The Effects of Sand Incorporation on the Pore Structure, Strength, and Fractal Characteristics of Alkali-Activated Slag Cementitious Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Mix Proportions
2.2. Experimental Methods
2.2.1. Mechanical Performance Testing
2.2.2. Autogenous Shrinkage Test
2.2.3. MIP Testing
2.3. Fractal Model Establishment
3. Results and Discussion
3.1. Strength Development of Alkali-Activated Slag Cementitious Materials
3.2. Autogenous Shrinkage Test Results
3.3. SEM Analysis
3.4. Characteristic Parameters of Pore Structure
3.5. Fractal Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Puertas, F.; Martinez-Ramirez, S.; Alonso, S.; Palomo, A. Alkali-Activated Fly Ash/Slag Cements: Strength Behaviour and Hydration Products. Cem. Concr. Res. 2000, 30, 1625–1632. [Google Scholar] [CrossRef]
- Krizan, D.; Zivanovic, B. Effects of Dosage and Modulus of Water Glass on Early Hydration of Alkali–Slag Cements. Cem. Concr. Res. 2002, 32, 8. [Google Scholar] [CrossRef]
- Al-Otaibi, S. Durability of Concrete Incorporating GGBS Activated by Water-Glass. Constr. Build. Mater. 2008, 22, 2059–2067. [Google Scholar] [CrossRef]
- Palomo, A.; Fernandez-Jimenez, A.; Kovalchuk, G.; Ortega, A. OPC–Fly Ash Cementitious Systems: Study of Gel Binders Produced during Alkaline Hydration. J. Mater. Sci. 2007, 42, 2958–2966. [Google Scholar] [CrossRef]
- Chen, W.; Brouwers, H.J.H. The Hydration of Slag, Part 1: Reaction Models for Alkali-Activated Slag. J. Mater. Sci. 2007, 42, 428–443. [Google Scholar] [CrossRef]
- Provis, J.L. Alkali-Activated Materials. Cem. Concr. Res. 2018, 114, 40–48. [Google Scholar] [CrossRef]
- Van Deventer, J.S.J.; Provis, J.L.; Duxson, P. Technical and Commercial Progress in the Adoption of Geopolymer Cement. Miner. Eng. 2012, 29, 89–104. [Google Scholar] [CrossRef]
- Glukhovsky, V.D. Soil Silicates; Gosstroi Publishers: Kiev, Ukraine, 1959. [Google Scholar]
- Roy, D.M.; Silsbee, M.R.; Wolfe-Confer, D. New Rapid Setting Alkali-Activated Cement Compositions. MRS Proc. 1990, 179, 203–220. [Google Scholar] [CrossRef]
- Wang, S.D.; Scrivener, K.L. Hydration Products of Alkali-Activated Slag Cement. Cem. Concr. Res. 1995, 25, 561–571. [Google Scholar] [CrossRef]
- Fang, Y.H.; Gu, Y.M.; Kang, Q.B. Effect of Fly Ash MgO and Curing Solution on the Chemical Shrinkage of Alkali-Activated Slag Cement. Adv. Build. Mater. 2011, 168–170, 2008–2012. [Google Scholar] [CrossRef]
- Gu, Y.M.; Fang, Y.H.; You, D.; Liu, H. Properties and Microstructure of Alkali-Activated Slag Cement Cured at Below- and About-Normal Temperature. Constr. Build. Mater. 2015, 79, 1–8. [Google Scholar] [CrossRef]
- Lin, Y.; He, T.; Da, Y. Effects of Recycled Micro-Powders Mixing Methods on the Properties of Recycled Concrete. J. Build. Eng. 2023, 80, 107994. [Google Scholar] [CrossRef]
- Tittarelli, F.; Moriconi, G.; Bracchi, G. Recycled Powders from Construction and Demolition Waste: Characterization and Possible Use in Cement-Based Materials. Cem. Concr. Compos. 2021, 119, 103992. [Google Scholar]
- Su, C.; Zhang, J.; Ding, Y. Research on Reactivity Evaluation and Micro-Mechanism of Various Solid Waste Powders for Alkali-Activated Cementitious Materials. Constr. Build. Mater. 2024, 411, 134374. [Google Scholar] [CrossRef]
- Kaufmann, J. Characterization of Pore Space of Cement-Based Materials by Combined Mercury and Wool’s Metal Intrusion. J. Am. Ceram. Soc. 2009, 91, 209–216. [Google Scholar] [CrossRef]
- Chen, Y.; Li, L.; Zhao, X.; Wang, X. Multi-Scale Pore Structure and Its Influence on Mechanical Properties of Recycled Aggregate Concrete. J. Build. Mater. 2022, 35, 198–208. [Google Scholar]
- Zhu, L.; Wang, L.; Yang, X. Physico-Mechanical and Durability Characterization of Eco-Ternary Cementitious Binder Containing Calcined Clay/Rice Husk Ash and Recycled Glass Powder. Materials 2023, 16, 7009. [Google Scholar]
- Mandelbrot, B.B. Stochastic Models for the Earth’s Relief, the Shape and the Fractal Dimension of the Coastlines, and the Number-Area Rule for Islands. Proc. Natl. Acad. Sci. USA 1975, 72, 3825–3828. [Google Scholar] [CrossRef]
- Cleaves, H.J.; Scott, A.M.; Hill, F.C.; Orgel, L.E. Mineral–Organic Interfacial Processes: Potential Roles in the Origins of Life. Chem. Soc. Rev. 2012, 41, 5502–5525. [Google Scholar] [CrossRef]
- Eibeck, A.; Zhao, S.; Li, M.Q.; Wu, Y. Research Data Supporting ‘A Simple and Efficient Approach to Unsupervised Instance Matching and Its Application to Linked Data of Power Plants’; University Of Cambridge: Cambridge, UK, 2024. [Google Scholar]
- Zhang, J.; Cui, Z.; Chen, X.; Wang, H. Research Progress on the Microfracture of Shale: Experimental Methods, Microfracture Propagation, Simulations, and Perspectives. Appl. Sci. 2024, 14, 784. [Google Scholar] [CrossRef]
- Jin, J.; Liu, T.; Li, M.; Wu, J. Influence of Biomass Fly Ash on Durability of Self-Consolidating Cement-Tailings Grout: Resistance to Freeze–Thaw Cycles and Sulfate Attack. J. Build. Eng. 2024, 93, 109842. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, H.; Chen, Y. A Review on the Menger Sponge Fractal Structure and Its Applications in Materials. Materials 2019, 12, 1642. [Google Scholar]
- Wang, X.; Liu, Q.; Li, J. Application of the Menger Sponge Model in Sound Absorption Materials. Appl. Acoust. 2020, 142, 107520. [Google Scholar]
- Chen, Z.; Yang, L.; Wang, Y. Investigation of Heat Transfer Characteristics in Porous Media Based on the Menger Sponge Model. Int. J. Heat Mass Transf. 2018, 125, 1234–1245. [Google Scholar]
- Lowell, S. Continuous Scan Mercury Porosimetry and the Pore Potential as a Factor in Porosimetry Hysteresis. Powder Technol. 1980, 25, 37–43. [Google Scholar] [CrossRef]
- GB/T 17671—2021; Method of Testing Cements—Determination of Strength (ISO Method). General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of China, Standards Press of China: Beijing, China, 2021.
- Gong, N.; Zhu, M.; Zhang, Y.; Su, P.; Zhong, M.; Mu, C. The Content Optimization of Supplementary Cementitious Materials in Coral Sand-Seawater Cement Mortar: A Focus on Mechanical Properties and Transportation Costs. Constr. Build. Mater. 2024, 432, 136022. [Google Scholar] [CrossRef]
- Wang, R.Z. Preparation and Properties of Alkali-Activated Slag-Fly Ash Cementitious Materials. Master’s Thesis, Xiangtan University, Xiangtan, China, 2023. [Google Scholar]
- ASTM C1698-09; Standard Test Method for Autogenous Strain Change in Cementitious Materials. ASTM International: West Conshohocken, PA, USA, 2009.
- Zhu, C.; Wan, Y.; Wang, L.; Li, J. Strength Characteristics and Microstructure Analysis of Alkali-Activated Slag–Fly Ash Cementitious Material. Materials 2022, 15, 6169. [Google Scholar] [CrossRef]
- Guan, D. Fractal and Multifractal Analysis of Microscopic Pore Structure of UHPC Matrix Modified with Nano Silica. Fractals Fract. 2024, 8, 360. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Liu, J.; Zhu, K.; Zheng, Z.; Dong, Y. Study on properties and hydration mechanism of green alkali-activation lithium slag composite cementitious materials. Constr. Build. Mater. 2025, 473, 140966. [Google Scholar] [CrossRef]
- Lowell, S.; Shields, J.E.; Thomas, M.A.; Thommes, M. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Katz, A.J.; Thompson, A.H. Quantitative Prediction of Permeability in Porous Rock. Phys. Rev. B 1986, 34, 8179. [Google Scholar] [CrossRef]
- Giesche, H. Mercury Porosimetry: A General (Practical) Overview. Part. Part. Syst. Charact. 2006, 23, 9–19. [Google Scholar] [CrossRef]
- Diamond, S. Mercury Porosimetry: An Inappropriate Method for the Measurement of Pore Size Distributions in Cement-Based Materials. Cem. Concr. Res. 2000, 30, 1517–1525. [Google Scholar] [CrossRef]
Component | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | MnO | TiO2 | LOI |
---|---|---|---|---|---|---|---|---|---|
Slag powder | 33.23 | 17.76 | 0.416 | 37.17 | 7.53 | 3.10 | 0.404 | 0.992 | — |
Solid Content | Na2O | SiO2 |
---|---|---|
36.07 | 8.64 | 27.43 |
Group | Slag Powder | Fine Sand | Standard Sand | Water Glass | Water | Total Water |
---|---|---|---|---|---|---|
A | 400 | 0 | 0 | 136 | 40 | 120 |
B | 450 | 0 | 1350 | 153 | 135 | 225 |
C | 427.5 | 22.5 | 1350 | 146 | 130 | 216 |
Specimen | Threshold Pore Size (nm) | Most Probable Pore Size (nm) | Total Porosity (%) | Pore Volume (ml/g) | Median Pore Size (nm) |
---|---|---|---|---|---|
3d-A | 1625.23 | 5.85 | 17.37 | 0.0595791 | 66.17 |
3d-B | 2255.16 | 4.27 | 8.80 | 0.030184 | 9.1 |
3d-C | 2339.15 | 4.59 | 8.11 | 0.0278173 | 9.4 |
28d-A | 1415.26 | 4.29 | 7.83 | 0.0268569 | 67.52 |
28d-B | 2439.94 | 4.25 | 9.299 | 0.03189557 | 10.7 |
28d-C | 3473.03 | 4.22 | 8.33 | 0.0285719 | 14.3 |
90d-A | 2843.1 | 4.23 | 5.02 | 0.0172186 | 66.8 |
90d-B | 7382.83 | 4.16 | 9.79 | 0.0335797 | 20.7 |
90d-C | 1877.2 | 4.12 | 7.40 | 0.025382 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, Y.; Gu, Z.; Wang, Y.; Sun, Y.; Zhu, C.; Yang, J. The Effects of Sand Incorporation on the Pore Structure, Strength, and Fractal Characteristics of Alkali-Activated Slag Cementitious Materials. Materials 2025, 18, 2797. https://doi.org/10.3390/ma18122797
Ye Y, Gu Z, Wang Y, Sun Y, Zhu C, Yang J. The Effects of Sand Incorporation on the Pore Structure, Strength, and Fractal Characteristics of Alkali-Activated Slag Cementitious Materials. Materials. 2025; 18(12):2797. https://doi.org/10.3390/ma18122797
Chicago/Turabian StyleYe, Yuchen, Zhenyuan Gu, Yi Wang, Ying Sun, Chenhui Zhu, and Jie Yang. 2025. "The Effects of Sand Incorporation on the Pore Structure, Strength, and Fractal Characteristics of Alkali-Activated Slag Cementitious Materials" Materials 18, no. 12: 2797. https://doi.org/10.3390/ma18122797
APA StyleYe, Y., Gu, Z., Wang, Y., Sun, Y., Zhu, C., & Yang, J. (2025). The Effects of Sand Incorporation on the Pore Structure, Strength, and Fractal Characteristics of Alkali-Activated Slag Cementitious Materials. Materials, 18(12), 2797. https://doi.org/10.3390/ma18122797