their mobility and reducing bioavailability.
- Ionic Interactions: Strong ionic interactions between heavy metals and the geopolymer framework led to the formation of stable chemical complexes, enhancing immobilization.
- Precipitation: The high pH environment created during geopolymerization promotes the precipitation of metal hydroxides, which can coalesce with the geopolymer structure, reducing the solubility of heavy metals.
- Formation of Crystalline Phases: The amorphous nature of geopolymers allows the formation of new crystalline phases that incorporate heavy metals, providing an additional level of stabilization.
2. Materials and Methods
2.1. Raw Materials and Their Characterization
2.2. Geopolymer Mixture Preparation
2.3. Characterization of Geopolymeric Samples
2.3.1. Chemical Analysis of Geopolymers
2.3.2. Chemical Stability in Water
2.3.3. FT-IR Characterization
2.3.4. XRD Characterization
2.3.5. SEM Observations
2.3.6. Compressive Strength
2.3.7. Leaching Test
3. Results and Discussion
3.1. Quantification of Regulated Metals
3.2. Chemical Stability in Water
3.3. FT-IR Characterization
3.4. XRD Characterization
3.5. SEM Observations
3.6. Compressive Strength
3.7. Leaching Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luukkonen, T.; Abdollahnejad, Z.; Yliniemi, J.; Kinnunen, P.; Illikainen, M. One-Part Alkali-Activated Materials: A Review. Cem. Concr. Res. 2018, 103, 21–34. [Google Scholar] [CrossRef]
- Turner, L.K.; Collins, F.G. Carbon Dioxide Equivalent (CO2-e) Emissions: A Comparison between Geopolymer and OPC Cement Concrete. Constr. Build. Mater. 2013, 43, 125–130. [Google Scholar] [CrossRef]
- Duxson, P.; Mallicoat, S.W.; Lukey, G.C.; Kriven, W.M.; Van Deventer, J.S.J. The Effect of Alkali and Si/Al Ratio on the Development of Mechanical Properties of Metakaolin-Based Geopolymers. Colloids Surf. A Physicochem. Eng. Asp. 2007, 292, 8–20. [Google Scholar] [CrossRef]
- Khale, D.; Chaudhary, R. Mechanism of Geopolymerization and Factors Influencing Its Development: A Review. J. Mater. Sci. 2007, 42, 729–746. [Google Scholar] [CrossRef]
- Barone, G.; Finocchiaro, C.; Lancellotti, I.; Leonelli, C.; Mazzoleni, P.; Sgarlata, C.; Stroscio, A. Potentiality of the Use of Pyroclastic Volcanic Residues in the Production of Alkali Activated Material. Waste Biomass Valor. 2021, 12, 1075–1094. [Google Scholar] [CrossRef]
- Part, W.K.; Ramli, M.; Cheah, C.B. An Overview on the Influence of Various Factors on the Properties of Geopolymer Concrete Derived from Industrial By-Products. Constr. Build. Mater. 2015, 77, 370–395. [Google Scholar] [CrossRef]
- Shehata, N.; Mohamed, O.A.; Sayed, E.T.; Abdelkareem, M.A.; Olabi, A.G. Geopolymer Concrete as Green Building Materials: Recent Applications, Sustainable Development and Circular Economy Potentials. Sci. Total Environ. 2022, 836, 155577. [Google Scholar] [CrossRef]
- Komnitsas, K.; Zaharaki, D. Geopolymerisation: A Review and Prospects for the Minerals Industry. Miner. Eng. 2007, 20, 1261–1277. [Google Scholar] [CrossRef]
- Nodehi, M.; Taghvaee, V.M. Alkali-Activated Materials and Geopolymer: A Review of Common Precursors and Activators Addressing Circular Economy. Circ. Econ. Sustain. 2022, 2, 165–196. [Google Scholar] [CrossRef]
- Amran, M.; Al-Fakih, A.; Chu, S.H.; Fediuk, R.; Haruna, S.; Azevedo, A.; Vatin, N. Long-Term Durability Properties of Geopolymer Concrete: An in-Depth Review. Case Stud. Constr. Mater. 2021, 15, e00661. [Google Scholar] [CrossRef]
- Boldrini, G.; Sgarlata, C.; Lancellotti, I.; Barbieri, L.; Giorgetti, M.; Ciabocco, M.; Zamponi, S.; Berrettoni, M.; Leonelli, C. Efficient Chemical Stabilization of Tannery Wastewater Pollutants in a Single Step Process: Geopolymerization. Sustain. Environ. Res. 2021, 31, 33. [Google Scholar] [CrossRef]
- Tian, Q.; Bai, Y.; Pan, Y.; Chen, C.; Yao, S.; Sasaki, K.; Zhang, H. Application of Geopolymer in Stabilization/Solidification of Hazardous Pollutants: A Review. Molecules 2022, 27, 4570. [Google Scholar] [CrossRef]
- Ji, Z.; Pei, Y. Bibliographic and Visualized Analysis of Geopolymer Research and Its Application in Heavy Metal Immobilization: A Review. J. Environ. Manag. 2019, 231, 256–267. [Google Scholar] [CrossRef]
- Lancellotti, I.; Kamseu, E.; Michelazzi, M.; Barbieri, L.; Corradi, A.; Leonelli, C. Chemical Stability of Geopolymers Containing Municipal Solid Waste Incinerator Fly Ash. Waste Manag. 2010, 30, 673–679. [Google Scholar] [CrossRef]
- Wang, A.; Zheng, Y.; Zhang, Z.; Liu, K.; Li, Y.; Shi, L.; Sun, D. The Durability of Alkali-Activated Materials in Comparison with Ordinary Portland Cements and Concretes: A Review. Engineering 2020, 6, 695–706. [Google Scholar] [CrossRef]
- El Alouani, M.; Saufi, H.; Moutaoukil, G.; Alehyen, S.; Nematollahi, B.; Belmaghraoui, W.; Taibi, M. Application of Geopolymers for Treatment of Water Contaminated with Organic and Inorganic Pollutants: State-of-the-Art Review. J. Environ. Chem. Eng. 2021, 9, 105095. [Google Scholar] [CrossRef]
- Ji, Z.; Pei, Y. Immobilization Efficiency and Mechanism of Metal Cations (Cd2+, Pb2+ and Zn2+) and Anions (AsO43− and Cr2O72−) in Wastes-Based Geopolymer. J. Hazard. Mater. 2020, 384, 121290. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xu, Y.; Zhang, W.; Ye, J.; Wang, R. Solidification Performance and Mechanism of Typical Radioactive Nuclear Waste by Geopolymers and Geopolymer Ceramics: A Review. Prog. Nucl. Energy 2024, 169, 105106. [Google Scholar] [CrossRef]
- Oladimeji, T.E.; Oyedemi, M.; Emetere, M.E.; Agboola, O.; Adeoye, J.B.; Odunlami, O.A. Review on the Impact of Heavy Metals from Industrial Wastewater Effluent and Removal Technologies. Heliyon 2024, 10, e40370. [Google Scholar] [CrossRef]
- Jomova, K.; Alomar, S.Y.; Nepovimova, E.; Kuca, K.; Valko, M. Heavy Metals: Toxicity and Human Health Effects. Arch. Toxicol. 2025, 99, 153–209. [Google Scholar] [CrossRef]
- Rajendran, S.; Priya, T.A.K.; Khoo, K.S.; Hoang, T.K.A.; Ng, H.-S.; Munawaroh, H.S.H.; Karaman, C.; Orooji, Y.; Show, P.L. A Critical Review on Various Remediation Approaches for Heavy Metal Contaminants Removal from Contaminated Soils. Chemosphere 2022, 287, 132369. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Wang, F.; Lv, G. The Resource Utilization and Environmental Assessment of MSWI Fly Ash with Solidification and Stabilization: A Review. Waste Biomass Valor. 2024, 15, 37–56. [Google Scholar] [CrossRef]
- Lan, T.; Meng, Y.; Ju, T.; Chen, Z.; Du, Y.; Deng, Y.; Song, M.; Han, S.; Jiang, J. Synthesis and Application of Geopolymers from Municipal Waste Incineration Fly Ash (MSWI FA) as Raw Ingredient—A Review. Resour. Conserv. Recycl. 2022, 182, 106308. [Google Scholar] [CrossRef]
- Liu, J.; Xie, G.; Wang, Z.; Li, Z.; Fan, X.; Jin, H.; Zhang, W.; Xing, F.; Tang, L. Synthesis of Geopolymer Using Municipal Solid Waste Incineration Fly Ash and Steel Slag: Hydration Properties and Immobilization of Heavy Metals. J. Environ. Manag. 2023, 341, 118053. [Google Scholar] [CrossRef]
- Aigbe, U.O.; Ukhurebor, K.E.; Onyancha, R.B.; Osibote, O.A.; Darmokoesoemo, H.; Kusuma, H.S. Fly Ash-Based Adsorbent for Adsorption of Heavy Metals and Dyes from Aqueous Solution: A Review. J. Mater. Res. Technol. 2021, 14, 2751–2774. [Google Scholar] [CrossRef]
- Gupta, P.; Nagpal, G.; Gupta, N. Fly Ash-Based Geopolymers: An Emerging Sustainable Solution for Heavy Metal Remediation from Aqueous Medium. Beni-Suef Univ. J. Basic Appl. Sci. 2021, 10, 89. [Google Scholar] [CrossRef]
- Komaei, A.; Noorzad, A.; Ghadir, P. Stabilization and Solidification of Arsenic Contaminated Silty Sand Using Alkaline Activated Slag. J. Environ. Manag. 2023, 344, 118395. [Google Scholar] [CrossRef]
- Abdullah, H.H.; Shahin, M.A.; Walske, M.L. Review of Fly-Ash-Based Geopolymers for Soil Stabilisation with Special Reference to Clay. Geosciences 2020, 10, 249. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, Z.; Pu, S.; Song, W. Solidification/Stabilization of Pb2+ and Cd2+ Contaminated Soil Using Fly Ash and GGBS Based Geopolymer. Arab. J. Sci. Eng. 2022, 47, 4385–4400. [Google Scholar] [CrossRef]
- Shi, C.; Fernández-Jiménez, A. Stabilization/Solidification of Hazardous and Radioactive Wastes with Alkali-Activated Cements. J. Hazard. Mater. 2006, 137, 1656–1663. [Google Scholar] [CrossRef]
- Genua, F.; Lancellotti, I.; Leonelli, C. Geopolymer-Based Stabilization of Heavy Metals, the Role of Chemical Agents in Encapsulation and Adsorption: Review. Polymers 2025, 17, 670. [Google Scholar] [CrossRef]
- Leal Vieira Cubas, A.; De Medeiros Machado, M.; De Medeiros Machado, M.; Gross, F.; Magnago, R.F.; Moecke, E.H.S.; Gonçalvez De Souza, I. Inertization of Heavy Metals Present in Galvanic Sludge by DC Thermal Plasma. Environ. Sci. Technol. 2014, 48, 2853–2861. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, B.; Zhang, Q.; Wen, Q.; Lu, X.; Xiao, K.; Ekberg, C.; Zhang, S. Application of Geopolymers for Treatment of Industrial Solid Waste Containing Heavy Metals: State-of-the-Art Review. J. Clean. Prod. 2023, 390, 136053. [Google Scholar] [CrossRef]
- Luisa, B.; Elie, K.; Isabella, L.; Cristina, L.; Chiara, P. A Process for Inertization of Liquid Waste. Italian Patent ITRE20120028A1, 13 October 2013. Available online: https://worldwide.espacenet.com/patent/search/family/046584136/publication/ITRE20120028A1?q=ITRE20120028 (accessed on 19 June 2025).
- Dal Poggetto, G.; Catauro, M.; Crescente, G.; Leonelli, C. Efficient Addition of Waste Glass in MK-Based Geopolymers: Microstructure, Antibacterial and Cytotoxicity Investigation. Polymers 2021, 13, 1493. [Google Scholar] [CrossRef] [PubMed]
- UNI EN 13656:2004; Characterization of Waste—Microwave Assisted Digestion with Hydrofluoric (HF), Nitric (HNO3) and Hydrochloric (HCl) acid Mixture for Subsequent Determination Of Elements. UNI: Rome, Italy, 2004.
- UNI EN 13657:2004; Characterization of Waste—Digestion for Subsequent Determination of Aqua Regia Soluble Portion of Elements. UNI: Rome, Italy, 2004.
- UNI EN ISO 11885:2009; Water Quality—Determination of Selected Elements by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). UNI: Rome, Italy, 2009.
- Lancellotti, I.; Catauro, M.; Ponzoni, C.; Bollino, F.; Leonelli, C. Inorganic Polymers from Alkali Activation of Metakaolin: Effect of Setting and Curing on Structure. J. Solid State Chem. 2013, 200, 341–348. [Google Scholar] [CrossRef]
- UNI EN 12457-2:2004; Characterisation of Waste—Leaching—Compliance Test for Leaching of Granular Waste Materials and Sludges - Part 2: One Stage Batch Test at a Liquid to Solid Ratio of 10 l/kg for Materials with Particle Size Below 4 mm (Without or With Size Reduction). UNI: Rome, Italy, 2004.
- Aly, Z.; Vance, E.R.; Perera, D.S.; Hanna, J.V.; Griffith, C.S.; Davis, J.; Durce, D. Aqueous Leachability of Metakaolin-Based Geopolymers with Molar Ratios of Si/Al = 1.5–4. J. Nucl. Mater. 2008, 378, 172–179. [Google Scholar] [CrossRef]
- Baykara, H.; Cornejo, M.H.; Espinoza, A.; García, E.; Ulloa, N. Preparation, Characterization, and Evaluation of Compressive Strength of Polypropylene Fiber Reinforced Geopolymer Mortars. Heliyon 2020, 6, e03755. [Google Scholar] [CrossRef]
- Priya, G.K.; Padmaja, P.; Warrier, K.G.K.; Damodaran, A.D.; Aruldhas, G. Dehydroxylation and High Temperature Phase Formation in Sol-gel Boehmite Characterized by Fourier Transform Infrared Spectroscopy. J. Mater. Sci. Lett. 1997, 16, 1584–1587. [Google Scholar] [CrossRef]
- Robayo-Salazar, R.A.; Mejía De Gutiérrez, R.; Puertas, F. Effect of Metakaolin on Natural Volcanic Pozzolan-Based Geopolymer Cement. Appl. Clay Sci. 2016, 132–133, 491–497. [Google Scholar] [CrossRef]
- Tippayasam, C.; Balyore, P.; Thavorniti, P.; Kamseu, E.; Leonelli, C.; Chindaprasirt, P.; Chaysuwan, D. Potassium Alkali Concentration and Heat Treatment Affected Metakaolin-Based Geopolymer. Constr. Build. Mater. 2016, 104, 293–297. [Google Scholar] [CrossRef]
- Catauro, M.; Bollino, F.; Cattaneo, A.S.; Mustarelli, P. Al2O3·2SiO2 Powders Synthesized via Sol–Gel as Pure Raw Material in Geopolymer Preparation. J. Am. Ceram. Soc. 2017, 100, 1919–1927. [Google Scholar] [CrossRef]
- Tchakouté, H.K.; Rüscher, C.H.; Kong, S.; Kamseu, E.; Leonelli, C. Geopolymer Binders from Metakaolin Using Sodium Waterglass from Waste Glass and Rice Husk Ash as Alternative Activators: A Comparative Study. Constr. Build. Mater. 2016, 114, 276–289. [Google Scholar] [CrossRef]
- Finocchiaro, C.; Barone, G.; Mazzoleni, P.; Leonelli, C.; Gharzouni, A.; Rossignol, S. FT-IR Study of Early Stages of Alkali Activated Materials Based on Pyroclastic Deposits (Mt. Etna, Sicily, Italy) Using Two Different Alkaline Solutions. Constr. Build. Mater. 2020, 262, 120095. [Google Scholar] [CrossRef]
- Longhi, M.A.; Walkley, B.; Rodríguez, E.D.; Kirchheim, A.P.; Zhang, Z.; Wang, H. New selective dissolution process to quantify reaction extent and product stability in metakaolin-based geopolymers. Compos. Part B Eng. 2019, 176, 107172. [Google Scholar] [CrossRef]
- Bengtsson, F.; Pehlivan, I.B.; Österlund, L.; Karlsson, S. Alkali ion diffusion and structure of chemically strengthened TiO2 doped soda-lime silicate glass. J. Non-Cryst. Solids 2022, 586, 121564. [Google Scholar] [CrossRef]
- Ivanović, M.; Kljajević, L.; Gulicovski, J.; Petkovic, M.; Janković-Častvan, I.; Bučevac, D.; Nenadović, S. The effect of the concentration of alkaline activator and aging time on the structure of metakaolin based geopolymer. Sci. Sinter. 2020, 52, 219–229. [Google Scholar] [CrossRef]
- Valášková, M.; Klika, Z.; Vlček, J.; Matějová, L.; Topinková, M.; Pálková, H.; Madejová, J. Alkali-Activated Metakaolins: Mineral Chemistry and Quantitative Mineral Composition. Minerals 2022, 12, 1342. [Google Scholar] [CrossRef]
- Miyaji, F.; Kim, H.-M.; Handa, S.; Kokubo, T.; Nakamura, T. Bonelike Apatite Coating on Organic Polymers: Novel Nucleation Process Using Sodium Silicate Solution. Biomaterials 1999, 20, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Mavilia, G.; Caccamo, M.T.; Mavilia, L.; Magazù, S. XRD, FTIR and RAMAN Characterizations of Metakaolin Geopolymers. Mod. Concepts Mater. Sci. 2024, 5. [Google Scholar] [CrossRef]
- Autef, A.; Joussein, E.; Poulesquen, A.; Gasgnier, G.; Pronier, S.; Sobrados, I.; Sanz, J.; Rossignol, S. Influence of metakaolin purities on potassium geopolymer formulation: The existence of several networks. J. Colloid Interface Sci. 2013, 408, 43–53. [Google Scholar] [CrossRef]
- Rees, C.A.; Provis, J.L.; Lukey, G.C.; van Deventer, J.S.J. Attenuated Total Reflectance Fourier Transform Infrared Analysis of Fly Ash Geopolymer Gel Aging. Langmuir 2007, 23, 8170–8179. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, Z.; Wang, Y.; Feng, J. Preparation and Properties of Alkali Activated Metakaolin-Based Geopolymer. Materials 2016, 9, 767. [Google Scholar] [CrossRef]
- Sitarz, M.; Handke, M.; Mozgawa, W.; Galuskin, E.; Galuskina, I. The Non-Ring Cations Influence on Silicooxygen Ring Vibrations. J. Mol. Struct. 2000, 555, 357–362. [Google Scholar] [CrossRef]
- Sitarz, M.; Handke, M.; Mozgawa, W. Identification of Silicooxygen Rings in SiO2 Based on IR Spectra. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2000, 56, 1819–1823. [Google Scholar] [CrossRef]
- Bernal, S.A.; De Gutierrez, R.M.; Provis, J.L.; Rose, V. Effect of Silicate Modulus and Metakaolin Incorporation on the Carbonation of Alkali Silicate-Activated Slags. Cem. Concr. Res. 2010, 40, 898–907. [Google Scholar] [CrossRef]
- Pouhet, R.; Cyr, M. Carbonation in the Pore Solution of Metakaolin-Based Geopolymer. Cem. Concr. Res. 2016, 88, 227–235. [Google Scholar] [CrossRef]
- Ren, J.; Acarturk, B.C.; Dowdy, N.D.; Srubar, W.V., III. The effects of calcium carbonate on sodium metasilicate-activated metakaolin-based geopolymer pastes. Constr. Build. Mater. 2024, 448, 138218. [Google Scholar] [CrossRef]
- Temuujin, J.; Minjigmaa, A.; Rickard, W.; Lee, M.; Williams, I.; Van Riessen, A. Preparation of Metakaolin Based Geopolymer Coatings on Metal Substrates as Thermal Barriers. Appl. Clay Sci. 2009, 46, 265–270. [Google Scholar] [CrossRef]
- Bhagath Singh, G.V.P.; Subramaniam, K.V.L. Quantitative XRD study of amorphous phase in alkali activated low calcium siliceous fly ash. Constr. Build. Mater. 2016, 124, 139–147. [Google Scholar] [CrossRef]
- Criado, M.; Fernández-Jiménez, A.; de la Torre, A.G.; Aranda, M.A.G.; Palomo, A. An XRD study of the effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Cem. Concr. Res. 2007, 37, 671–679. [Google Scholar] [CrossRef]
- Mladenović Nikolić, N.; Kandić, A.; Potočnik, J.; Latas, N.; Ivanović, M.; Nenadović, S.; Kljajević, L. Microstructural Analysis and Radiological Characterization of Alkali-Activated Materials Based on Aluminosilicate Waste and Metakaolin. Gels 2025, 11, 57. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.C.; Subramaniam, K.V.L. X-ray diffraction-based quantification of amorphous phase in alkali-activated blast furnace slag. Adv. Civ. Eng. Mater. 2021, 10, 333–349. [Google Scholar] [CrossRef]
- Jurado-Contreras, S.; Bonet-Martínez, E.; Sánchez-Soto, P.J.; Gencel, O.; Eliche-Quesada, D. Synthesis and characterization of alkali-activated materials containing biomass fly ash and metakaolin: Effect of the soluble salt content of the residue. Arch. Civ. Mech. Eng. 2022, 22, 121. [Google Scholar] [CrossRef]
- Guo, K.; Dong, H.; Zhang, J.; Zhang, L.; Li, Z. Experimental Study of Alkali-Activated Cementitious Materials Using Thermally Activated Red Mud: Effect of the Si/Al Ratio on Fresh and Mechanical Properties. Buildings 2025, 15, 565. [Google Scholar] [CrossRef]
- Chang, J.; Lin, T.; Ko, M.; Liaw, D. Stabilization/Solidification of Sludges Containing Heavy Metals by Using Cement and Waste Pozzolans. J. Environ. Sci. Health Part A 1999, 34, 1143–1160. [Google Scholar] [CrossRef]
- Ercoli, R.; Stabile, P.; Ossoli, E.; Luconi, I.; Renzulli, A.; Paris, E. Recycling Face Mask Fibers in Geopolymer-Based Matrices for Sustainable Building Materials. Ceramics 2025, 8, 54. [Google Scholar] [CrossRef]
- Ossoli, E.; Volpintesta, F.; Stabile, P.; Reggiani, A.; Santulli, C.; Paris, E. Upcycling of composite materials waste into geopolymer-based mortars for applications in the building sector. Mater. Lett. 2023, 333, 133625. [Google Scholar] [CrossRef]
- Cifrian, E.; Dacuba, J.; Llano, T.; Díaz-Fernández, M.d.C.; Andrés, A. Coal Fly Ash–Clay Based Geopolymer-Incorporating Electric Arc Furnace Dust (EAFD): Leaching Behavior and Geochemical Modeling. Appl. Sci. 2021, 11, 810. [Google Scholar] [CrossRef]
SiO2 | Al2O3 | Fe2O3 | TiO2 | Na2O + K2O | CaO + MgO | LOI a |
---|---|---|---|---|---|---|
55 wt% | 40 wt% | 1.4 wt% | 1.5 wt% | 0.8 wt% | 0.3 wt% | 1 wt% |
Element (wt%) | DE | Element (ppm) | DE | Element (ppm) | DE |
---|---|---|---|---|---|
Cr | 26.22 | Zn | 524 | Tl | 48 |
Ni | 13.26 | Mn | 426 | Sb | 41 |
Fe | 2.85 | Bi | 275 | Co | 19 |
Na | 1.91 | K | 152 | Ba | 13 |
Ca | 1.01 | Al | 130 | Mo | 5 |
Mg | 0.59 | As | 111 | Ag | 1 |
Cu | 0.59 | Pb | 95 |
Element (wt%) | DE | Element (ppm) | DE | Compound (wt%) | DE |
---|---|---|---|---|---|
Cr | 27.38 | Zn | 583 | SO3 | 3.63 |
Ni | 14.19 | Sn | 445 | Cl | 2.02 |
Fe | 3.27 | Al | 278 | P2O5 | 0.15 |
Na | 2.03 | Pb | 143 | ||
Ca | 1.27 | Sr | 67 | ||
Mg | 0.60 | ||||
Cu | 0.14 |
Sample Name | MK [g] | NaOH 8/10 M [g] | Na-Silicate [g] | DE [g] | L/S a [L/kg] | MK/DE b [wt/wt] | DE c [%] |
---|---|---|---|---|---|---|---|
GP-08M | 100 | 38 | 41 | / | 0.60 | / | / |
GP-10BA8M | 90 | 38 | 41 | 10 | 0.60 | 9.0 | 5.59 |
GP-10AA8M | 90 | 38 | 41 | 10 | 0.60 | 9.0 | 5.59 |
GP-20BA8M | 80 | 38 | 41 | 20 | 0.60 | 4.0 | 11.17 |
GP-30BA8M | 70 | 38 | 41 | 30 | 0.60 | 2.5 | 16.76 |
GP-10AA10M | 90 | 31 | 41 | 10 | 0.54 | 9.0 | 5.81 |
GP-10AA10M24h | 90 | 31 | 41 | 10 | 0.54 | 9.0 | 5.81 |
GP-20AA10M | 80 | 31 | 41 | 20 | 0.54 | 4.0 | 11.63 |
Metals | GP-08M | GP-10BA8M | GP-10AA8M | GP-10AA10M | GP-10AA10M24h | GP-20BA8M | GP-20AA10M |
---|---|---|---|---|---|---|---|
CG (mg/kg) | CG (mg/kg) | CG (mg/kg) | CG (mg/kg) | CG (mg/kg) | CG (mg/kg) | CG (mg/kg) | |
As | <LOD | <LOQ | <LOD | <LOD | <LOD | <LOQ | <LOD |
Ba | <LOD | 207.42 | 181.86 | 196.36 | 150.06 | 235.01 | 189.24 |
Cd | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Cr | 0.011 | 4251.21 | 4877.51 | 5915.57 | 1043.00 | 7867.72 | 13,285.01 |
Cu | <LOD | 29.58 | 28.72 | 32.83 | 171.14 | 46.56 | 78.60 |
Mo | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Ni | <LOD | 2107.08 | 2253.80 | 2478.94 | 1506.51 | 3780.29 | 6943.35 |
Pb | <LOD | 63.45 | <LOQ | 41.34 | 48.83 | 87.56 | 49.00 |
Sb | <LOD | 44.30 | 42.47 | 92.10 | 85.58 | 76.03 | 89.09 |
Se | <LOD | <LOQ | <LOQ | <LOD | 17.03 | <LOQ | 21.13 |
Zn | 0.034 | <LOQ | <LOQ | 46.85 | 934.01 | <LOQ | 91.13 |
Metals and Anions | GP-08M | GP-10BA8M | GP-10AA8M | GP-10AA10M | GP-10AA10M24h | GP-20BA8M | GP-20AA10M | Inert | Non-Hazardous | Hazardous |
---|---|---|---|---|---|---|---|---|---|---|
CL (mg/L) | CL (mg/L) | CL (mg/L) | CL (mg/L) | CL (mg/L) | CL (mg/L) | CL (mg/L) | ||||
As | 0.245 | 0.258 | 0.210 | 0.238 | 0.176 | 0.259 | 0.233 | 0.05 | 0.2 | 2.5 |
Ba | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.03 | 2 | 10 | 30 |
Cd | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 0.004 | 0.1 | 0.5 |
Cr | 0.08 | 70.44 | 53.45 | 60.63 | 5.18 | 98.60 | 112.06 | 0.05 | 1 | 7 |
Cu | 0.01 | 0.05 | 0.02 | 0.01 | 0.40 | 0.06 | 0.07 | 0.2 | 5 | 10 |
Mo | 0.01 | 0.02 | 0.01 | 0.01 | 0.05 | 0.02 | 0.01 | 0.05 | 1 | 3 |
Ni | <LOD | 4.85 | 1.75 | 0.97 | 2.27 | 5.05 | 5.75 | 0.04 | 1 | 4 |
Pb | 0.019 | 0.01 | 0.01 | 0.02 | 0.04 | 0.01 | 0.02 | 0.05 | 1 | 5 |
Sb | 0.016 | 0.003 | <LOD | <LOD | 0.014 | 0.003 | <LOD | 0.006 | 0.07 | 0.5 |
Se | <LOD | 0.024 | <LOD | 0.016 | 0.040 | 0.022 | <LOD | 0.01 | 0.05 | 0.7 |
Zn | 0.03 | <LOD | <LOD | <LOD | 1.03 | <LOD | <LOD | 0.4 | 5 | 20 |
F− | <LOD | 4.77 | 4.68 | 5.27 | 1.24 | 5.5 | 6.94 | 1 | 15 | 50 |
Cl− | <LOD | 37.0 | 38.5 | 39.0 | 4.72 | 62.9 | 98.3 | 80 | 2500 | 2500 |
SO42− | <LOD | 94.9 | 93.7 | 96.6 | 63.4 | 138 | 152 | 100 | 5000 | 5000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Genua, F.; Giovini, M.; Santoni, E.; Berrettoni, M.; Lancellotti, I.; Leonelli, C. Factors Affecting Consolidation in Geopolymers for Stabilization of Galvanic Sludge. Materials 2025, 18, 3015. https://doi.org/10.3390/ma18133015
Genua F, Giovini M, Santoni E, Berrettoni M, Lancellotti I, Leonelli C. Factors Affecting Consolidation in Geopolymers for Stabilization of Galvanic Sludge. Materials. 2025; 18(13):3015. https://doi.org/10.3390/ma18133015
Chicago/Turabian StyleGenua, Francesco, Mattia Giovini, Elisa Santoni, Mario Berrettoni, Isabella Lancellotti, and Cristina Leonelli. 2025. "Factors Affecting Consolidation in Geopolymers for Stabilization of Galvanic Sludge" Materials 18, no. 13: 3015. https://doi.org/10.3390/ma18133015
APA StyleGenua, F., Giovini, M., Santoni, E., Berrettoni, M., Lancellotti, I., & Leonelli, C. (2025). Factors Affecting Consolidation in Geopolymers for Stabilization of Galvanic Sludge. Materials, 18(13), 3015. https://doi.org/10.3390/ma18133015