Dual-Broadband Topological Photonic Crystal Edge State Based on Liquid Crystal Tunability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dual-Broadband Valley-Topological Photonic Crystal
2.2. Excitation of the Edge States
3. Anomalous Refraction, Birefringence, and Momentum Matching Conditions of Valley Edge State Excitation
3.1. Anomalous Refraction and Birefringence of Valley Edge States
3.2. Momentum Matching Method for Anomalous Refraction and Birefringence of Valley Edge States
4. Liquid Crystal Tunable Edge States
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MMI | Multimode Interference |
MMF | Multimode Fiber |
SMFs | Single-mode Fibers |
SOAs | Semiconductor Optical Amplifiers |
ITO | Indium Tin Oxide |
LC | Liquid Crystal |
References
- Al-Taiy, H.; Wenzel, N.; Preußler, S.; Klinger, J.; Schneider, T. Ultra-Narrow Linewidth, Stable and Tunable Laser Source for Optical Communication Systems and Spectroscopy. Opt. Lett. 2014, 39, 5826. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Chen, C.; Wan, J.; Wen, Y.; Zhang, X.; Yuan, S.; Liu, X. High Range Resolution Spectral-Scanning LiDAR Based on Optical Frequency-Domain Reflectometry. Opt. Lett. 2024, 49, 6565. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Chandra, S.; Dasgupta, A.; Shabbir, M.W.; Biswas, A.; Chanda, D. Spectrally Tunable Ultrafast Long Wave Infrared Detection at Room Temperature. Nano Lett. 2024, 24, 14678–14685. [Google Scholar] [CrossRef] [PubMed]
- Bierman, D.M.; Lenert, A.; Chan, W.R.; Bhatia, B.; Celanović, I.; Soljačić, M.; Wang, E.N. Enhanced Photovoltaic Energy Conversion Using Thermally Based Spectral Shaping. Nat. Energy 2016, 1, 16068. [Google Scholar] [CrossRef]
- Ferreira, R.A.S.; Correia, S.F.H.; Monguzzi, A.; Liu, X.; Meinardi, F. Spectral Converters for Photovoltaics—What’s Ahead. Mater. Today 2020, 33, 105–121. [Google Scholar] [CrossRef]
- Basu, C.; Schlangen, S.; Meinhardt-Wollweber, M.; Roth, B. Light Source Design for Spectral Tuning in Biomedical Imaging. J. Med. Imaging 2015, 2, 044501. [Google Scholar] [CrossRef]
- Alexander, K.; Benyamini, A.; Black, D.; Bonneau, D.; Burgos, S.; Burridge, B.; Cable, H.; Campbell, G.; Catalano, G.; Ceballos, A.; et al. A Manufacturable Platform for Photonic Quantum Computing. Nature 2025, 641, 876–883. [Google Scholar] [CrossRef]
- Rodt, S.; Reitzenstein, S. Integrated Nanophotonics for the Development of Fully Functional Quantum Circuits Based on On-Demand Single-Photon Emitters. APL Photonics 2021, 6, 010901. [Google Scholar] [CrossRef]
- Yu, Y.; Oser, D.; Da Prato, G.; Urbinati, E.; Ávila, J.C.; Zhang, Y.; Remy, P.; Marzban, S.; Gröblacher, S.; Tittel, W. Frequency Tunable, Cavity-Enhanced Single Erbium Quantum Emitter in the Telecom Band. Phys. Rev. Lett. 2023, 131, 170801. [Google Scholar] [CrossRef]
- Qi, Z.; Hu, G.; Deng, C.; Sun, H.; Sun, Y.; Li, Y.; Liu, B.; Bai, Y.; Chen, S.; Cui, Y. Electrical Tunable Topological Valley Photonic Crystals for On-Chip Optical Communications in the Telecom Band. Nanophotonics 2022, 11, 4273–4285. [Google Scholar] [CrossRef]
- Zhu, B.; Zhu, C.; Qin, J.; He, W.; Yue, L.; Huang, P.; Li, D.; Sun, R.; Ye, S.; Du, Y.; et al. Two-dimensional SnP2 Se6 with Gate-tunable Seebeck Coefficient for Telecommunication Band Photothermoelectric Detection. InfoMat 2024, 6, e12600. [Google Scholar] [CrossRef]
- Liu, W.; Li, G.; Chen, C.; Liu, J.; Li, Z.-Y. Broadly Tunable Filter Based on a Graphene MEMS-Photonic Crystal Composite Structure and Its Application in Single-Pixel Full-Color Displays. J. Mater. Chem. C 2024, 12, 6588–6595. [Google Scholar] [CrossRef]
- Wu, J.; Song, P.; Zang, S.; Qiao, Y.; Huan, R.; Zhang, W.; Shao, L. Widely-Tunable MEMS Phononic Frequency Combs by Multistage Bifurcations Under a Single-Tone Excitation. J. Microelectromech. Syst. 2024, 33, 384–394. [Google Scholar] [CrossRef]
- Kobrinski, H.; Cheung, K.-W. Wavelength-Tunable Optical Filters: Applications and Technologies. IEEE Commun. Mag. 1989, 27, 53–63. [Google Scholar] [CrossRef]
- Xu, J.; Ling, Q.; Zhang, Y.; Jiang, X.; Guan, Z.; Chen, D. Wavelength-Tunable Mode-Locked Fiber Laser Based on a Bending Strain-Controlled Filter. Opt. Laser Technol. 2025, 181, 111696. [Google Scholar] [CrossRef]
- Zhao, H.; Cheng, C.; Guo, Q.; Yu, K.; Yang, Y. Angular-Spectral Characteristics of Acousto-Optic Tunable Filters Based on Mercurous Halide Crystals. Materials 2024, 17, 967. [Google Scholar] [CrossRef]
- Sun, S.; Zhao, H.; Guo, Q.; Wang, Y. Design of Acoustic Absorbing Structures for Mercurous Halide-Based Acousto-Optic Tunable Filters. Materials 2024, 17, 5606. [Google Scholar] [CrossRef]
- Akamatsu, S.; Seki, H.; Sasaki, T. Spectral Control in the Liquid Crystal Tunable Filters. Mol. Cryst. Liq. Cryst. 2024, 768, 142–159. [Google Scholar] [CrossRef]
- Chandrika, T.N.; Ranjitha, R.; Prashanth, G.R. Tunable Wavelength Filter Based on Liquid Crystal Resonant Devices for Optical Communication Systems. In Proceedings of the 2024 International Conference on Smart Systems for Applications in Electrical Sciences (ICSSES), Tumakuru, India, 3–4 May 2024; pp. 1–5. [Google Scholar]
- Zhou, Z.; Zhang, Y.; Xie, Y.; Huang, T.; Li, Z.; Chen, P.; Lu, Y.; Yu, S.; Zhang, S.; Zheng, G. Electrically Tunable Planar Liquid-Crystal Singlets for Simultaneous Spectrometry and Imaging. Light Sci. Appl. 2024, 13, 242. [Google Scholar] [CrossRef]
- Rezaei, B. Design of a Tunable Multichannel Terahertz Absorber in One-Dimensional Photonic Crystals Incorporating a Dirac Semimetal-Dielectric Defect Layer. Sci. Rep. 2025, 15, 6158. [Google Scholar] [CrossRef]
- Jinying, Z.; Bingnan, W.; Rui, W.; Xinye, W. Transport Characteristics of Topological Edge States in Dual-Band Valley Photonic Crystals. Acta Opt. Sin. 2023, 43, 0916001. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, B.; Wang, R.; Wang, J.; Wang, X.; Zhang, Y. Multiple Broadband Infrared Topological Photonic Crystal Valley States Based on Liquid Crystals. Materials 2024, 17, 5212. [Google Scholar] [CrossRef]
- Bilin, Y.; Ran, H.; Yingmin, S.; Yujun, G.; Yonggang, Z. Design and Robustness Study of Dual-Topological Photonic Crystal Laser. Laser Optoelectron. Prog. 2025, 62, 0314005. [Google Scholar] [CrossRef]
- Tang, G.; He, X.; Shi, F.; Liu, J.; Chen, X.; Dong, J. Topological Photonic Crystals: Physics, Designs, and Applications. Laser Photonics Rev. 2022, 16, 2100300. [Google Scholar] [CrossRef]
- Antonio-Lopez, J.E.; Castillo-Guzman, A.; May-Arrioja, D.A.; Selvas-Aguilar, R.; LiKamWa, P. Tunable Multimode-Interference Bandpass Fiber Filter. Opt. Lett. 2010, 35, 324. [Google Scholar] [CrossRef]
- Huang, L.; Zhao, Y.; Zheng, B.; Liu, S.; Zhang, C.; Yin, G.; Liu, T.; Zhu, T. Wideband Acousto-Optic Tunable Fiber Laser Based on Dual-SOA Gain. Opt. Laser Technol. 2024, 171, 110467. [Google Scholar] [CrossRef]
- You, J.W.; Lan, Z.; Ma, Q.; Gao, Z.; Yang, Y.; Gao, F.; Xiao, M.; Cui, T.J. Topological Metasurface: From Passive toward Active and Beyond. Photonics Res. 2023, 11, B65–B102. [Google Scholar] [CrossRef]
- Shalaev, M.I.; Desnavi, S.; Walasik, W.; Litchinitser, N.M. Reconfigurable Topological Photonic Crystal. New J. Phys. 2018, 20, 023040. [Google Scholar] [CrossRef]
- Wang, H.; Sun, L.; Li, J.; Wang, Z.; Pu, Z.; He, Y.; Zhang, Y.; Hu, X.; Yuan, L.; Dong, J.; et al. Refraction and Coupling of Topological Edge State Based on Silicon Valley Photonic Crystals. Laser Photonics Rev. 2025, 2401627. [Google Scholar] [CrossRef]
- Notomi, M. Negative Refraction in Photonic Crystals. Opt. Quantum Electron. 2002, 34, 133–143. [Google Scholar] [CrossRef]
- Xudong, Z.; Zhaoxian, C.; Xia, M.; Ao, L.; Bingxiang, L.; Lei, W.; Wei, H.; Yanqing, L. Tunable Topological Edge States in Terahertz Valley Photonic Crystals Based on Liquid Crystals. Acta Opt. Sin. 2024, 44, 2013002. [Google Scholar] [CrossRef]
- Wang, L.; Lin, X.; Liang, X.; Wu, J.; Hu, W.; Zheng, Z.; Jin, B.; Qin, Y.; Lu, Y. Large Birefringence Liquid Crystal Material in Terahertz Range. Opt. Mater. Express 2012, 2, 1314. [Google Scholar] [CrossRef]
- Wang, L.; Nakajima, M.; Lu, Y.Q. Liquid Crystal Based Terahertz Devices. In Proceedings of the 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Nagoya, Japan, 9–14 September 2018; pp. 1–2. [Google Scholar] [CrossRef]
- Yu, H.; Wang, H.; Wang, Q.; Ge, S.; Hu, W. Liquid Crystal-Tuned Planar Optics in Terahertz Range. Appl. Sci. 2023, 13, 1428. [Google Scholar] [CrossRef]
- Nakajima, M.; Lu, Y.; Wang, L. Terahertz Wave Manipulation and Detection Based on Liquid Crystals. In Emerging Liquid Crystal Technologies XIV, Proceedings of the SPIE OPTO 2019, San Francisco, CA, USA, 1 March 2019; Chien, L.-C., Ed.; SPIE: Bellingham, WA, USA, 2019; p. 12. [Google Scholar] [CrossRef]
- Xu, Z.-H.; He, J.; Hao, X.; Song, Y.-Q.; Ren, H.; Xu, Q.; Han, J.; Xu, S. Quantitative Terahertz Communication Evaluation of Compact Valley Topological Photonic Crystal Waveguides. ACS Photonics 2025, 12, 1822–1828. [Google Scholar] [CrossRef]
- Wang, H.-X.; Guo, G.-Y.; Jiang, J.-H. Band Topology in Classical Waves: Wilson-Loop Approach to Topological Numbers and Fragile Topology. New J. Phys. 2019, 21, 093029. [Google Scholar] [CrossRef]
- Zhang, J.; Si, Y.; Zhang, Y.; Wang, B.; Wang, X. Dual-Band High-Throughput and High-Contrast All-Optical Topology Logic Gates. Micromachines 2024, 15, 1492. [Google Scholar] [CrossRef]
- Hagemann, H.J.; Gudat, W.; Kunz, C. Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3. J. Opt. Soc. Am. 1975, 65, 6. [Google Scholar] [CrossRef]
- Yu, B.L.; Zeng, F.; Xing, Q.; Alfano, R.R. Probing Dielectric Relaxation Properties of Liquid CS2 with Terahertz Time-Domain Spectroscopy. Appl. Phys. Lett. 2003, 82, 4633–4635. [Google Scholar] [CrossRef]
- Meng, C.-L.; Tseng, M.-C.; Lee, C.-Y.; Srivastava, A.K.; Kwok, H.-S. Azo Dye, Liquid Crystals Polymer Composite Photo-Alignment Layer for Modern Liquid Crystal Displays. SID Symp. Dig. Tech. Pap. 2016, 47, 118. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Wang, B.; Wang, J.; Wang, X.; Zhang, Y. Dual-Broadband Topological Photonic Crystal Edge State Based on Liquid Crystal Tunability. Materials 2025, 18, 2778. https://doi.org/10.3390/ma18122778
Zhang J, Wang B, Wang J, Wang X, Zhang Y. Dual-Broadband Topological Photonic Crystal Edge State Based on Liquid Crystal Tunability. Materials. 2025; 18(12):2778. https://doi.org/10.3390/ma18122778
Chicago/Turabian StyleZhang, Jinying, Bingnan Wang, Jiacheng Wang, Xinye Wang, and Yexiaotong Zhang. 2025. "Dual-Broadband Topological Photonic Crystal Edge State Based on Liquid Crystal Tunability" Materials 18, no. 12: 2778. https://doi.org/10.3390/ma18122778
APA StyleZhang, J., Wang, B., Wang, J., Wang, X., & Zhang, Y. (2025). Dual-Broadband Topological Photonic Crystal Edge State Based on Liquid Crystal Tunability. Materials, 18(12), 2778. https://doi.org/10.3390/ma18122778